Introduction to the theory of the QGP and the CGC

François Gelis

CEA / DSM / SPhT
Outline

- **Quark Gluon Plasma (QGP)**
 - Basic features of QCD
 - Deconfinement phase transition
 - Physics of the quark gluon plasma
 - Signatures of the QGP

- **Color Glass Condensate (CGC)**
 - Parton model
 - Saturation
 - Color Glass Condensate
 - Signatures of the CGC
Quarks and gluons

- Electromagnetic interaction: Quantum electrodynamics
 - Matter: electron, interaction carrier: photon
 - Interaction:

- Strong interaction: Quantum chromodynamics
 - Matter: quarks, interaction carriers: gluons
 - Interactions:

- i, j: colors of the quarks (3 possible values)
- a, b, c: colors of the gluons (8 possible values)
- $(t^a)_{ij}: 3 \times 3$ matrix, $(T^a)_{bc}: 8 \times 8$ matrix
Quark confinement

- The quark potential increases linearly with distance
- Quarks are confined into color singlet hadrons
Asymptotic freedom

- Running coupling: \(\alpha_s = \frac{g^2}{4\pi} \)

\[
\alpha_s(r) = \frac{2\pi N_c}{(11N_c - 2N_f) \log\left(\frac{1}{r\Lambda_{QCD}}\right)}
\]

- The effective charge seen at large distance is screened by fermionic fluctuations (as in QED)
Asymptotic freedom

- Running coupling: \(\alpha_s = g^2 / 4\pi \)

\[
\alpha_s(r) = \frac{2\pi N_c}{(11N_c - 2N_f) \log(1/r\Lambda_{QCD})}
\]

- The effective charge seen at large distance is screened by fermionic fluctuations (as in QED)

- But gluonic vacuum fluctuations produce an anti-screening (because of the non-abelian nature of their interactions)

- As long as \(N_f < 11N_c / 2 = 16.5 \), the gluons win...
Asymptotic freedom

- The coupling constant is small at short distances
- At high density, a hadron gas may undergo deconfinement
 - quark gluon plasma
Fast increase of the pressure:

- at $T \sim 270$ MeV, if there are only gluons
- at $T \sim 150–170$ MeV, depending on the number of light quarks
Deconfinement

When the nucleon density increases, they merge, enabling quarks and gluons to hop freely from a nucleon to its neighbors.

This phenomenon extends to the whole volume when the phase transition ends.

Note: if the transition is first order, it goes through a mixed phase containing a mixture of nucleons and plasma.
Deconfinement

3-flavour phase diagram

\[T_{c}^{n_f=2} \sim 175 \text{ MeV} \]

\[T_{c}^{n_f=3} \sim 155 \text{ MeV} \]

\[T_{d} \sim 270 \text{ MeV} \]

\[m_{PS}^{c_{it}} \sim 2.5 \text{ GeV} \]

\[m_{PS}^{c_{it}} \sim 200 \text{ MeV} \]
QCD phase diagram

- temperature
- chemical potential
- nuclei
- neutron stars
- hadronic phase
- quark gluon plasma
- color supraconductor

Basic features of QCD
- Deconfinement
- QCD phase diagram
- Early universe
- Heavy ion collisions

Physics of the QGP
- QGP signatures

CGC
- Parton model
- Saturation
- Color Glass Condensate
- CGC signatures
The QGP in the early universe

- Temperature
- Expansion of the early universe
- Quark gluon plasma
- Hadronic phase
- Color supraconductor
- Nuclei
- Neutron stars
- Chemical potential

The QGP in the early universe

- Formation of atoms
- Nucleosynthesis
- Confinement
- EW transition
- End of inflation
- Big bang

Timeline:
- 10^{-32} sec: Big bang
- 10^{-10} sec: QGP + electrons + photons
- 10^{-5} sec: Confinement
- 10^{+2} sec: EW transition
- 10^{+12} sec: Formation of atoms

Key events:
- Deconfinement
- QCD phase diagram
- Early universe
- Heavy ion collisions

Physics of the QGP

QGP signatures

CGC

Parton model

Saturation

Color Glass Condensate

CGC signatures
Heavy ion collisions
Heavy ion collisions

- $\tau \sim 0 \text{ fm/c}$
- Production of hard particles:
 - jets
 - heavy quarks
 - direct photons
- calculable with the tools of perturbative QCD
Heavy ion collisions

- $\tau \sim 0.2 \text{ fm/c}$
- Production of semi-hard particles:
 - gluons, light quarks
- relatively small momentum: $p_{\perp} \lesssim 1$–2 GeV
- make up for most of the multiplicity
- sensitive to the physics of saturation (CGC)
Heavy ion collisions

- $\tau \sim 1\text{–}2 \text{ fm/c}$

- **Thermalization**
 - experiments suggest a fast thermalization
 - but this is still not understood from QCD
Heavy ion collisions

- $2 \leq \tau \lesssim 10 \text{ fm/c}$
- Quark gluon plasma
Heavy ion collisions

- $10 \lesssim \tau \lesssim 20 \text{ fm/c}$
- Hot hadron gas
Heavy ion collisions

- **\(\tau \to +\infty \)**
- **Chemical freeze-out:**
 density too small to have inelastic interactions
- **Kinetic freeze-out:**
 no more elastic interactions
Degrees of freedom

Quarks

\[
\frac{dN_q}{d^3\vec{x}d^3\vec{k}} = \frac{1}{e^{\omega/T} + 1}
\]

\[(\text{Fermi-Dirac})\]

Gluons

\[
\frac{dN_g}{d^3\vec{x}d^3\vec{k}} = \frac{1}{e^{\omega/T} - 1}
\]

\[(\text{Bose-Einstein})\]

Average energy per particle

\[\langle \omega \rangle \sim T\]

Particle density

\[\rho \sim T^3\]

Average distance between particles

\[\ell \sim 1/T\]
Collective phenomena

- Phenomena involving many elementary constituents
- Large wavelength compared to the typical distance between constituents
- Small frequency or energy
- The quantum numbers of collective excitations may not be related to those of the elementary constituents

Major collective phenomena:
- Quasi-particles
- Debye screening
- Landau damping
- Collisional width
Quasi-particles

- Dispersion curves of particles in the plasma:

 \[\omega \]

 \[\omega \]

 \[m_q \]

 \[m_g \]

 quarks

 gluons

 \[(+) \]

 \[(-) \]

 \[(T) \]

 \[(L) \]

- Thermal masses due to interactions with the other particles in the plasma:

 \[m_q \sim m_g \sim gT \]

- One needs a non-zero energy to make a particle of the plasma move.
Debye screening

- A test charge polarizes the particles of the plasma in its vicinity, in order to screen its charge:

\[V(r) = \exp\left(-\frac{m_{\text{debye}}}{r} \right) \]

- The Coulomb potential of the test charge decreases exponentially at large distance. The effective interaction range is:

\[\ell \sim \frac{1}{m_{\text{debye}}} \sim \frac{1}{gT} \]

- Note: static magnetic fields are not screened by this mechanism (they are screened over length-scales \(\ell_{\text{mag}} \sim \frac{1}{g^2T} \))
Landau damping

- A wave propagating through the plasma is damped because its quanta may be absorbed by particles of the plasma:

\[\omega_c \sim gT \]
Collisional width

Decay width:

\[
\Gamma_{\text{decay}} = \frac{1}{\bar{\Gamma}_{\text{coll}}} = g^4 T
\]

Collisional width:

\[
\Gamma_{\text{coll}} = \frac{1}{\bar{\lambda}} = g^4 T^3 \int \frac{d^2 \vec{p}_\perp}{p_\perp^4} \sim g^2 T
\]

\[\lambda \equiv \frac{1}{\Gamma_{\text{coll}}} \text{ is the mean free path between two small angle scatterings (} \theta \sim g\)\]

\[\text{Note: the mean free path between two large angle scatterings (} \theta \sim 1\) is } \sim \frac{1}{g^4 T}\]
Length scales

- $1/T$: wavelength of particles in the plasma
- $1/gT$: typical distance for collective phenomena
 - Thermal masses of quasi-particles
 - Screening phenomena
 - Damping of waves
- $1/g^2T$: distance between two small angle scatterings
 - Color transport
 - Photon emission
- $1/g^4T$: distance between two large angle scatterings
 - Momentum, electric charge transport

In the weak coupling limit ($g \ll 1$), there is a clear hierarchy between these scales

Distinct effective theories according to the characteristic scale of the problem under study
Length scales

$1/gT$

$1/g^2T$

$1/g^4T$
The hydrodynamical regime is reached when one considers length scales that are much larger than the mean free path of the plasma constituents: $\lambda \ll R$.

In order to describe the system at such scales, one needs:

- Hydrodynamical equations (Euler, Navier-Stokes)
- Conservation equations for the various currents
- Equation of state, viscosity
In the real world, $\alpha_s \sim 0.2-0.3$ (i.e. $g \sim 2$). No clear hierarchy between the various length scales...

Lattice QCD:
very difficult to extract transport coefficients

Alternate approach: AdS/CFT correspondence

- Maldacena conjecture:
The strong coupling regime of a super-symmetric Yang-Mills theory (very complicated...) is equivalent to the weak coupling regime of a theory of super-gravity (calculable)

- Viscosity of a plasma in the super-YM theory:

\[\frac{\eta}{s} = \frac{1}{4\pi} \]

- Major problem: Super-symmetric QCD \neq QCD...
In non-central collisions, pressure turns a spatial anisotropy into an anisotropy of the momenta.

Observable: 2^{nd} harmonic of the azimuthal distribution

$$dN/d\varphi \sim 1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + \cdots$$

Note: a large v_2 implies a strong transverse pressure, but says very little on the longitudinal degrees of freedom. It does not imply a tri-dimensional thermalization...
Strangeness enhancement

- In a nucleon, the distribution of strange quarks is smaller than that of u, d quarks (valence) by a factor of the order of $\alpha_s \sim 0.2-0.3$
 - In pp collisions, less strange particles are produced than non-strange particles

- In the QGP, the average energy of u, d quarks and of the gluons is of the order of the temperature
 - if T is large enough (compared to the mass of the strange quark), then the processes $u\bar{u}\rightarrow s\bar{s}$, $d\bar{d}\rightarrow s\bar{s}$, $gg\rightarrow s\bar{s}$ are not inhibited by the kinematical threshold due to the mass of the s quark

- In this case, the population of strange quarks will become identical to that of light quarks
 - the production of strange hadrons will be enhanced compared to proton-proton collisions

- The interpretation of data based on statistical models works also for strange particles at RHIC
Statistical models

- One assumes that particles are produced by a thermalized system with temperature T and baryon chemical potential μ_B.

- The number of particles of mass m per unit volume is:

$$\frac{dN}{d^3\mathbf{x}} = \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{1}{e^{(\sqrt{p^2+m^2}-\mu_B Q)/T} \pm 1}$$

- These models reproduce the ratios of particle yields with only two parameters.

- The same models also work for e^+e^- collisions:
 - Standard explanation: randomly filling a phase space leads to exponential distributions.
 - However, this argument alone does not explain why the value of T that comes out is the same as in nucleus-nucleus collisions. Dynamical arguments (about the properties of the vacuum?) certainly play a role here...
Freeze-out parameters

\[
T_f \ [\text{MeV}] \quad \mu_B^f \ [\text{GeV}]
\]

\(\text{RHIC} \quad \text{SPS} \quad \text{AGS} \quad \text{LEP} \quad \text{SIS} \)

\[\langle E \rangle / \langle N \rangle = 1 \ \text{GeV} \]
Debye screening prevents the $Q\bar{Q}$ pair from forming a bound state \cite{Matsui:1986dk}.

- each heavy quark pairs with a light quark in order to form a D meson.

The inter-quark potential can be calculated using lattice QCD.

Possible observable: $[J/\psi] / [\text{Open charm}]$.

\[\text{ complication: there is also a suppression in proton-nucleus collisions, due to multiple scattering} \]
J/Psi suppression

- The free energy of a $Q\bar{Q}$ pair can be calculated on the lattice, and then converted into a potential by taking into account the entropy:

$$F = U - TS, \quad S = -\frac{\partial F}{\partial T}$$

- Result for $T/T_c = 1.5$:
J/Psi suppression

- \(T \) dependence of the potential:

![Graph showing the dependence of \(U_1(r,T) \) on \(r \) and \(T \).](image)

- Data points for different temperatures: 1.95\(T_c \), 2.60\(T_c \), 4.50\(T_c \), 7.50\(T_c \).
J/Psi suppression

- What do we do with this potential?
 - Shröedinger equation for a $Q\bar{Q}$ bound state:
 \[
 \left[2m_Q + \frac{1}{m_Q} \vec{\nabla}^2 + U_1(r, T) \right] \Psi = M(T)\Psi
 \]
 - Non-relativistic
 - Assumes that there are only two-body interactions

- Dissociation temperatures:

<table>
<thead>
<tr>
<th>state T_d/T_c</th>
<th>J/ψ</th>
<th>χ_c</th>
<th>ψ'</th>
<th>Υ</th>
<th>χ_b</th>
<th>Υ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.1</td>
<td>1.1</td>
<td>4.5</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

- the $Q\bar{Q}$ states are not dissolved immediately above the critical temperature
... or enhancement?

- Many $Q\bar{Q}$ pairs may be produced in each AA collision
 - Braun-Munzinger, Stachel (2000)
 - Thews, Schroedter, Rafelski (2001)
 - A Q from one pair may recombine with a \bar{Q} from another pair

- Avoids the conclusion of Matsui and Satz’s scenario, provided that the average distance between heavy quarks is smaller than the Debye screening length

- May lead to an enhancement of J/ψ production
Coalescence models

- In proton-proton collisions, hadronization is described via fragmentation functions:

\[
\frac{dN_H}{d^3\vec{p}} = \sum_i \int_0^1 dz \ F_{i\rightarrow H}(z) \ \frac{dN_i}{d^3\vec{q}} \bigg|_{\vec{q}=\vec{p}/z}
\]

- \(F_{p\rightarrow H}(z) \) is the probability that a parton \(p \) gives the hadron \(H \) (accompanied by any other fragments), the hadron carrying the fraction \(z \) of the momentum of the parton.
- This formulation forbids that several partons combine into the same hadron.

- In an environment having a large parton density, hadronization can occur via the coalescence of several partons (Note: present models are very primitive, and take into account only the valence quark).

- These models can explain some differences between baryons and mesons observed in RHIC data.
Thermal photons

- Photons produced by the QGP:
 - Rate determined by physics at the scale $g^2 T$
 - Very sensitive to the temperature: $dN_\gamma/dt d^3 \vec{x} \sim T^4$
Thermal photons

- Photons produced by the QGP:
 - Rate determined by physics at the scale $g^2 T$
 - Very sensitive to the temperature: $dN_\gamma/dt d^3 \vec{x} \sim T^4$

- But very important background...
 - initial photons
 - photons produced by in-medium jet fragmentation
 - photons produced by the hadron gas
 - meson decays
Thermal photons

Photon spectrum (arbitrary units)

- Initial photons
- Decays
- Thermal photons (T_1)
- Thermal photons ($T_2 = 2T_1$)

Energy (GeV)

Photon spectrum (arbitrary units)

- Initial photons
- Decays
- Thermal photons (T_1)
- Thermal photons ($T_2 = 2T_1$)

Energy (GeV)
Variant: thermal dileptons

- Look for virtual photons, in the channel $\ell^+\ell^-$
- Chose the invariant mass of the lepton pair in a region which is not too contaminated by resonance decays
- Note: if the invariant mass of the virtual photon is small, then the production mechanisms are the same as for the production of real photons
- Difficulty: the decay $\gamma^* \rightarrow \ell^+\ell^-$ brings another power of the electromagnetic coupling $\alpha_{em} \approx 1/137$ in the production rate \triangleright problem of statistics
Jet quenching

- Jets are produced at the initial impact
 - Not very interesting by themselves...
Jet quenching

- Jets are produced at the initial impact
 - Not very interesting by themselves...

- Radiative energy loss when they travel through the QGP
 - Sensitive to the energy density of the medium
 - Depends on the path length as L^2
 - Important modification of the azimuthal correlations
 (at RHIC, complete absorption of the opposite jet)
Jet quenching

- Photon-jet correlations:
 - At leading order, the photon and the jet have opposite \vec{p}_\perp's.
 - The photon escapes without any energy loss, and gives a reference for the energy of the jet \triangleright one can compare the properties of jet after going through the medium to those of a jet of the same \vec{p}_\perp which has been produced in the vacuum.

- Complications due to higher order corrections:
 - Final state with photon + two jets
 - Photon produced by fragmentation of a quark \triangleright in both cases, the momentum of the photon is not directly related to the initial momentum of a jet.
CGC
Where does the CGC stand?

- describes the content of nucleons and nuclei at small x
- framework to calculate the production of semi-hard particles
- provides initial conditions for the subsequent evolution
Nucleon at rest

- Very complicated non-perturbative object...
- Contains fluctuations at all space-time scales smaller than its own size
- Only the fluctuations that are longer lived than the external probe participate in the interaction process
- The only role of short lived fluctuations is to renormalize the masses and couplings
- Interactions are very complicated if the constituents of the nucleon have a non trivial dynamics over time-scales comparable to those of the probe
Nucleon at high energy

- **Dilation** of all internal time-scales of the nucleon
- Interactions among constituents now take place over time-scales that are longer than the characteristic time-scale of the probe
 - the constituents behave as if they were free
- Many fluctuations live long enough to be seen by the probe. The nucleon appears **denser at high energy** (it contains more gluons)
- Pre-existing fluctuations are totally frozen over the time-scale of the probe, and act as static sources of new partons
Parton model

- At the time of the interaction, the nucleon can be seen as a collection of free constituents, called partons.
- The nucleon content is described by parton distributions, that depend on the momentum fraction x of the parton.
- One needs only to calculate the cross-section between the probe and the partons. If the parton density is low, only one parton interacts.
- One can separate the hard diffusion, perturbative, from the non-perturbative parton distributions, because the strong interactions responsible for these non-perturbative effects act on much longer time-scales ("factorization").
- Note: parton distributions also depend on a "transverse resolution scale", Q:

\[
Q^{-1}
\]
Saturation

at low energy, only valence quarks are present in the hadron wave function
Saturation

- when energy increases, new partons are emitted
- the emission probability is $\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln\left(\frac{1}{x}\right)$, with x the longitudinal momentum fraction of the gluon
- at small-x (i.e. high energy), these logs need to be resummed
as long as the density of constituents remains small, the evolution is **linear**: the number of partons produced at a given step is proportional to the number of partons at the previous step (BFKL)
eventually, the partons start overlapping in phase-space
Saturation

▷ parton recombination becomes favorable

▷ after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
Saturation criterion

Gribov, Levin, Ryskin (1983)

- Number of gluons per unit area:
 \[\rho \sim \frac{x G(x, Q^2)}{\pi R^2} \]

- Recombination cross-section:
 \[\sigma_{gg\rightarrow g} \sim \frac{\alpha_s}{Q^2} \]

- Recombination happens if \(\rho \sigma_{gg\rightarrow g} \gtrsim 1 \), i.e. \(Q^2 \lesssim Q_s^2 \), with:
 \[Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R^2} \]

- At saturation, the phase-space density is:
 \[\frac{dN_g}{d^2 \vec{x}_\perp d^2 \vec{p}_\perp} \sim \frac{\rho}{Q^2} \sim \frac{1}{\alpha_s} \]
Saturation domain

Boundary defined by $Q^2 = Q_s^2(x)$
Degrees of freedom

McLerran, Venugopalan (1994)
Iancu, Leonidov, McLerran (2001)

- Small x modes have a large occupation number
 - they can be described by a classical color field A^μ

- Large x modes, slowed down by time dilation, are described as static color sources ρ

- The classical field obeys Yang-Mills equations:
 \[
 D_\nu F^{\nu\mu} = J^\mu = \delta^\mu + \delta(x^-) \rho(\vec{x}_\perp)
 \]

- The color sources ρ are random, and described by a statistical distribution $W_{x_0}[\rho]$, where x_0 is the separation between “small x” and “large x”

- An evolution equation (JIMWLK) controls the changes of $W_{x_0}[\rho]$ with x_0 (generalizes BFKL to the saturated regime)
A brief lesson of semantics...

McLerran (mid 2000)

- **Color**: more or less obvious...

- **Glass**: the system has degrees of freedom whose time-scale is much larger than the typical time-scales for interaction processes. Moreover, these degrees of freedom are stochastic variables, like in “spin glasses” for instance.

- **Condensate**: the soft degrees of freedom are as densely packed as they can (the density remains finite, of order α_s^{-1}, due to repulsive interactions between gluons).
McLerran-Venugopalan model

- The JIMWLK equation must be completed by an initial condition, given at some x_0
- As with DGLAP, the initial condition is in general non-perturbative
- The McLerran-Venugopalan model is often used as an initial condition at moderate x_0 for a large nucleus:
 - partons are randomly distributed
 - many partons in each “tube”
 - absence of correlations at different x_\perp
- The MV model assumes that the density of color charges $\rho(x_\perp)$ has a gaussian distribution:
\[
W_{x_0}[\rho] = \exp \left[- \int d^2 x_\perp \frac{\rho(x_\perp) \rho(x_\perp)}{2\mu^2(x_\perp)} \right]
\]
Correlation length

- In a nucleon at low energy, the typical correlation length among color charges is of the order of the nucleon size, i.e. $\Lambda_{QCD}^{-1} \sim 1 \text{ fm}$. Indeed, at low energy, color screening is due to confinement, controlled by the non-perturbative scale Λ_{QCD}.

- At high energy (small x), partons are much more densely packed, and it can be shown that color neutralization occurs in fact over distances of the order of $Q_s^{-1} \ll \Lambda_{QCD}^{-1}$.

- This implies that all hadrons, and nuclei, behave in the same way at high energy. In this sense, the small x regime described by the CGC is universal.
Leading twist shadowing

- Interactions between the partons of the target:

 - At small x, the wave function of a parton “spreads” outside of the nucleon it belongs to, so that it can interact with partons from other nucleons. This implies:

 $$x G_{\text{noyau}}(x, Q^2) \prec A x G_{\text{nucleon}}(x, Q^2)$$

 - At small x, one has a suppression of cross-sections:

 $$\frac{d\sigma_{pA}}{d^2 \vec{p}_\perp} \sim A^\alpha \quad \text{with} \quad \alpha < 1$$

 - Note: these interactions are the same as those involved in saturation
Multiple scatterings

- Because of the large parton density at small x in the target, the external probe can interact several times:

- One of the scatterings “produces” the final state, and the others merely change its momentum (“higher twist” shadowing)

- Each additional scattering brings a correction $\alpha_s A^{1/3} \Lambda^2 / p^2_\perp$
 - important effect at small p_\perp, despite the α_s suppression

- At leading order, multiple scattering only affect the momentum distribution of the final particles, but not their total number. The suppression at small p_\perp is compensated by an increase at larger p_\perp (Cronin effect)
Multiple scatterings

- At high p_{\perp}, a single scattering dominates:

 - Standard result for a random walk in an external potential, when the potential does not decrease fast at large momentum ("intermittency")
 - Differential cross-sections scale like the atomic number A at high p_{\perp}

- Note: the MV model describes correctly multiple scatterings, but does not contain any "leading twist" shadowing at small x
Deep Inelastic Scattering

In a frame in which the virtual photon has a large energy:

$$ q \left(1 - z \right) q $$

The structure function F_2 can be expressed in terms of the "dipole" cross-section:

$$ F_2 \sim \sigma_{\gamma^* p}(x, Q^2) = \int_0^\infty r \, dr \int_0^1 dz \, |\psi(z, r, Q^2)|^2 \sigma_{\text{dipole}}(x, r) $$
Deep Inelastic Scattering

“Geometrical” scaling: \[F_2(x, Q^2) = F_2(\tau \equiv Q^2/Q_s^2(x)) \]
Deep Inelastic Scattering
Nucleus-nucleus collisions

- The major problem is that the CGC only describes the very first instants after the collision ($\tau \lesssim 0.2 \text{ fm/c}$), while most of the observables undergo important modifications due to their interactions with the plasma.

- In fact, by definition, \textit{thermalization} (if it happens) implies that the system “forgets” all about the details of its initial state...

- Only inclusive quantities, like the multiplicity, have a chance of staying unchanged until the end.

- The dependence of the total multiplicity at RHIC on the center of mass energy \sqrt{s} and on the centrality of the collision is correctly predicted by the CGC.

- Some hydrodynamical descriptions of the evolution of the system have successfully used “CGC inspired” initial conditions.
Proton-nucleus collisions

- The produced particles escape without having to go through an extended dense medium
 - the phenomena predicted in the CGC framework can be measured rather directly
- The proton is much less dense than the nucleus, and can be described with the standard structure functions:
- The matrix elements that enter in cross-sections are directly calculable in the CGC framework (they are known for a number of processes, like gluon or quark production)
- Note: contrary to DIS, one does not know exactly the momentum of the incoming parton
Results of the BRAHMS experiment at RHIC for deuteron-gold collisions:

\[R_{dAu} \equiv \frac{1}{N_{coll}} \left. \frac{dN}{dp_{\perp} d\eta} \right|_{dAu} - \left. \frac{dN}{dp_{\perp} d\eta} \right|_{pp} \]

- At small rapidity, suppression at low \(p_{\perp} \) and enhancement at high \(p_{\perp} \) (multiple scatterings – Cronin effect)
- At large rapidity, suppression at all \(p_{\perp} \)'s (shadowing)