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Outline

■ QCD at small x

Nucleons at high energy

Parton evolution and saturation

Color Glass Condensate

What is the present evidence?

The present frontiers of the CGC

■ Initial conditions for nucleus-nucleus collisions
Issues in particle production

Factorization of leading logarithms

Effect of unstable modes

Related talks :
◆ R. Venugopalan, N. Borghini, Z. Kang, J. Albacete, N. Armesto,

L. Molnar, T. Larsen, J. Lee, H. Yang, D. d’Enterria (Nov. 15th)
◆ M. Strickland (next talk)
◆ S. Mrowczynski, T. Hirano (Nov. 18th), H. Fujii (Nov. 19th)
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Nucleon at rest

■ Very complicated non-perturbative object, that contains
fluctuations at all space-time scales smaller than its own size

■ Only the fluctuations that are longer lived than the external
probe participate in the interaction process

■ Interactions are very complicated if the constituents of the
nucleon have a non trivial dynamics over time-scales
comparable to those of the probe
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Nucleon at high energy

■ Dilation of all internal time-scales of the nucleon

■ The constituents behave as if they were free over
time-scales comparable to the interaction time

■ Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy.
Pre-existing fluctuations act as static sources of new partons

■ In a nucleus, soft gluons (long wavelength) belonging to
different nucleons overlap in the longitudinal direction
⊲ coherent effects ⊲ saturation
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Parton distributions in a proton
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Parton evolution

⊲ assume that the projectile is big, e.g. a nucleus, and has
many valence quarks (only two are represented)

⊲ on the contrary, consider a small probe, with few partons

⊲ at low energy, only valence quarks are present in the hadron
wave function
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Parton evolution

⊲ when energy increases, new partons are emitted

⊲ the emission probability is αs

∫
dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon

⊲ at small-x (i.e. high energy), these logs need to be
resummed
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Parton evolution

⊲ as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
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Parton evolution

⊲ eventually, the partons start overlapping in phase-space

⊲ parton recombination becomes favorable

⊲ after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
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Saturation criterion

Gribov, Levin, Ryskin (1983)

■ Number of gluons per unit area:

ρ ∼ xG
A
(x,Q2)

πR2
A

■ Recombination cross-section:

σgg→g ∼ αs

Q2

■ Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s, with:

Q2
s ∼ αsxG

A
(x,Q2

s)

πR2
A

∼ A1/3 1

x0.3
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Saturation domain
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Degrees of freedom and their interplay

McLerran, Venugopalan (1994), Iancu, Leonidov, McLerran (2001)

■ Small-x modes have a large occupation number
⊲ they are described by a classical color field Aµ that obeys

Yang-Mills’s equation:

[Dν , F νµ]a = Jµ
a

■ The source term Jµ
a comes from the faster partons. The

large-x modes, slowed down by time dilation, are described
as frozen color sources ρa. Hence :

Jµ
a = δµ+δ(x−)ρa(~x⊥)

■ The color sources ρa are random, and described by a
distribution W

Y
[ρ], with Y ≡ ln(1/x0), x0 being the frontier

between “small-x” and “large-x”. JIMWLK equation :

∂W
Y

[ρ]

∂Y
= H[ρ] W

Y
[ρ]
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Hadronic collisions

■ In order to study the collisions of two hadrons at leading
order, the color current must have two terms :

Jµ ≡ δµ+δ(x−) ρ1(~x⊥) + δµ−δ(x+) ρ2(~x⊥)

■ Compute the observable O of interest in the color field
created by a configuration (ρ1, ρ2) of the sources. Note : the
sources are of order 1/

√
αs ⊲ very non-linear problem

■ Average over the sources ρ1, ρ2

〈O〉
Y

=

Z
ˆ
Dρ1

˜ ˆ
Dρ2

˜
W

Ybeam−Y
[ρ1

˜
W

Ybeam+Y

ˆ
ρ2

˜
O[ρ1, ρ2

˜
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Geometrical scaling in F2

■ Low x (x < 10−2) data displayed as a function of τ = x0.3Q2

Stasto, Golec-Biernat, Kwiecinski (2000)
Iancu, Itakura, McLerran (2002)
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Limiting fragmentation

■ Inclusive hadron spectrum at RHIC, shifted by the beam
rapidity (

√
s = 19.6, 64, 130, 200 GeV)

(data from PHOBOS, STAR and BRAHMS) :
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MV, λ0=0.0, λs=0.46

Jalilian-Marian (2002), FG, Stasto, Venugopalan (2006)

■ Limiting fragmentation is natural in the framework of gluon
saturation. It follows from :

◆ Approximate Bjorken scaling in the nucleus at large x

◆ Unitarization of scattering amplitudes in the nucleus at small x
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High pt suppression at large Y

■ Results of the BRAHMS experiment at RHIC for
deuteron-gold collisions :

RdAu ≡
1

Ncoll

dN
dp⊥dη

˛
˛
˛
dAu

dN
dp⊥dη

˛
˛
˛
pp
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Albacete, Armesto, Kovner, Salgado, Wiedemann (’03), Kharzeev,
Levin, McLerran (’03), Iancu, Itakura, Triantafyllopoulos (’04)
◆ At small rapidity, suppression at low p⊥ and enhancement at

high p⊥ (multiple scatterings – Cronin effect)
◆ At large rapidity, suppression at all p⊥’s (shadowing)
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Multiplicity at RHIC

■ Predictions from different approaches vs. data :
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Multiplicity at RHIC

■ Npart scaling and energy dependence :

Kharzeev, Levin, Nardi (2001)

   〉partN〈0 100 200 300 400

/2
   

〉
pa

rt
N〈

 / η
/d

ch
dN

0

1

2

3

4

NNs Energy   

200 GeV

130 GeV

19.6 GeV

NNs Energy   

200 GeV

130 GeV

19.6 GeV

NNs Energy   

200 GeV

130 GeV

19.6 GeV

          PHOBOS

PRC 65 061901R (2002)

PRC 65 061901R (2002)

Preliminary

          PHOBOS

PRC 65 061901R (2002)

PRC 65 061901R (2002)

Preliminary

          PHOBOS

PRC 65 061901R (2002)

PRC 65 061901R (2002)

Preliminary

p           p 
    UA5

Interpolation

Interpolation

KLN Saturation Model
 = 0.25  (19.6,130,200)λ     

See also : Armesto, Salgado, Wiedemann (2004)
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The present Frontiers of the CGC

■ Two aspects of QCD at high energy are under active study,
but have not yet been applied to heavy ion collisions :

◆ Beyond mean field, fluctuations of Qs and pomeron loops :
■ Evolution equations with a stochastic term :

Hatta, Iancu, Marquet, Soyez, Triantafyllopoulos (2006)
Marquet, Soyez, Xiao (2006)

■ Toy models in 1+1 dimensions :
Shoshi, Xiao (2006), Kozlov, Levin, Khachtryan, Miller (2006)
Blaizot, Iancu, Triantafyllopoulos (2006)

■ Applications to diffractive reactions :
Iancu, Marquet, Soyez (2006), Shoshi, Xiao (2006)

+ many more...

◆ Towards NLO evolution equations :
Gardi, Kuokkanen, Rummukainen, Weigert (2006)
Kovchegov, Weigert (2006), Balitsky (2006)
Albacete, Armesto, Milhano (2006)



QCD at small x

Init. conditions for AA collisions

● Goals

● Gluon spectrum at LO

● Beyond LO

● Initial state factorization

● Unstable modes

Summary

François Gelis – 2006 Quark-Matter 2006, Shanghai, November 2006 - p. 21

Initial conditions for

nucleus-nucleus collisions

(“Glasma”)
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What do we mean by Initial Conditions?

z  (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

■ calculate the initial production of semi-hard particles
■ prepare the stage for kinetic theory or hydrodynamics
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Typical e+e- or pp collision

 Run : even t  2513 :  61702   Da t e  910910  T ime   85656                                  

 Ebeam 45 . 613  Ev i s   90 . 2  Emi ss    1 . 1  V t x  (   - 0 . 09 ,    0 . 13 ,   - 0 . 20 )               

 Bz=4 . 028  Bunch l e t  1 / 1   Th r us t =0 . 6788  Ap l an=0 . 0381  Ob l a t =0 . 4249  Sphe r =0 . 6273     

C t r k (N=  37  Sump=  65 . 7 )  Eca l (N=  55  SumE=  44 . 8 )  Hca l (N=19  SumE=   8 . 6 )  

Muon (N=   2 )  Sec  V t x (N=  3 )  Fde t (N=  0  SumE=   0 . 0 )  

Y

XZ

   100 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

20  GeV10 5 2
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Why is pQCD predictive there ?

■ More precisely, why is pQCD predictive despite the fact that
hadrons are non-perturbative bound states?

■ Factorization :

⊲ (Collinear) divergences in loop corrections can be
absorbed into the (DGLAP) evolution of parton distributions
and fragmentation functions

■ Universality : parton distributions are process independent
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Typical nucleus-nucleus collision

■ Can we set up an equally systematic framework for
semi-hard particle production in nucleus-nucleus collisions?
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Gluon multiplicity at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

dN
LO

d3~p
∝

Z

x,y

eip·(x−y) · · · Aµ(x)Aν(y)

■ Aµ(x) = retarded solution of Yang-Mills equations

only tree diagrams at LO
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Gluon multiplicity at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

dN
LO

d3~p
∝

Z

x,y

eip·(x−y) · · · Aµ(x)Aν(y)

■ Aµ(x) = retarded solution of Yang-Mills equations
⊲ can be cast into an initial value problem on the light-cone

Ain−→
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Gluon multiplicity at LO

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N

/d
2

Rπ
1/

(
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-1

KNV I

KNV II

Lappi

■ Important softening at small k⊥ compared to pQCD (saturation)

■ Quark production has also been computed
(FG, Kajantie, Lappi (2005))
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Initial conditions and boost invariance

η = const

τ = const

■ The color field at τ = 0 does not depend on the rapidity η

⊲ it remains independent of η at all times
(invariance under boosts in the z direction)

⊲ numerical resolution performed in 2 + 1 dimensions
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Systematics of particle production

■ Dilute regime : one source in each projectile interact
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Systematics of particle production

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
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Systematics of particle production

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
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Systematics of particle production

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
■ There can be many simultaneous disconnected diagrams
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Systematics of particle production

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
■ There can be many simultaneous disconnected diagrams
■ Some of them may not produce anything (vacuum diagrams)



QCD at small x

Init. conditions for AA collisions

● Goals

● Gluon spectrum at LO

● Beyond LO

● Initial state factorization

● Unstable modes

Summary

François Gelis – 2006 Quark-Matter 2006, Shanghai, November 2006 - p. 29

Systematics of particle production

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
■ There can be many simultaneous disconnected diagrams
■ Some of them may not produce anything (vacuum diagrams)
■ All these diagrams can have loops (not at LO though)
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Power counting

■ In the saturated regime, the sources are of order 1/
√

αs, and
the order of each disconnected diagram is given by :

α−1
s α

1
2
(# produced gluons)

s α# loops
s

■ Total order = product of the orders of the subdiagrams

⊲ summing all the contributions to the spectrum at a given order
requires powerful bookkeeping tools (FG, Venugopalan (2006))
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1-loop correction to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :
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1-loop correction to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :

x

δN =

» Z

~x ∈ light cone

δA(~x) T ~x

–

N
LO

◆ N
LO

is a functional of the initial fields Ain(~x) on the light-cone
◆ T ~x is the generator of shifts of the initial condition at the point ~x

on the light-cone, i.e. : T ~x ∼ δ/δAin(~x)
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1-loop correction to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :

x x

y

δN =

» Z

~x ∈ light cone

δA(~x) T ~x +

Z

~x,~y ∈ light cone

1

2
Σ(~x, ~y) T ~x T ~y

–

N
LO

◆ N
LO

is a functional of the initial fields Ain(~x) on the light-cone
◆ T ~x is the generator of shifts of the initial condition at the point ~x

on the light-cone, i.e. : T ~x ∼ δ/δAin(~x)

◆ δA(~x) and Σ(~x, ~y) are in principle calculable analytically
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Divergences

■ If taken at face value, this 1-loop correction is plagued by
several divergences :

◆ The two coefficients δA(~x) and Σ(~x, ~y) are infinite,
because of an unbounded integration over a rapidity
variable

◆ At late times, T ~xA(τ, ~y) diverges exponentially,

T ~xA(τ, ~y) ∼
τ→+∞

e
√

µτ

because of an instability of the classical solution of
Yang-Mills equations under rapidity dependent
perturbations (Romatschke, Venugopalan (2005))
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Initial state factorization

■ Anatomy of the full calculation :
Y
+ Ybeam

- Ybeam

 Y0

 Y ’
0





WYbeam -Y0

[ρ1]





WYbeam +Y ’

0
[ρ2]





N[ Ain(ρ1 , ρ2) ] + δ N

■ By putting arbitrary frontiers Y0, Y ′
0 between the “observable” and

the “source distributions”, the divergent coefficients become finite

■ For the final result to be independent of Y0, Y ′
0 , one needs :

h

δN
i

divergent
coefficients

=
h

(Y0 − Y )H†[ρ1] + (Y − Y ′
0 )H†[ρ2]

i

N
LO

where H[ρ] is the Hamiltonian that governs the rapidity dependence
of the source distribution W

Y
[ρ] : ∂

Y
W

Y
[ρ] = H[ρ] W

Y
[ρ]

FG, Lappi, Venugopalan (work in progress)
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Unstable modes

Romatschke, Venugopalan (2005)

■ Rapidity dependent perturbations to the classical fields grow
like exp(#

√
τ) until the non-linearities become important :
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Unstable modes

■ One can sum the contribution of the unstable modes by :
h

δN
i

unstable
modes

=

Z
ˆ
Da

˜
Dfluct[a] N

LO
[Ain(ρ1, ρ2)+a]
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Unstable modes

■ One can sum the contribution of the unstable modes by :
h

δN
i

unstable
modes

=

Z
ˆ
Da

˜
Dfluct[a] N

LO
[Ain(ρ1, ρ2)+a]

Classical solution
in 2+1 dimensions
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Unstable modes
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Unstable modes

■ One can sum the contribution of the unstable modes by :
h

δN
i

unstable
modes

=

Z
ˆ
Da

˜
Dfluct[a] N

LO
[Ain(ρ1, ρ2)+a]

η

■ The distribution of fluctuations has been calculated recently
Fukushima, FG, McLerran (2006)

■ Still open issue : can these instabilities fight efficiently
against the expansion of the system ?
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Summary

■ Gluon recombination is important at small x, and affects
initial particle production in high-energy AA collisions

■ Thanks to the large density of color sources, calculating the
initial particle spectrum can be done via semi-classical
techniques

■ The resummation of the divergences at 1-loop tells us to :
◆ average over the initial sources with the weight W

Y
[ρ]

◆ average over fluctuations with a distribution Dfluct[a]

⊲ Provides a self-consistent framework based on the
{JIMWLK + classical field approximation} combination

⊲ Somewhat analogous to factorization in conventional
pQCD :

W
Y

[ρ] ←→ parton distribution

Dfluct[a] ←→ fragmentation function
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Extrapolation to LHC energy
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dA collisions at RHIC

■ Kharzeev, Kovchegov, Tuchin (2005)
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dA collisions at RHIC

■ Dumitru, Hayashigaki, Jalilian-Marian (2005 – 2006)
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Local anisotropy

■ After some time, the gluons have a longitudinal velocity tied
to their space-time rapidity by vz = tanh (η) :
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Local anisotropy

■ After some time, the gluons have a longitudinal velocity tied
to their space-time rapidity by vz = tanh (η) :
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Local anisotropy

■ After some time, the gluons have a longitudinal velocity tied
to their space-time rapidity by vz = tanh (η) :

⊲ at late times : if particles fly freely, only one longitudinal
velocity can exist at a given η : vz = tanh (η)
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Unstable modes

■ The coefficient δA(~x) is boost invariant, and does not trigger
the instability. When summed to all orders, the contribution
of the unstable modes exponentiates :

h

δN
i

unstable
modes

= e
1
2

R

~x,~y
Σ(~x,~y) T ~xT ~y N

LO
[Ain(ρ1, ρ2)]

■ By rewriting the Gaussian in T ~x as a Fourier transform :
h

δN
i

unstable
modes

=

Z
ˆ
Da

˜
e

1
2

R

~x,~y
a(~x)a(~y)
Σ(~x,~y)

| {z }
ei

R

~x
a(~x) T ~x N

LO
[Ain(ρ1, ρ2)]

Dfluct[a]

=

Z
ˆ
Da

˜
Dfluct[a] N

LO
[Ain(ρ1, ρ2)+a]

⊲ summing the instabilities simply requires to add Gaussian
fluctuations to the initial condition for the classical field
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