QCD at small x
and Nucleus-Nucleus collisions

François Gelis

CEA / DSM / SPhT
Outline

QCD at small x
- Nucleons at high energy
- Parton evolution and saturation
- Color Glass Condensate
- What is the present evidence?
- The present frontiers of the CGC

Initial conditions for nucleus-nucleus collisions
- Issues in particle production
- Factorization of leading logarithms
- Effect of unstable modes

Related talks:
- M. Strickland (next talk)
- S. Mrowczynski, T. Hirano (Nov. 18th), H. Fujii (Nov. 19th)
QCD at small x
Nucleon at rest

- Very complicated non-perturbative object, that contains fluctuations at all space-time scales smaller than its own size.

- Only the fluctuations that are longer lived than the external probe participate in the interaction process.

- Interactions are very complicated if the constituents of the nucleon have a non trivial dynamics over time-scales comparable to those of the probe.
- **Dilation** of all internal time-scales of the nucleon

- The constituents behave as if they were free over time-scales comparable to the interaction time

- Many fluctuations live long enough to be seen by the probe. The nucleon appears **denser at high energy**. Pre-existing fluctuations act as static sources of new partons

- In a nucleus, soft gluons (long wavelength) belonging to different nucleons overlap in the longitudinal direction

 ▶ coherent effects ▶ saturation
Parton distributions in a proton

- Nucleons at high energy
- Parton saturation
- Color Glass Condensate
- Experimental hints
- Present Frontiers

Summary
Parton evolution

▷ assume that the projectile is big, e.g. a nucleus, and has many valence quarks (only two are represented)
▷ on the contrary, consider a small probe, with few partons
▷ at low energy, only valence quarks are present in the hadron wave function
Parton evolution

- when energy increases, new partons are emitted

- the emission probability is \(\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln(\frac{1}{x}) \), with \(x \) the longitudinal momentum fraction of the gluon

- at small-\(x \) (i.e. high energy), these logs need to be resummed
Parton evolution

\[\text{as long as the density of constituents remains small, the evolution is } \textbf{linear}: \text{ the number of partons produced at a given step is proportional to the number of partons at the previous step (BFKL)} \]
eventually, the partons start overlapping in phase-space

parton recombination becomes favorable

after this point, the evolution is non-linear: the number of partons created at a given step depends non-linearly on the number of partons present previously
Saturation criterion

Gribov, Levin, Ryskin (1983)

- Number of gluons per unit area:

\[\rho \sim \frac{xG_A(x, Q^2)}{\pi R_A^2} \]

- Recombination cross-section:

\[\sigma_{gg \rightarrow g} \sim \frac{\alpha_s}{Q^2} \]

- Recombination happens if \(\rho \sigma_{gg \rightarrow g} \gtrsim 1 \), i.e. \(Q^2 \lesssim Q_s^2 \), with:

\[Q_s^2 \sim \frac{\alpha_s xG_A(x, Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{x^{0.3}} \]
Saturation domain

\[\log(x^{-1}) \]

\[\Lambda_{QCD} \]

\[\log(Q^2) \]
Saturation domain

\[\log(x^{-1}) \]

\[\log(Q^2) \]

\[\Lambda_{QCD} \]

Saturation

SPS

Y = 0

François Gelis – 2006

Saturation domain

\[\log(x^{-1}) \]

\[\Lambda_{QCD} \]

\[\log(Q^2) \]

- Saturation domain
- \(\log(Q^2) \)
- \(\log(x^{-1}) \)
- \(\Lambda_{QCD} \)
Saturation domain

$log(x^{-1})$

$log(Q^2)$

Λ_{QCD}

$\log(Q^2)$

$log(x^{-1})$

Λ_{QCD}

LHC

$Y = 0$

RHIC

$Y = 0$

$Y = 0$

$Y = 0$

LHC

Large Y
Saturation domain

\[\log(Q^2) \]

\[\Lambda_{QCD} \]

\[\log(x^{-1}) \]
Degrees of freedom and their interplay

- Small-x modes have a large occupation number
 - they are described by a classical color field A^μ that obeys Yang-Mills’s equation:
 \[[D_\nu, F^{\nu \mu}]_a = J^\mu_a \]

- The source term J^μ_a comes from the faster partons. The large-x modes, slowed down by time dilation, are described as frozen color sources ρ_a. Hence:
 \[J^\mu_a = \delta^{-}(x) \rho_a(\vec{x}_\perp) \]

- The color sources ρ_a are random, and described by a distribution $W_Y[\rho]$, with $Y \equiv \ln(1/x_0)$, x_0 being the frontier between “small-x” and “large-x”. JIMWLK equation:
 \[\frac{\partial W_Y[\rho]}{\partial Y} = \mathcal{H}[\rho] \ W_Y[\rho] \]
Hadronic collisions

- In order to study the collisions of two hadrons at leading order, the color current must have two terms:

\[
J^\mu \equiv \delta^{\mu+} \delta(x^-) \rho_1(\vec{x}_\perp) + \delta^{\mu-} \delta(x^+) \rho_2(\vec{x}_\perp)
\]

- Compute the observable \(O \) of interest in the color field created by a configuration \((\rho_1, \rho_2)\) of the sources. Note: the sources are of order \(1/\sqrt{\alpha_s} \) \(\triangleright \) very non-linear problem

- Average over the sources \(\rho_1, \rho_2 \)

\[
\langle O \rangle_Y = \int [D\rho_1] [D\rho_2] W_{Y_{\text{beam}}-Y}[\rho_1] W_{Y_{\text{beam}}+Y}[\rho_2] O[\rho_1, \rho_2]
\]
Low x ($x < 10^{-2}$) data displayed as a function of $\tau = x^{0.3} Q^2$

Stasto, Golec-Biernat, Kwiecinski (2000)
Iancu, Itakura, McLerran (2002)
Limiting fragmentation

- Inclusive hadron spectrum at RHIC, shifted by the beam rapidity ($\sqrt{s} = 19.6, 64, 130, 200$ GeV)

(data from PHOBOS, STAR and BRAHMS):

\[MV, \lambda_0=0.0, \lambda_s=0.46 \]

- Limiting fragmentation is natural in the framework of gluon saturation. It follows from:
 - Approximate Bjorken scaling in the nucleus at large x
 - Unitarization of scattering amplitudes in the nucleus at small x
High pt suppression at large Y

- Results of the BRAHMS experiment at RHIC for deuteron-gold collisions:

$$R_{dAu} \equiv \frac{1}{N_{coll}} \frac{dN}{dp_{\perp} d\eta} |_{dAu} \frac{dN}{dp_{\perp} d\eta} |_{pp}$$

Albacete, Armesto, Kovner, Salgado, Wiedemann ('03), Kharzeev, Levin, McLerran ('03), Iancu, Itakura, Triantafyllopoulos ('04)

- At small rapidity, suppression at low p_{\perp} and enhancement at high p_{\perp} (multiple scatterings – Cronin effect)
- At large rapidity, suppression at all p_{\perp}'s (shadowing)
Multiplicity at RHIC

- Predictions from different approaches vs. data:

[Graph showing multiplicity predictions from various models compared to data, labeled "Eskola, QM 2001".]
Multiplicity at RHIC

- N_{part} scaling and energy dependence:

 Kharzeev, Levin, Nardi (2001)

See also: Armesto, Salgado, Wiedemann (2004)
The present Frontiers of the CGC

Two aspects of QCD at high energy are under active study, but have not yet been applied to heavy ion collisions:

- **Beyond mean field, fluctuations of Q_s and pomeron loops**:
 - Evolution equations with a stochastic term:
 - Hatta, Iancu, Marquet, Soyez, Triantafyllopoulos (2006)
 - Marquet, Soyez, Xiao (2006)
 - Toy models in 1+1 dimensions:
 - Blaizot, Iancu, Triantafyllopoulos (2006)
 - Applications to diffractive reactions:
 + many more...

- **Towards NLO evolution equations**:
 - Albacete, Armesto, Milhano (2006)
Initial conditions for nucleus-nucleus collisions ("Glasma")
What do we mean by Initial Conditions?

- calculate the initial production of semi-hard particles
- prepare the stage for kinetic theory or hydrodynamics
Typical e+e- or pp collision
Why is pQCD predictive there?

- More precisely, why is pQCD predictive despite the fact that hadrons are non-perturbative bound states?

- **Factorization**:
 - (Collinear) divergences in loop corrections can be absorbed into the (DGLAP) evolution of parton distributions and fragmentation functions

- **Universality** : parton distributions are process independent
Can we set up an equally systematic framework for semi-hard particle production in nucleus-nucleus collisions?
Gluon multiplicity at LO

\[
\frac{dN_{LO}}{d^3 \vec{p}} \propto \int_{x,y} e^{i \vec{p} \cdot (x-y)} \cdots \mathcal{A}_\mu(x) \mathcal{A}_\nu(y)
\]

\[\mathcal{A}_\mu(x) = \text{retarded solution of Yang-Mills equations}\]
Gluon multiplicity at LO

\[
\frac{dN_{LO}}{d^3\vec{p}} \propto \int_{x,y} e^{i\vec{p} \cdot (x-y)} \cdots A_\mu(x) A_\nu(y)
\]

\[A^\mu(x) = \text{retarded solution of Yang-Mills equations} \]
\[\uparrow \text{can be cast into an initial value problem on the light-cone} \]
Gluon multiplicity at LO

- Important softening at small k_\perp compared to pQCD (saturation)
- Quark production has also been computed (FG, Kajantie, Lappi (2005))
The color field at $\tau = 0$ does not depend on the rapidity η.

- It remains independent of η at all times (invariance under boosts in the z direction).
- Numerical resolution performed in $2 + 1$ dimensions.
Systematics of particle production

- Dilute regime: one source in each projectile interact
Systematics of particle production

- **Dilute regime**: one source in each projectile interact
- **Dense regime**: non linearities are important
Systematics of particle production

- **Dilute regime**: one source in each projectile interact
- **Dense regime**: non-linearities are important
- Many gluons can be produced from the same diagram
Systematics of particle production

- **Dilute regime**: one source in each projectile interact
- **Dense regime**: non linearities are important
- Many gluons can be produced from the same diagram
- There can be many simultaneous disconnected diagrams
Systematics of particle production

- **Dilute regime**: one source in each projectile interact
- **Dense regime**: non linearities are important
- Many gluons can be produced from the same diagram
- There can be many simultaneous disconnected diagrams
- Some of them may not produce anything (vacuum diagrams)
Systematics of particle production

- **Dilute regime**: one source in each projectile interact
- **Dense regime**: non linearities are important
- Many gluons can be produced from the same diagram
- There can be many simultaneous disconnected diagrams
- Some of them may not produce anything (**vacuum diagrams**)
- All these diagrams can have loops (not at LO though)
In the saturated regime, the sources are of order $1/\sqrt{\alpha_s}$, and the order of each disconnected diagram is given by:

$$\alpha_s^{-1} \left(\frac{1}{\alpha_s} \right)^{\frac{1}{2} (# \text{ produced gluons})} \alpha_s^{# \text{ loops}}$$

Total order = product of the orders of the subdiagrams

▷ summing all the contributions to the spectrum at a given order requires powerful bookkeeping tools (FG, Venugopalan (2006))
The 1-loop correction to \overline{N} can be written as a perturbation of the initial value problem encountered at LO:
The 1-loop correction to \(\overline{N} \) can be written as a perturbation of the initial value problem encountered at LO:

\[
\delta \overline{N} = \left[\int_{\vec{x} \in \text{light cone}} \delta A(\vec{x}) \ T_{\vec{x}} \right] \overline{N}_{LO}
\]

- \(\overline{N}_{LO} \) is a functional of the initial fields \(A_{\text{in}}(\vec{x}) \) on the light-cone.
- \(T_{\vec{x}} \) is the generator of shifts of the initial condition at the point \(\vec{x} \) on the light-cone, i.e.: \(T_{\vec{x}} \sim \delta / \delta A_{\text{in}}(\vec{x}) \).
1-loop correction to N

The 1-loop correction to N can be written as a perturbation of the initial value problem encountered at LO:

$$
\delta N = \left[\int_{\vec{x} \in \text{light cone}} \delta A(\vec{x}) \ T_{\vec{x}} + \int_{\vec{x}, \vec{y} \in \text{light cone}} \frac{1}{2} \Sigma(\vec{x}, \vec{y}) \ T_{\vec{x}} \ T_{\vec{y}} \right] N_{LO}
$$

- N_{LO} is a functional of the initial fields $A_{in}(\vec{x})$ on the light-cone
- $T_{\vec{x}}$ is the generator of shifts of the initial condition at the point \vec{x} on the light-cone, i.e. $T_{\vec{x}} \sim \delta / \delta A_{in}(\vec{x})$
- $\delta A(\vec{x})$ and $\Sigma(\vec{x}, \vec{y})$ are in principle calculable analytically
Divergences

- If taken at face value, this 1-loop correction is plagued by several divergences:

 - The two coefficients $\delta A(\vec{x})$ and $\Sigma(\vec{x}, \vec{y})$ are infinite, because of an unbounded integration over a rapidity variable.

 - At late times, $T_{\vec{x}} A(\tau, \vec{y})$ diverges exponentially,

 $$T_{\vec{x}} A(\tau, \vec{y}) \sim e^{\sqrt{\mu \tau}}$$

 because of an instability of the classical solution of Yang-Mills equations under rapidity dependent perturbations (Romatschke, Venugopalan (2005))
Initial state factorization

Anatomy of the full calculation:

\[W_{Y_{beam} - Y_0} [\rho_1] \]

\[W_{Y_{beam} + Y_0'} [\rho_2] \]

\[N[A_{in} (\rho_1, \rho_2)] + \delta N \]

By putting arbitrary frontiers \(Y_0, Y_0' \) between the “observable” and the “source distributions”, the divergent coefficients become finite.

For the final result to be independent of \(Y_0, Y_0' \), one needs:

\[
\left[\delta N \right]_{\text{divergent coefficients}} = \left((Y_0 - Y) \mathcal{H}^\dagger[\rho_1] + (Y - Y_0') \mathcal{H}^\dagger[\rho_2] \right) N_{LO}
\]

where \(\mathcal{H}[\rho] \) is the Hamiltonian that governs the rapidity dependence of the source distribution \(W_Y[\rho] \):

\[
\partial_Y W_Y[\rho] = \mathcal{H}[\rho] W_Y[\rho]
\]

FG, Lappi, Venugopalan (work in progress)
Unstable modes

Romatschke, Venugopalan (2005)

- Rapidity dependent perturbations to the classical fields grow like $\exp\left(\#\sqrt{\tau}\right)$ until the non-linearities become important:

\[
\text{max} \frac{T^4}{g^2 \mu \tau} / \frac{L^2}{g^2 \mu \tau} = c_0 + c_1 \exp(0.427 \sqrt{g^2 \mu \tau})
\]

\[
\text{max} \frac{T^4}{g^2 \mu \tau} / \frac{L^2}{g^2 \mu \tau} = c_0 + c_1 \exp(0.00544 g^2 \mu \tau)
\]
Unstable modes

One can sum the contribution of the unstable modes by:

$$\left[\delta N \right]_{\text{unstable modes}} = \int [Da] \mathcal{D}_{\text{fluct}} [a] \bar{N}_{\text{LO}} [A_{\text{in}} (\rho_1, \rho_2) + a]$$
Unstable modes

One can sum the contribution of the unstable modes by:

\[
\left[\delta N \right]_{\text{unstable modes}} = \int [Da] \ D_{\text{fluct}}[a] \ N_{LO} [A_{\text{in}}(\rho_1, \rho_2)+a]
\]
Unstable modes

One can sum the contribution of the unstable modes by:

\[
\begin{bmatrix} \delta N \end{bmatrix}_{\text{unstable modes}} = \int [Da] D_{\text{fluct}}[a] \bar{N}_{LO} [A_{\text{in}}(\rho_1, \rho_2) + a]
\]
Unstable modes

- One can sum the contribution of the unstable modes by:

$$\left[\delta N \right]_{\text{unstable modes}} = \int \left[D a \right] D_{\text{fluct}} [a] \, N_{LO} [A_{\text{in}}(\rho_1, \rho_2) + a]$$

- The distribution of fluctuations has been calculated recently
 Fukushima, FG, McLerran (2006)

- Still open issue: can these instabilities fight efficiently against the expansion of the system?
Summary
Summary

- Gluon recombination is important at small x, and affects initial particle production in high-energy AA collisions.

- Thanks to the large density of color sources, calculating the initial particle spectrum can be done via semi-classical techniques.

- The resummation of the divergences at 1-loop tells us to:
 - average over the initial sources with the weight $W_Y[\rho]$
 - average over fluctuations with a distribution $D_{\text{fluct}}[a]$

 ▶ Provides a self-consistent framework based on the $\{\text{JIMWLK} + \text{classical field approximation}\}$ combination.

 ▶ Somewhat analogous to factorization in conventional pQCD:

 $W_Y[\rho] \leftrightarrow \text{parton distribution}$
 $D_{\text{fluct}}[a] \leftrightarrow \text{fragmentation function}$
Extra bits

- Limiting frag.
- dA collisions I
- dA collisions II
- Local anisotropy
- Unstable modes
Extrapolation to LHC energy

\[\frac{dN}{d\eta} \approx 1000 - 1400 \]
dA collisions at RHIC

Kharzeev, Kovchegov, Tuchin (2005)
dA collisions at RHIC

![Graph showing dN/dy distribution for dAu collisions at RHIC](image-url)
Local anisotropy

- After some time, the gluons have a longitudinal velocity tied to their space-time rapidity by $v_z = \tanh(\eta)$:
Local anisotropy

After some time, the gluons have a longitudinal velocity tied to their space-time rapidity by $v_z = \tanh(\eta)$:
Local anisotropy

After some time, the gluons have a longitudinal velocity tied to their space-time rapidity by \(v_z = \tanh(\eta) \):

\[v_z = \tanh(\eta) \]

—at late times: if particles fly freely, only one longitudinal velocity can exist at a given \(\eta \): \(v_z = \tanh(\eta) \)
Unstable modes

- The coefficient \(\delta A(\vec{x}) \) is boost invariant, and does not trigger the instability. When summed to all orders, the contribution of the unstable modes exponentiates:

\[
\begin{bmatrix} \delta N \end{bmatrix}_{\text{unstable modes}} = e^{\frac{1}{2} \int_{\vec{x}, \vec{y}} \Sigma(\vec{x}, \vec{y}) T_{\vec{a}} T_{\vec{b}} N_{\text{LO}} [A_{\text{in}}(\rho_1, \rho_2)]}
\]

- By rewriting the Gaussian in \(T_{\vec{x}} \) as a Fourier transform:

\[
\begin{bmatrix} \delta N \end{bmatrix}_{\text{unstable modes}} = \int [Da] \left(e^{\frac{1}{2} \int_{\vec{x}, \vec{y}} \Sigma(\vec{x}, \vec{y}) a(\vec{a}) a(\vec{b})} e^{i \int_{\vec{x}} a(\vec{a}) T_{\vec{a}} N_{\text{LO}} [A_{\text{in}}(\rho_1, \rho_2)]} \right) D_{\text{fluct}}[a]
\]

\[
= \int [Da] D_{\text{fluct}}[a] \bar{N}_{\text{LO}} [A_{\text{in}}(\rho_1, \rho_2) + a]
\]

▷ summing the instabilities simply requires to add Gaussian fluctuations to the initial condition for the classical field