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High energy hadronic interactions in QCD
and applications to heavy ion collisions

IV – Saturation and the Color Glass Condensate
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General outline

n Lecture I : Introduction and phenomenology

n Lecture II : Lessons from Deep Inelastic Scattering

n Lecture III : QCD on the light-cone

n Lecture IV : Saturation and the Color Glass Condensate

n Lecture V : Calculating observables in the CGC
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Lecture IV : Saturation and CGC

n BFKL equation

n Saturation of parton distributions

n Balitsky-Kovchegov equation

n Color Glass Condensate - JIMWLK

n Analogies with reaction-diffusion processes

n Pomeron loops
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High energy scattering
n Consider the following scattering process :

n Reminder : the high energy limit of the scattering amplitude
Sβα can be written as :

S
(∞)
βα ≡ lim

ω→+∞

〈
βin

∣∣eiωK−

U(+∞,−∞)e−iωK− ∣∣αin

〉

=
〈
βin

∣∣U0(+∞, 0)FU0(0,−∞)
∣∣αin

〉

with F ≡ exp ig
∫

~x⊥

χ(~x⊥)ρ(~x⊥), and :

χ(~x⊥) ≡

∫
dx+ A−(x+, 0, ~x⊥)

ρ(~x⊥) ≡

∫
dx− J+(0, x−, ~x⊥)
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High energy scattering

n Introduce two complete sets of intermediate states :

S
(∞)
βα =

∑

δ,γ

∫ [ ∏

i∈δ

dΦi

∏

j∈γ

dΦj

]〈
βin

∣∣U0(+∞, 0)
∣∣γin

〉

×
〈
γin

∣∣F
∣∣δin

〉〈
δin

∣∣U0(0,−∞)
∣∣αin

〉

n Instead of labelling the intermediate states by their variables
k+, ~k⊥, use the transverse coordinate ~x⊥ conjugate to ~k⊥ :

dΦ ≡
dk+

4πk+
d2~x⊥

n In terms of these variables, the factor
〈
δin

∣∣U0(0,−∞)
∣∣αin

〉
is

the term of light-cone wave function of α that corresponds to
δ. Let us denote :

Ψδα({k+
i , ~xi⊥}) ≡

〈
δin

∣∣U0(0,−∞)
∣∣αin

〉

Ψ†
γβ({k+′

i , ~x′
i⊥}) ≡

〈
βin

∣∣U0(+∞, 0)
∣∣γin

〉
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High energy scattering

n We have seen that the number and the nature of the particles
is unchanged under the action of the operator F . Moreover,
in terms of the transverse coordinates, we simply have
〈
γin

∣∣F
∣∣δin

〉
= δ

NN′

∏

i

[
4πk+

i δ(k
+
i − k

+′
i )δ(~xi⊥ − ~x

′
i⊥)U

Ri
(~xi⊥)

]

where U
R

(~x⊥) is a Wilson line operator, in the representation R
appropriate for the particle going through the target

n In other words, the states δ and γ must be identical, except
for the color index of the particles they contain (not written
explicitly)

n Therefore, the high energy scattering amplitude can be
written as :

S
(∞)
βα =

∑

δ

∫ [ ∏

i∈δ

dΦi

]
Ψ†

δβ({k+
i , ~xi⊥})

[ ∏

i∈δ

U
Ri

(~xi⊥)
]
Ψδα({k+

i , ~xi⊥})
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Scattering of a dipole

n Assume that the initial and final states α and β are a color
singlet QQ dipole. The simplest Fock state that contributes
to their wave function is a QQ pair, and the bare scattering
amplitude can be written as :

∝ Ψ
(0)∗
ij (~x⊥, ~y⊥)Ψ

(0)
kl (~x⊥, ~y⊥)Uik(~x⊥)U†

lj(~y⊥)

∝
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
U(~x⊥)U†(~y⊥)

]

n It turns out that 1-loop corrections to this contribution are
enhanced by αslog(p+), which can be large when the quark
or antiquark has a large p+

n In the gauge A+ = 0, the emission of a gluon of momentum
k by a quark can be written as :

= 2gta
~ελ · ~k⊥

k2
⊥
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Scattering of a dipole

n In coordinate space, this reads :
∫

d2~k⊥

(2π)2
ei~k⊥·(~x⊥−~z⊥) 2gta

~ελ · ~k⊥

k2
⊥

=
2ig

2π
ta
~ελ · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2

n The following diagrams must be evaluated :

+ h.c.

n When connecting two gluons, one must use :
∑

λ

~εi
λ~ε

j
λ = −gij
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Virtual corrections
n Consider first the loop corrections inside the wavefunction of

the incoming or outgoing dipole
n Examples :

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
tataU(~x⊥)U †(~y⊥)

]

×− 2αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
taU(~x⊥)U †(~y⊥)ta

]

×4αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

n Reminder : tata = (N2
c − 1)/2Nc ≡ CF
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Virtual corrections

n The sum of all virtual corrections is :

−
C

F
αs

π2

∫
dk+

k+

∫
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
U(~x⊥)U†(~y⊥)

]

n The integral over k+ is divergent. It should have an upper
bound at p+ :

∫ p+

dk+

k+
= ln(p+) = Y

B When Y is large, αsY may not be small. By differentiating
with respect to Y , we will get an evolution equation in Y
whose solution resums all the powers (αsY )n

n The integral over ~z⊥ is divergent when ~z⊥ = ~x⊥ or ~y⊥
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Real corrections
n There are also real corrections, for which the state that

interacts with the target has an extra gluon
n Example :

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
taU(~x⊥)tbU †(~y⊥)

]

×4αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
Ũab(~z⊥)

(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

u Ũab(~z⊥) is a Wilson line in the adjoint representation

n In order to simplify the color structure, first notice that :

taŨab(~z⊥) = U(~z⊥)tbU†(~z⊥)

n Then use the SU(Nc) Fierz identity :

tbijt
b
kl =

1

2
δilδjk −

1

2Nc

δijδkl
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Real corrections
n The Wilson lines can be rearranged into :

tr
[
taU(~x⊥)tbU†(~y⊥)

]
Ũab(~z⊥) =

1

2
tr

[
U†(~z⊥)U(~x⊥)

]
tr

[
U(~z⊥)U†(~y⊥)

]

−
1

2Nc

tr
[
U(~x⊥)U†(~y⊥)

]

u The term in 1/2Nc cancels against a similar term in the virtual
contribution

u All the real terms have the same color structure

n When we sum all the real terms, we generate the same
kernel as in the virtual terms :

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

n In order to simplify the notations, let us denote :

S(~x⊥, ~y⊥) ≡
1

Nc

tr
[
U(~x⊥)U†(~y⊥)

]
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Evolution equation

n The 1-loop scattering amplitude reads :

−
αsN

2
c Y

2π2

∣∣∣Ψ(0)(~x⊥, ~y⊥)
∣∣∣
2
∫
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{

S(~x⊥, ~y⊥)− S(~x⊥, ~z⊥)S(~z⊥, ~y⊥)
}

n Reminder: the bare scattering amplitude was :
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

Nc S(~x⊥, ~y⊥)

n Hence, we have :

∂S(~x⊥, ~y⊥)

∂Y
= −

αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{

S(~x⊥, ~y⊥)− S(~x⊥, ~z⊥)S(~z⊥, ~y⊥)
}

u since S(~x⊥, ~x⊥) = 1, the integral over ~z⊥ is now regular
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BFKL equation

Kuraev, Lipatov, Fadin (1977), Balitsky, Lipatov (1978)

n Actually, we’ve got more than we need : we must simplify
this equation in order to obtain the BFKL equation...

n Write S(~x⊥, ~y⊥) ≡ 1− T (~x⊥, ~y⊥) and assume that we are in
the dilute regime, so that the scattering amplitude T is small.
Drop the terms that are non-linear in T :

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{

T (~x⊥, ~z⊥) + T (~z⊥, ~y⊥)− T (~x⊥, ~y⊥)
}
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BFKL equation

n Note : T (~x⊥, ~y⊥) is independent on the frame. In particular,
it depends only on the rapidity difference between the dipole
and the target
B in a frame where the dipole is held fixed, the target has to
evolve in such a way as to reproduce the Y dependence of T











dipole

target











dipole

target

n The corresponding evolution in the target is the radiation of a
gluon
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Unitarity problem

n The solution of this equation grows exponentially when
Y → +∞ B serious unitarity problem...

n In perturbation theory, the forward scattering amplitude
between a small dipole and a target made of gluons reads :

T (~x⊥, ~y⊥) ∝ |~x⊥ − ~y⊥|
2 xG(x, |~x⊥ − ~y⊥|

−2)

where Y ≡ ln(1/x)

n Therefore, the exponential behavior of T implies an increase
of the gluon distribution at small x

T ∼ eωY ←→ xG(x,Q2) ∼
1

xδ
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Parton evolution under boosts

B at low energy, only valence quarks are present in the hadron
wave function
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Parton evolution under boosts

B when energy increases, new partons are emitted

B the emission probability is αs

∫
dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon
B at small-x (i.e. high energy), these logs need to be
resummed
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Parton evolution under boosts

B as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step
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Parton recombination

B eventually, the partons start overlapping in phase-space
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Parton recombination

B parton recombination becomes favorable
B after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
Balitsky (1996), Kovchegov (1996,2000)
Jalilian-Marian, Kovner, Leonidov, Weigert (1997,1999)
Iancu, Leonidov, McLerran (2001)
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Saturation criterion

Gribov, Levin, Ryskin (1983), Mueller, Qiu (1986)

n Number of partons per unit area:

ρ ∼
xG(x, Q2)

πR2

n Recombination cross-section:

σgg→g ∼
αs

Q2

n Recombination if ρσgg→g & 1, or Q2 . Q2
s, with:

Q2
s ∼

αsxG(x, Q2
s)

πR2
∼ A1/3 1

x0.3

n At saturation, the gluon phase-space density is:

dNg

d2~x⊥d2~p⊥

∼
ρ

Q2
∼

1

αs
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Saturation domain

log(Q 2)

log(x -1)

ΛQCD

n Boundary defined by Q2 = Q2
s(x)
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Non-linear evolution equation

n In fact, the first evolution equation we derived has a bounded
solution. The BFKL equation has unbounded solutions
because it is an approximation in which a term quadratic in
T has been neglected. The full equation reads :

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{

T (~x⊥, ~z⊥) + T (~z⊥, ~y⊥)− T (~x⊥, ~y⊥)− T (~x⊥, ~z⊥)T (~z⊥, ~y⊥)
}

(Balitsky-Kovchegov equation)

n The r.h.s. vanishes when T reaches 1, and the growth stops.
The non-linear term lets both dipoles interact after the
splitting of the original dipole

n Both T = 0 and T = 1 are fixed points of this equation
u T = ε : r.h.s.> 0 B T = 0 is unstable
u T = 1− ε : r.h.s.> 0 B T = 1 is stable
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Caveats

n So far, we have studied the scattering amplitude between a
color dipole and a “god given” patch of color field. This is too
crude to describe any realistic situation

n One can describe Deep Inelastic Scattering as an interaction
between a dipole and the proton, but for that we need to
improve the treatment of the target

n At high energy, the duration of the interaction between the
dipole and the proton is short. Therefore, it is legitimate to
treat the proton as a frozen configuration of color fields.
But an experimentally measured cross-section is an average
over many collisions, and there is no reason why these fields
should be the same in different collisions
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Balitsky hierarchy
n Because of this average over the target configurations, the

evolution equation we have derived should be written as :

∂ 〈T (~x⊥, ~y⊥)〉

∂Y
=
αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{
〈T (~x⊥, ~z⊥)〉+ 〈T (~z⊥, ~y⊥)〉 − 〈T (~x⊥, ~y⊥)〉 − 〈T (~x⊥, ~z⊥)T (~z⊥, ~y⊥)〉

}

n As one can see, the equation is no longer a closed equation,
since the equation for 〈T 〉 depends on a new object, 〈T T 〉

n One can derive an evolution equation for 〈T T 〉. Its right
hand side contains objects with six Wilson lines
u Unlike what happened previously, this combination of six Wilson

lines simplifies into dipolar operators only in the large Nc limit
u There is in fact an infinite hierarchy of nested evolution

equations, whose generic structure is

∂
〈
(UU †)n

〉

∂Y
=

∫
· · ·

〈
(UU

†)n
〉
⊕

〈
(UU

†)n+1
〉
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Balitsky-Kovchegov equation
n If one performs the large Nc approximation on all the

equations of the Balitsky hierarchy, they can be rewritten in
terms of the dipole operator T ≡ tr(UU †) only. But they still
contain averages like 〈T n〉

n In order to truncate the hierarchy of equations, one may
assume that

〈T T 〉 ≈ 〈T 〉 〈T 〉

n This approximation gives for 〈T 〉 the same evolution equation
as the one we had for a fixed configuration of the target

n Moreover, it was shown by Janik that if the initial condition is
factorized :

〈T 1 · · ·T n〉
Y0

= 〈T 1〉
Y0
· · · 〈T n〉

Y0

then the solution remains factorized at all Y > Y0
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Introduction

n One may view the Color Glass Condensate as a description
centered on the target of the physics contained in Balitsky’s
hierarchy

n In this “target-centric” description, we need to describe how
the distribution of color fields in the target changes with
rapidity

n In the non-linear regime, the gluon radiation in the target
must be corrected by rescatterings in the field of the target :











dipole

target











dipole

target
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Degrees of freedom and their interplay

McLerran, Venugopalan (1994)
Iancu, Leonidov, McLerran (2001)

n Small-x modes have a large occupation number
B they are described by a classical color field Aµ

n The classical field obeys Yang-Mills’s equation:

[Dν , F νµ]a = Jµ
a

n The source term Jµ
a comes from the faster partons. The

large-x modes, slowed down by time dilation, are described
as frozen color sources ρa. Hence :

Jµ
a = δµ+δ(x−)ρa(~x⊥)
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Semantics

McLerran (mid 2000)

n Color : pretty much obvious...

n Glass : the system has degrees of freedom whose
timescale is much larger than the typical timescales for
interaction processes. Moreover, these degrees of freedom
are stochastic variables, like in “spin glasses” for instance

n Condensate : the soft degrees of freedom are as densely
packed as they can (the density remains finite, of order α−1

s ,
due to the interactions between gluons)
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Target average

n The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y ≡ ln(1/x0), x0 being the

frontier between “small-x” and “large-x”

n The averaged dipole operator 〈T 〉 studied in the
Balitsky-Kovechegov approach can be written as :

〈T (~x⊥, ~y⊥)〉 =

∫
[Dρ] W

Y
[ρ]

[
1−

1

Nc

tr(U(~x⊥)U†(~y⊥))

]

n Since in this description, all the evolution is placed inside the
target, Y must in fact be the rapidity difference between the
projectile and the target

n The Y dependence of 〈T 〉 will have to come from the Y
dependence of W

Y
[ρ]
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JIMWLK evolution equation
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

n The distribution W
Y
[ρ] evolves with Y (more modes are

included in W as x0 decreases)
n In a high density environment, the newly created gluons can

interact with all the sources already present
n The evolution is governed by a functional diffusion equation:

∂W
Y

[ρ]

∂Y
=

1

2

∫

~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)
W

Y
[ρ]

with

χab(~x⊥, ~y⊥) ≡
αs

4π3

∫
d2~z⊥

(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
[(

1− Ũ†(~x⊥)Ũ(~z⊥)
)(

1− Ũ†(~z⊥)Ũ(~y⊥)
)]

ab

u Ũ is a Wilson line in the adjoint representation, constructed from
the gauge field A+ such that ∇

2
⊥A

+ = −ρ
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JIMWLK evolution equation
n Sketch of a proof : exploit the frame independence in order

to write :

〈O〉
Y

=

∫
[Dρ] W0[ρ] O

Y
[ρ] =

∫
[Dρ] W

Y
[ρ] O0[ρ]

n The first formula leads to

∂ 〈O〉
Y

∂Y
=

∫
[Dρ] W0[ρ]

∂O
Y

[ρ]

∂Y

u The derivative under the integral is determined by a method
similar to the derivation of the Balitsky-Kovchegov equation, by
attaching one extra gluon to the operator O

Y
[ρ] in all the

possible ways
u As pointed out by Mueller (2001), ∂O

Y
[ρ]/∂Y can be written as

the action of an Hamiltonian on O
Y

[ρ] :

∂O
Y

[ρ]

∂Y
= H

[
δ

δρ

]
O

Y
[ρ]



BFKL equation (and a bit more)

Parton saturation

Balitsky-Kovchegov equation

Color Glass Condensate

l Introduction

l Degrees of freedom

l Target average

l JIMWLK equation

l Color correlation length

Reaction-diffusion processes

Pomeron loops

François Gelis – 2006 Lecture IV/V – SPhT, Saclay, January 2006 - p. 34/51

JIMWLK evolution equation
n Then, one can write formally :

O
Y

[ρ] = U(Y ) O0[ρ]

with dU(Y )/dY = H U(Y ) and U(0) = 1

n From there, we get :

〈O〉
Y

=

∫
[Dρ] W0[ρ] U(Y ) O0[ρ] =

∫
[Dρ]

[
U

†(Y ) W0[ρ]
]

O0[ρ]

and we are led to identify :

W
Y

[ρ] = U
†(Y ) W0[ρ]

n And finally :

∂W
Y

[ρ]

∂Y
=

[
dU†(Y )

dY
U(Y )

]
U

†(Y ) W0[ρ] = H
JIMWLK

W
Y

[ρ]

with H
JIMWLK

=
[
dU†(Y )/dY

]
U(Y )
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Initial condition - MV model

n The JIMWLK equation must be completed by an initial
condition, given at some moderate x0

n As with DGLAP, the problem of finding the initial condition is
in general non-perturbative

n The McLerran-Venugopalan model is often used as an initial
condition at moderate x0 for a large nucleus :

z

u partons distributed randomly
u many partons in a small tube
u no correlations at different ~x⊥

n The MV model assumes that the density of color charges
ρ(~x⊥) has a Gaussian distribution :

Wx0 [ρ] = exp

[
−

∫
d2~x⊥

ρa(~x⊥)ρa(~x⊥)

2µ2(~x⊥)

]
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Color correlation length

n In a nucleon at low energy, the typical correlation length
among color charges is of the order of the nucleon size,
i.e. Λ−1

QCD
∼ 1 fm. This is because the typical color screening

distance is Λ−1
QCD

. At low energy, color screening is due to
confinement, and thus non-perturbative

n At high energy (small x), partons are much more densely
packed, and it can be shown that color neutralization occurs
in fact over distances of the order of Q−1

s � Λ−1
QCD

Qs
-1

n This implies that all hadrons, and nuclei, behave in the same
way at high energy. In this sense, the small x regime
described by the CGC is universal
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Analogy with reaction-diffusion

Munier, Peschanski (2003,2004)

n Assume rotation invariance, and define :

N(Y, k⊥) ≡ 2π

∫
d2~x⊥ ei~k⊥·~x⊥

〈T (0, ~x⊥)〉
Y

x2
⊥

n From the Balitsky-Kovchegov equation for 〈T 〉
Y

, we obtain
the following equation for N :

∂N(Y , k⊥)

∂Y
=
αsNc

π

[
χ(−∂L)N(Y , k⊥)−N2(Y , k⊥)

]

with

L ≡ ln(k2/k2
0)

χ(γ) ≡ 2ψ(1)− ψ(γ)− ψ(1− γ)
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Analogy with reaction-diffusion

n Expand the function χ(γ) to second order around its
minimum γ = 1/2

n Introduce new variables :

t ∼ Y

z ∼ L+
αsNc

2π
χ′′(1/2) Y

n The equation for N becomes :

∂tN = ∂2
zN +N −N2

(known as the Fisher-Kolmogorov-Petrov-Piscounov equation)
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Analogy with reaction-diffusion

n Interpretation : this equation is typical for all the diffusive
systems in which a reaction A←→ A + A takes place

u ∂2
zN : diffusion term (the quantity under consideration can

hop from a site to the neighboring sites)

u +N : gain term corresponding to A→ A + A

u −N2 : loss term corresponding to A + A→ A

n Note : this equation has two fixed points :
u N = 0 : unstable
u N = 1 : stable

n The stable fixed point at N = 1 exists only if one keeps the
loss term. In other words, one would not have it from the
BFKL equation
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Traveling waves
n Assume an initial condition N(t0, z) that goes smoothly from

1 at z = −∞ to 0 at z = +∞, and behaves like exp(−βz)
when z � 1

N(t,z)

z

n The solution of the F-KPP equation is known to behave like a
traveling wave at asymptotic times (Bramson, 1983) :

N(t, z) ∼
t→+∞

N(z −mβ(t))

with
u mβ(t) = (β + β−1)t +O(1) if β < 1

u mβ(t) = 2t− ln(t)/2 +O(1) for β = 1

u mβ(t) = 2t− 3 ln(t)/2 +O(1) if β > 1
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Traveling waves
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Geometrical scaling in DIS

Iancu, Itakura, McLerran (2002)
Mueller, Triantafyllopoulos (2002)
Munier, Peschanski (2003)

n In QCD, the initial condition is of the required form, with β > 1
B front velocity independent of the initial condition

n Going back to the original variables, one gets :

N(Y, k⊥) = N (k⊥/Qs(Y ))

with

Q2
s(Y ) = k2

0 Y
− 3

2(1−γ̄) eαsχ′′( 1
2
)( 1

2
−γ̄)Y

n Going from N(Y, k⊥) to 〈T (0, ~x⊥)〉
Y

, we obtain :

〈T (0, ~x⊥)〉
Y

= T (Qs(Y )x⊥)
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Geometrical scaling in DIS

n The γ∗p cross-section, measured in Deep Inelastic
Scattering, can be written in terms of N :

σγ∗p(Y ,Q2) = 2πR2

∫
d2~x⊥

∫ 1

0

dz
∣∣ψ(z, x⊥, Q

2)
∣∣2 〈T (0, ~x⊥)〉

Y

u The photon wavefunction ψ is calculable in QED :
∣∣ψ

T
(z, x⊥, Q

2)
∣∣2 =

3αem

2π2

∑

f

e2f

{
[z2 + (1− z)2] Q

2

f K
2
1 (Qfx⊥)

+m2
f K

2
0 (Qfx⊥)

}

∣∣ψ
L
(z, x⊥, Q

2)
∣∣2 =

3αem

2π2

∑

f

e2f

{
4 Q2 z2(1− z)2 K2

0 (Qfx⊥)
}

with Q
2

f ≡ m
2
f +Q2z2(1− z2)

n If one neglects the quark masses, the scaling properties of
〈T 〉

Y
imply that σγ∗p depends only on the ratio Q2/Q2

s(Y ),
rather than on Q2 and Y separately
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Geometrical scaling in DIS

n HERA data as a function of Q2 and x :
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Geometrical scaling in DIS

Stasto, Golec-Biernat, Kwiecinski (2000)
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What’s wrong with JIMWLK?
n In one step of evolution in Y , the JIMWLK equation allows n

gluons to become 2 gluons :

n These contributions are crucial when the color fields inside
the target are large (i.e. when the parton density is large)

n When this evolution in rapidity is repeated several times, the
JIMWLK equation generates the following type of diagrams :



BFKL equation (and a bit more)

Parton saturation

Balitsky-Kovchegov equation

Color Glass Condensate

Reaction-diffusion processes

Pomeron loops

l What’s wrong with JIMWLK?

l Modified Balitsky hierarchy

l Fluctuations in F-KPP

François Gelis – 2006 Lecture IV/V – SPhT, Saclay, January 2006 - p. 46/51

What’s wrong with JIMWLK?

n The JIMWLK equation does not include the reverse
processes, where for instance 2 gluons go into n :

n They can be seen as a way of producing n gluons from
quantum fluctuations rather than from the color field of the
target
B therefore, they are important only when the field in the
target is weak

n Moreover, these high multiplicity quantum fluctuations grow
faster during the evolution in Y . Therefore, their effect is still
felt at high Y , even if at this point these splitting processes
are negligible
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What’s wrong with JIMWLK?

n By keeping into account both the mergings and the splittings,
one gets Pomeron loops :

n Naturally, the full theory should have all the n→ n′ splittings
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Modified Balitsky hierarchy

n Warning : in the “projectile centric” description provided by
the Balitsky equations, there are splittings but no mergings...

n Loosely speaking, the first Balitsky equation reads :

∂
〈
T

〉

∂Y
=

∫
· · ·

{〈
T

〉
−

〈
T

2〉}

n The second equation of the hierarchy drives the evolution of〈
T 2

〉
, and in the large Nc limit it reads :

∂
〈
T 2

〉

∂Y
=

∫
· · ·

{〈
T

2〉−
〈
T

3〉}

n In order to have mergings, one should add an extra term :

∂
〈
T 2

〉

∂Y
=

∫
· · ·

{〈
T

2〉−
〈
T

3〉 + α2
s

〈
T

〉}
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Modified Balitsky hierarchy

n More generally, the n-th modified Balitsky equation reads :

∂
〈
T n

〉

∂Y
=

∫
· · ·

{〈
T

n
〉
−

〈
T

n+1〉 + α2
s

〈
T

n−1〉}

n Such a hierarchy of equations can be remapped into a
Langevin equation :

∂tN = ∂2
zN +N −N2 +

√
N(1−N)ξ

where ξ is a Gaussian white noise
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Fluctuations in the F-KPP equation
Brunet, Derrida (1997,1999,2001)
Iancu, Mueller, Munier (2004)
Iancu, Triantafyllopoulos (2004)

n The properties of the front of the traveling wave are
determined by the tail at z → +∞, where N is small

n This is precisely where the stochastic term is important

n N , being related to the number of partons in the target, is a
quantity that should vary in discrete increments
It cannot be arbitrary small

n When this discreteness is taken into account, one sees that
the growth of N is controlled by the diffusion term ∂2

zN rather
than by the gain term +N

n This changes many things, in particular the velocity of the
traveling front
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Lecture V : Calculating observables

n Field theory coupled to time-dependent sources

n Generating function for the probabilities

n Average particle multiplicity

n Numerical methods for nucleus-nucleus collisions

u Gluon production

u Quark production
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