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Outline

n Quark Gluon Plasma (QGP)
u Basic features of QCD
u Deconfinement phase transition
u Physics of the quark gluon plasma
u Signatures of the QGP

n Color Glass Condensate (CGC)
u Parton model
u Saturation
u Color Glass Condensate
u Signatures of the CGC
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Quarks and gluons

n Electromagnetic interaction : Quantum electrodynamics
u Matter : electron , interaction carrier : photon
u Interaction :

∼ e (electric charge of the electron)

n Strong interaction : Quantum chromodynamics
u Matter : quarks , interaction carriers : gluons
u Interactions :

a

i

j

∼ g (ta)ij
a

b

c

∼ g (T a)bc

u i, j : colors of the quarks (3 possible values)
u a, b, c : colors of the gluons (8 possible values)
u (ta)ij : 3× 3 matrix , (T a)bc : 8× 8 matrix
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Quark confinement

n The quark potential increases linearly with distance
n Quarks are confined into color singlet hadrons
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Asymptotic freedom

n Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc−2Nf ) log(1/rΛQCD
)

n The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

n But gluonic vacuum fluctuations produce an anti-screening
(because of the non-abelian nature of their interactions)

n As long as Nf <11Nc/2 = 16.5, the gluons win...



QGP

Basic features of QCD
l Quarks and gluons
l Confinement
l Asymptotic freedom

Deconfinement transition

Physics of the QGP

QGP signatures

CGC

Parton model

Saturation

Color Glass Condensate

CGC signatures

François Gelis – 2005 UFRJ, Rio de Janeiro, April 2005 – p. 6/70

Asymptotic freedom

n Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛQCD
)

n The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

n But gluonic vacuum fluctuations produce an anti-screening
(because of the non-abelian nature of their interactions)

n As long as Nf <11Nc/2 = 16.5, the gluons win...



QGP

Basic features of QCD
l Quarks and gluons
l Confinement
l Asymptotic freedom

Deconfinement transition

Physics of the QGP

QGP signatures

CGC

Parton model

Saturation

Color Glass Condensate

CGC signatures

François Gelis – 2005 UFRJ, Rio de Janeiro, April 2005 – p. 7/70

Asymptotic freedom

αS(MZ)=0.1182±0.0027

JADE
OPAL (preliminary)

ALEPH

JADE
Preliminary

Durham 4-Jet Rate
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n The coupling constant is small at short distances
n At high density, a hadron gas may undergo deconfinement

B quark gluon plasma
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Deconfinement
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2 flavour
pure gauge

n Fast increase of the pressure :
u at T ∼ 270 MeV, if there are only gluons
u at T ∼ 150–170 MeV, depending on the number of light quarks
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Deconfinement

Individual
nucleons plasma

Quark gluon

Density

n When the nucleon density increases, they merge, enabling
quarks and gluons to hop freely from a nucleon to its
neighbors

n This phenomenon extends to the whole volume when the
phase transition ends

n Note: if the transition is first order, it goes through a mixed
phase containing a mixture of nucleons and plasma
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Deconfinement
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QCD phase diagram
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The QGP in the early universe
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The QGP in the early universe

big bang

end of inflation

EW transition

confinement

nucleosynthesis

formation of atoms

time

QGP + electrons + photons

10-32 sec

10-10 sec

10-5 sec

10+2 sec

10+12 sec
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Heavy ion collisions
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Heavy ion collisions

z

ct

n τ ∼ 0 fm/c
n Production of hard particles :

u jets
u heavy quarks
u direct photons

n calculable with the tools of perturbative QCD
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Heavy ion collisions

n τ ∼ 0.2 fm/c
n Production of semi-hard particles :

u gluons, light quarks
n relatively small momentum : p⊥ . 1–2 GeV
n make up for most of the multiplicity
n sensitive to the physics of saturation (CGC)
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Heavy ion collisions

n τ ∼ 1–2 fm/c
n Thermalization

u experiments suggest a fast thermalization
u but this is still not understood from QCD
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Heavy ion collisions

n 2 ≤ τ . 10 fm/c
n Quark gluon plasma
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Heavy ion collisions

n 10 . τ . 20 fm/c
n Hot hadron gas
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Heavy ion collisions

n τ → +∞
n Chemical freeze-out :

density too small to have inelastic interactions
n Kinetic freeze-out :

no more elastic interactions
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Degrees of freedom

n Quarks : 2 (spin) × 3 (color) = 6 (per flavor)

dNq

d3~xd3~k
=

1

eω/T + 1
(Fermi-Dirac)

n Gluons : 3 (spin) × 8 (color) = 24

dNg

d3~xd3~k
=

1

eω/T − 1 (Bose-Einstein)

n Average energy per particle : 〈ω〉 ∼ T

n Particle density : ρ ∼ T 3

n Average distance between particles : ` ∼ 1/T
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Collective phenomena

n Phenomena involving many elementary constituents
n Large wavelength compared to the typical distance between

constituents
n Small frequency or energy
n The quantum numbers of collective excitations may not be

related to those of the elementary constituents

n Major collective phenomena :
u Quasi-particles
u Debye screening
u Landau damping
u Collisional width
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Quasi-particles
n Dispersion curves of particles in the plasma :

p

ω

(+)

(-)
mq

quarks

p

ω

(T)

(L)
mg

gluons

n Thermal masses due to interactions with the other particles
in the plasma :

mq ∼ mg ∼ gT

n One needs a non-zero energy to make a particle of the
plasma move
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Debye screening

n A test charge polarizes the particles of the plasma in its
vicinity, in order to screen its charge :

V(r) = 
exp( - mdebye r)

r
r

n The Coulomb potential of the test charge decreases
exponentially at large distance. The effective interaction
range is :

` ∼ 1/mdebye ∼ 1/gT
n Note : static magnetic fields are not screened by this

mechanism (they are screened over length-scales
`mag ∼ 1/g2T )
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Landau damping

n A wave propagating through the plasma is damped because
its quanta may be absorbed by particles of the plasma :

n The characteristic frequency of this damping is :

ωc ∼ gT
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Collisional width

n Decay width :

Γdecay =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

∼ g4T

n Collisional width :

Γcoll =

∣

∣

∣

∣

∣

∣

∣

p⊥

∣

∣

∣

∣

∣

∣

∣

2

∼ g4 T 3

∫

mdebye

d2~p
⊥

p4
⊥

∼ g2T

n λ ≡ 1/Γcoll is the mean free path between two small angle
scatterings (θ ∼ g)

n Note : the mean free path between two large angle
scatterings (θ ∼ 1) is ∼ 1/g4T
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Length scales
n 1/T : wavelength of particles in the plasma

n 1/gT : typical distance for collective phenomena
u Thermal masses of quasi-particles
u Screening phenomena
u Damping of waves

n 1/g2T : distance between two small angle scatterings
u Color transport
u Photon emission

n 1/g4T : distance between two large angle scatterings
u Momentum, electric charge transport

B characteristic scale of hydrodynamic modes

n In the weak coupling limit (g ¿ 1), there is a clear hierarchy
between these scales

n Distinct effective theories according to the characteristic
scale of the problem under study
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Length scales

1 / gT

1 /
 g

2 T
1 /

 g
4 T
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Hydrodynamical regime

n The hydrodynamical regime is reached when one considers
length scales that are much larger than the mean free path
of the plasma constituents : λ¿ R

n In order to describe the system at such scales, one needs :
u Hydrodynamical equations (Euler, Navier-Stokes)
u Conservation equations for the various currents
u Equation of state, viscosity
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Strongly coupled plasma

n In the real world, αs ∼ 0.2–0.3 (i.e. g ∼ 2). No clear hierarchy
between the various length scales...

n Lattice QCD :
very difficult to extract transport coefficients

n Alternate approach : AdS/CFT correspondence
u Maldacena conjecture :

The strong coupling regime of a super-symmetric Yang-Mills
theory (very complicated...) is equivalent to the weak coupling
regime of a theory of super-gravity (calculable)

u Viscosity of a plasma in the super-YM theory :
η

s
=
1

4π

u Major problem : Super-symmetric QCD 6= QCD...
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Collective flow

−∇
→

P

−∇
→

P

n In non-central collisions, pressure turns a spatial anisotropy
into an anisotropy of the momenta

n Observable: 2nd harmonic of the azimuthal distribution

dN/dϕ ∼ 1 + 2v1 cos(ϕ) + 2v2 cos(2ϕ) + · · ·

n Note: a large v2 implies a strong transverse pressure, but
says very little on the longitudinal degrees of freedom
B does not imply a tri-dimensional thermalization...
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Strangeness enhancement

n In a nucleon, the distribution of strange quarks is smaller
than that of u, d quarks (valence) by a factor of the order of
αs ∼ 0.2–0.3
B In pp collisions, less strange particles are produced than
non-strange particles

n In the QGP, the average energy of u, d quarks and of the
gluons is of the order of the temperature
B if T is large enough (compared to the mass of the strange
quark), then the processes uu→ ss, dd→ ss, gg → ss are
not inhibited by the kinematical threshold due to the mass of
the s quark

n In this case, the population of strange quarks will become
identical to that of light quarks
B the production of strange hadrons will be enhanced
compared to proton-proton collisions

n The interpretation of data based on statistical models works
also for strange particles at RHIC
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Statistical models

n One assumes that particles are produced by a thermalized
system with temperature T and baryon chemical potential µ

B

n The number of particles of mass m per unit volume is :

dN

d3~x
=

∫

d3~p

(2π)3
1

e(
√
p2+m2−µ

B
Q)/T ± 1

n These models reproduce the ratios of particle yields with
only two parameters

n The same models also work for e+e− collisions
u Standard explanation: randomly filling a phase space leads to

exponential distributions
u However, this argument alone does not explain why the value of
T that comes out is the same as in nucleus-nucleus collisions
B dynamical arguments (about the properties of the vacuum?)
certainly play a role here...
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Freeze-out parameters

LEP
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J/Psi suppression

n Debye screening prevents the QQ pair from forming a bound
state Matsui, Satz (1986)
u each heavy quark pairs with a light quark in order to form a D

meson
n The inter-quark potential can be calculated using lattice QCD
n Possible observable : [J/ψ] / [Open charm]

B complication : there is also a suppression in
proton-nucleus collisions, due to multiple scattering
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J/Psi suppression

n The free energy of a QQ pair can be calculated on the
lattice, and then converted into a potential by taking into
account the entropy :

F = U − TS , S = −∂F
∂T

n Result for T/Tc = 1.5 :
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J/Psi suppression

n T dependence of the potential :
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J/Psi suppression

n What do we do with this potential?
u Shröedinger equation for a QQ bound state :

[

2m
Q
+

1

m
Q

~∇
2
+ U1(r, T )

]

Ψ =M(T )Ψ

u Non-relativistic
u Assumes that there are only two-body interactions

n Dissociation temperatures :

state J/ψ χc ψ′ Υ χb Υ′

Td/Tc 2.0 1.1 1.1 4.5 2.0 2.0

B the QQ states are not dissolved immediately above the
critical temperature
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... or enhancement ?

n Many QQ pairs may be produced in each AA collision
Braun-Munzinger, Stachel (2000)
Thews, Schroedter, Rafelski (2001)
u A Q from one pair may recombine with a Q from another pair

n Avoids the conclusion of Matsui and Satz’s scenario,
provided that the average distance between heavy quarks is
smaller than the Debye screening length

n May lead to an enhancement of J/ψ production
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Coalescence models

n In proton-proton collisions, hadronization is described via
fragmentation functions :

dN
H

d3~p
=

∑

i

∫ 1

0

dz Fi→H(z)
dNi

d3~q

∣

∣

∣

∣

~q=~p/z

u Fp→H(z) is the probability that a parton p gives the hadron H
(accompanied by any other fragments), the hadron carrying the
fraction z of the momentum of the parton

u This formulation forbids that several partons combine into the
same hadron

n In an environment having a large parton density,
hadronization can occur via the coalescence of several
partons (Note: present models are very primitive, and take into
account only the valence quark)

n These models can explain some differences between
baryons and mesons observed in RHIC data
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Thermal photons

n Photons produced by the QGP :
u Rate determined by physics at the scale g2T

u Very sensitive to the temperature : dNγ/dtd
3~x ∼ T 4

n But very important background...
u initial photons
u photons produced by in-medium jet fragmentation
u photons produced by the hadron gas
u meson decays
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Thermal photons
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Variant: thermal dileptons

n Look for virtual photons, in the channel `+`−

n Chose the invariant mass of the lepton pair in a region which
is not too contaminated by resonance decays

n Note : if the invariant mass of the virtual photon is small,
then the production mechanisms are the same as for the
production of real photons

n Difficulty : the decay γ∗ → `+`− brings another power of the
electromagnetic coupling αem ≈ 1/137 in the production rate
B problem of statistics
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Jet quenching

n Jets are produced at the initial impact
u Not very interesting by themselves...

n Radiative energy loss when they travel through the QGP
u Sensitive to the energy density of the medium
u Depends on the path length as L2

u Important modification of the azimuthal correlations
(at RHIC, complete absorption of the opposite jet)
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Jet quenching

n Photon-jet correlations :

u At leading order, the photon and the jet have opposite ~p
⊥

’s
u The photon escapes without any energy loss, and gives a

reference for the energy of the jet B one can compare the
properties of jet after going through the medium to those of a jet
of the same ~p

⊥
which has been produced in the vacuum

n Complications due to higher order corrections :
u Final state with photon + two jets
u Photon produced by fragmentation of a quark

B in both cases, the momentum of the photon is not directly
related to the initial momentum of a jet
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CGC
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Where does the CGC stand ?

n describes the content of nucleons and nuclei at small x
n framework to calculate the production of semi-hard particles
n provides initial conditions for the subsequent evolution
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Nucleon at rest

n Very complicated non-perturbative object...
n Contains fluctuations at all space-time scales smaller than its

own size
n Only the fluctuations that are longer lived than the external

probe participate in the interaction process
n The only role of short lived fluctuations is to renormalize the

masses and couplings
n Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales
comparable to those of the probe
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Nucleon at high energy

n Dilation of all internal time-scales of the nucleon
n Interactions among constituents now take place over

time-scales that are longer than the characteristic time-scale
of the probe
B the constituents behave as if they were free

n Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy (it contains
more gluons)

n Pre-existing fluctuations are totally frozen over the time-scale
of the probe, and act as static sources of new partons
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Parton model
n At the time of the interaction, the nucleon can be seen as a

collection of free constituents, called partons
n The nucleon content is described by parton distributions,

that depend on the momentum fraction x of the parton
n One needs only to calculate the cross-section between the

probe and the partons. If the parton density is low, only one
parton interacts

n One can separate the hard diffusion, perturbative, from the
non-perturbative parton distributions, because the strong
interactions responsible for these non-perturbative effects
act on much longer time-scales (“factorization”)

n Note: parton distributions also depend on a “transverse
resolution scale”, Q :

Q -1
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Saturation

B at low energy, only valence quarks are present in the hadron
wave function
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Saturation

B when energy increases, new partons are emitted

B the emission probability is αs
∫

dx
x
∼ αsln( 1

x
), with x the

longitudinal momentum fraction of the gluon
B at small-x (i.e. high energy), these logs need to be
resummed
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Saturation

B as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
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Saturation

B eventually, the partons start overlapping in phase-space
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Saturation

B parton recombination becomes favorable

B after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously



QGP

Basic features of QCD

Deconfinement transition

Physics of the QGP

QGP signatures

CGC

Parton model

Saturation
l Linear evolution
l Non-linear evolution
l Saturation criterion
l Saturation domain

Color Glass Condensate

CGC signatures

François Gelis – 2005 UFRJ, Rio de Janeiro, April 2005 – p. 56/70

Saturation criterion

Gribov, Levin, Ryskin (1983)

n Number of gluons per unit area:

ρ ∼ xG(x,Q2)

πR2

n Recombination cross-section:

σgg→g ∼
αs
Q2

n Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s, with:

Q2
s ∼

αsxG(x,Q
2
s)

πR2

n At saturation, the phase-space density is:

dNg

d2~x⊥d2~p
⊥

∼ ρ

Q2
∼ 1

αs
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Saturation domain

log(Q 2)

log(x -1)

ΛQCD

n Boundary defined by Q2 = Q2
s(x)
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Degrees of freedom

McLerran, Venugopalan (1994)
Iancu, Leonidov, McLerran (2001)

n Small x modes have a large occupation number
B they can be described by a classical color field Aµ

n Large x modes, slowed down by time dilation, are described
as static color sources ρ

n The classical field obeys Yang-Mills equations :

DνF
νµ = Jµ = δµ+δ(x−)ρ(~x⊥)

n The color sources ρ are random, and described by a
statistical distribution Wx0

[ρ], where x0 is the separation
between “small x” and “large x”

n An evolution equation (JIMWLK) controls the changes of
Wx0

[ρ] with x0 (generalizes BFKL to the saturated regime)
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A brief lesson of semantics...

McLerran (mid 2000)

n Color : more or less obvious...

n Glass : the system has degrees of freedom whose
time-scale is much larger than the typical time-scales for
interaction processes. Moreover, these degrees of freedom
are stochastic variables, like in “spin glasses” for instance

n Condensate : the soft degrees of freedom are as densely
packed as they can (the density remains finite, of order α−1

s ,
due to repulsive interactions between gluons)
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McLerran-Venugopalan model

n The JIMWLK equation must be completed by an initial
condition, given at some x0

n As with DGLAP, the initial condition is in general
non-perturbative

n The McLerran-Venugopalan model is often used as an initial
condition at moderate x0 for a large nucleus :

u partons are randomly distributed

z

u many partons in each “tube”
u absence of correlations at different ~x⊥

n The MV model assumes that the density of color charges
ρ(~x⊥) has a gaussian distribution :

Wx0 [ρ] = exp

[

−
∫

d2~x⊥
ρ(~x⊥)ρ(~x⊥)

2µ2(~x⊥)

]
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Correlation length

n In a nucleon at low energy, the typical correlation length
among color charges is of the order of the nucleon size,
i.e. Λ−1

QCD
∼ 1 fm. Indeed, at low energy, color screening is

due to confinement, controlled by the non-perturbative scale
Λ

QCD

n At high energy (small x), partons are much more densely
packed, and it can be shown that color neutralization occurs
in fact over distances of the order of Q−1

s ¿ Λ−1
QCD

Qs
-1

n This implies that all hadrons, and nuclei, behave in the same
way at high energy. In this sense, the small x regime
described by the CGC is universal
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Leading twist shadowing
n Interactions between the partons of the target :

u At small x, the wave function of a parton “spreads” outside of the
nucleon it belongs to, so that it can interact with partons from
other nucleons. This implies :

xGnoyau(x,Q
2) < A xGnucleon(x,Q

2)

u At small x, one has a suppression of cross-sections :

dσpA/d
2~p
⊥
∼ Aα with α < 1

u Note: these interactions are the same as those involved in
saturation
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Multiple scatterings
n Because of the large parton density at small x in the target,

the external probe can interact several times :

u One of the scatterings “produces” the final state, and the others
merely change its momentum (“higher twist” shadowing)

u Each additional scattering brings a correction αsA1/3Λ2/p2
⊥

B important effect at small p⊥, despite the αs suppression

u At leading order, multiple scattering only affect the momentum
distribution of the final particles, but not their total number. The
suppression at small p⊥ is compensated by an increase at larger
p⊥ (Cronin effect)
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Multiple scatterings

n At high p⊥, a single scattering dominates :

u Standard result for a random walk in an external potential, when
the potential does not decrease fast at large momentum
(“intermittency”)

u Differential cross-sections scale like the atomic number A
at high p⊥

n Note : the MV model describes correctly multiple scatterings,
but does not contain any “leading twist” shadowing at small x
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Deep Inelastic Scattering

q





X

n In a frame in which the virtual photon has a large energy :

q

zq

(1-z)q
r

n The structure function F2 can be expressed in terms of the
“dipole” cross-section :

F2 ∼ σγ∗p(x,Q
2) =

∫

∞

0

rdr

∫ 1

0

dz
∣

∣ψ(z, r,Q2)
∣

∣

2
σdipole(x, r)
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Deep Inelastic Scattering

n “Geometrical” scaling : F2(x,Q
2) = F2(τ ≡ Q2/Q2

s(x))
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Deep Inelastic Scattering
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Nucleus-nucleus collisions

n The major problem is that the CGC only describes the very
first instants after the collision (τ . 0.2 fm/c), while most of
the observables undergo important modifications due to their
interactions with the plasma

n In fact, by definition, thermalization (if it happens) implies that
the system “forgets” all about the details of its initial state...

n Only inclusive quantities, like the multiplicity, have a chance
of staying unchanged until the end

n The dependence of the total multiplicity at RHIC on the
center of mass energy

√
s and on the centrality of the

collision is correctly predicted by the CGC
n Some hydrodynamical descriptions of the evolution of the

system have successfully used “CGC inspired” initial
conditions
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Proton-nucleus collisions

n The produced particles escape without having to go through
an extended dense medium
B the phenomena predicted in the CGC framework can be
measured rather directly

n The proton is much less dense than the nucleus, and can be
described with the standard structure functions :

n The matrix elements that enter in cross-sections are directly
calculable in the CGC framework (they are known for a
number of processes, like gluon or quark production)

n Note : contrary to DIS, one does not know exactly the
momentum of the incoming parton
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Proton-nucleus collisions

n Results of the BRAHMS experiment at RHIC for
deuteron-gold collisions :

RdAu ≡
1

Ncoll

dN
dp⊥dη

∣

∣

∣

dAu

dN
dp⊥dη

∣

∣

∣

pp
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u At small rapidity, suppression at low p⊥ and enhancement at
high p⊥ (multiple scatterings – Cronin effect)

u At large rapidity, suppression at all p⊥’s (shadowing)
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