Overview of heavy quark production in heavy ion collisions at the LHC

François Gelis

CEA / DSM / SPhT

Outline

introduction

- proton-proton
- proton-nucleus
- nucleus-nucleus
- conclusions

Introduction

- pp collisions
 - Reference when looking for "anomalous" effects in pA or AA
 - Note: things we do not understand in pp collisions are unlikely to get better with nuclei...
- pA collisions
 - Reference for "normal" nuclear suppression
 - Interesting by itself for the physics of saturation
- AA collisions
 - Quarkonium states are a probe of the surrounding medium
 - Recent lattice results on quarkonia
- Conclusions

QCD phase diagram

introduction

- QCD phase diagram
- HIC overview
- heavy quark production
- J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

Initial impact

• QCD phase diagram

- HIC overview
- heavy quark production
- J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

conclusions

Prompt particle production (jets, heavy quarks, photons) high p_{\perp} , large x physics, calculable in pQCD

Soft glue liberation

• QCD phase diagram

- HIC overview
- heavy quark production
- J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

conclusions

Soft gluon production : small p⊥; requires to know the small-x component of the hadron wave function

Thermalization

Quark-Gluon plasma

• QCD phase diagram

- HIC overview
- heavy quark production
- J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

Hadron gas

• QCD phase diagram

- HIC overview
- heavy quark production
- J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

Freeze-out and free streaming

• QCD phase diagram

- HIC overview
- heavy quark production
- J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

- Easy, not much happens after freeze-out...
- Unstable hadrons decay

Heavy quark production

Standard collinear factorization

introduction

• QCD phase diagram

HIC overview

heavy quark production

J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

Heavy quark production

Standard collinear factorization

introduction

- QCD phase diagram
- HIC overview
- heavy quark production
- J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

conclusions

...or higher twist effects ?

In-medium J/psi suppression

- introduction
- QCD phase diagram

Œ

- HIC overview
- heavy quark production
- J/psi in medium
- proton-proton
- proton-nucleus
- nucleus-nucleus
- conclusions

- Debye screening prevents the formation of quarkonium states Matsui, Satz (1986)
 - the heavy quarks pick a light quark instead and form a *D* meson
- Heavy quark potential, screening masses, and spectral functions calculable on the lattice
- Relevant observable :

$[J/\psi]$ / [Open charm]

... or QQbar recombination ?

- introduction
- QCD phase diagram
- HIC overview
- heavy quark production
- J/psi in medium
- proton-proton
- proton-nucleus
- nucleus-nucleus
- conclusions

- Many QQ pairs are produced in each AA collision Braun-Munzinger, Stachel (2000)
 - Thews, Schroedter, Rafelski (2001)
 - A Q from one pair can recombine with a \overline{Q} from another pair
- Avoids the conclusion of the Matsui-Satz scenario, provided that the average distance between heavy quarks is smaller than the Debye screening length
- Leads to an enhancement of J/ψ formation

introduction

proton-proton

- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

Collinear factorization

introduction

proton-proton

- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

 \blacksquare Common wisdom: $m_{_Q} \gg \Lambda_{_{QCD}},$ so that $\alpha_s(m_{_Q}^2) \ll 1$

Factorization formula for open charm production :

$$\frac{d\sigma_{pp\to H+X}}{d\Phi_H} = \sum_{ij} \int f_{i/p}(x_1) f_{j/p}(x_2) \frac{d\sigma_{ij\to Q\overline{Q}}}{d\Phi_Q d\Phi_{\overline{Q}}} D_{Q\to H}(z)$$

- *f_{i/p}(x)*: distribution of parton *i* in the proton, known at NLO from fits of DIS data
- $D_{Q \to H}(z)$: fragmentation function of quark Q into hadron H
- $d\sigma_{ij \rightarrow Q\overline{Q}}/d\Phi_Q d\Phi_{\overline{Q}}$: perturbative cross-section for the production of heavy quarks, known up to NLO

Remarks :

- NLO results depend on renormalization and factorization scales
- Factorization is broken by corrections that are power suppressed, e.g. (Q₀²/Q²)ⁿ where Q₀ is some non-perturbative hadronic scale and Q the large momentum scale in the process

Fixed order calculations

introduction

proton-proton

perturbative expansion

- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

Fixed order calculations

NLO almost as large as LO + rather large scale dependence
 NNLO not known yet for this process

introduction

• perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

Fixed order calculations

introduction

proton-proton

• perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

Plain LO+NLO has been problematic for a long time: B production at CDF vs NLO-pQCD, as of 2001

ho data / theory $\sim 2.9...$ somewhat embarassing for pQCD...

Resummation of logarithms

introduction

proton-proton

perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

The coefficients of the perturbative expansion may be enhanced by logarithms

$$d\sigma_{ij\to Q\overline{Q}} = \sum_{n=2}^{\infty} c_n \alpha_s^n \quad , \quad c_n = \sum_{k=0}^{n-2} c_n^{(n-2-k)} \left[\ln \mathcal{Q}\right]^{n-2-k}$$

where Q might be large enough so that $\alpha_s \ln Q \ge 1$

- Logs that are independent of the observable :
 - Threshold logs: $Q = \hat{s}/4m_{Q}^{2} 1$
 - Small-x logs: $\mathcal{Q} = \hat{s}/m_Q^2$
- Logs that depend on the details of the observable :
 - Single Q spectrum at large momentum: $Q = p_{\perp}(Q)/m_Q$
 - $Q\overline{Q}$ spectrum at low pair momentum: $Q = m_Q/p_\perp(Q\overline{Q})$
 - $Q\overline{Q}$ spectrum in a back-to-back configuration: $Q = 1 \phi_{Q\overline{Q}}/\pi$

Resummation of logarithms

introduction

- proton-proton
- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

- Including these logarithms amounts to taking into account extra radiation in the final state
- Rearrangement of the perturbative expansion:

$$d\sigma = \alpha_s^2 \sum_{n=0}^{\infty} \alpha_s^n \sum_{i=0}^{\infty} r_i^{(n)} \left[\alpha_s \ln \mathcal{Q} \right]^i + \mathcal{O} \left(\mathcal{Q}^{-1} \right)$$

- n = 0 : Leading Log (LL)
- n = 1 : Next-to-Leading Log (NLL)
- Two different implementations :
 - FONLL : NLO fixed order + analytic resummation of leading logs Cacciari, Greco, Nason (1998)
 - MC@NLO : NLO fixed order + resummation of logs via a "parton shower" Frixione, Webber (2002)

Present data vs theory situation

introduction

- proton-proton
- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

Resummations + better fragmentation functions: better agreement with data : B production at Tevatron II

▷ Note : the data has gone down as well...

Azimuthal correlations

• $c\bar{c}$ angular correlation

introduction

• perturbative expansion

log resummations

- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

 \triangleright loss of the back-to-back correlation when a p_{\perp} cut is applied (high- p_{\perp} production dominated by gluon splitting)

Azimuthal correlations

introduction

proton-proton

• perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

• $b\bar{b}$ angular correlation

introduction

proton-proton

 ${\ensuremath{\bullet}}$ perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

 \triangleright very small values of x reached in one of the projectiles. Small-x effects may be important, especially for Pb.

introduction

proton-proton

• perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

introduction

- proton-proton
- perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

François Gelis – 2004

Included diagrams :

introduction

- proton-proton
- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

• $Q\overline{Q}$ cross-section in k_{\perp} -factorized form :

 $\frac{d\sigma_{pp\to Q\overline{Q}}}{d\Phi_Q d\Phi_{\overline{Q}}} = \int \frac{\delta(\vec{k}_{1\perp} + \vec{k}_{2\perp} - \vec{p}_{\perp}(Q\overline{Q}))}{k_{1\perp}^2 k_{2\perp}^2} \varphi_p(x_1, k_{1\perp}) \varphi_p(x_2, k_{2\perp}) |\mathcal{M}|^2$

- Pros :
 - Proper way of including intrinsic k_{\perp}
 - Some NLO and NNLO diagrams are already included
 - This formalism can be generalized to include higher twist effects

Cons :

- The incoming gluons are off-shell \Rightarrow difficult calculations
- Only a subset of the NLO terms is included
- No formal "factorization theorem"...

introduction

proton-proton

- perturbative expansion
- log resummations
- Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

More difficult than the inclusive fragmentation c → D + X
LO is clearly insufficient in order to get the p_⊥ distribution of J/ψ or \Upsilon, since by construction p_⊥(QQ) = 0 at this order
Several approaches :

- Color Singlet Model (CSM)
- Non-Relativistic QCD (NRQCD) [aka Color Octet Model]
- Color Evaporation Model (CEM)
- Comover Enhancement Scenario (CES)

introduction

- proton-proton
- \bullet perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

Color Singlet Model :

- The QQ pair is assumed to be produced with the proper quantum numbers by the hard sub-process
 - ▷ No further interactions are required
- The QQ pair is simply projected on the non-relativistic wave-function of the bound state

- Not too bad for J/ψ photoproduction
- undershoots by more than an order of magnitude for J/ψ, ψ'
 (even Υ) hadroproduction...
- Problem : in this model, the gluon emission is controlled by a hard scale \triangleright suppressed by $\alpha_s(4m_O^2) \ll 1$

Non-Relativistic QCD :

• Based on a double expansion in α_s and v^2 ($v^2(c,b) \sim 0.3, 0.1$)

Provides a factorization formula:

$$d\sigma_{ij\to H+X} = \sum_{n} \left\langle \widehat{\mathcal{O}}_{H}[n] \right\rangle d\sigma_{ij\to Q\overline{Q}[n]} , \ n = \{c = (1,8), {}^{2s+1}L_{J} \}$$

- The matrix elements $\langle \widehat{\mathcal{O}}_H(n) \rangle$ play the same role as fragmentation functions \triangleright non-perturbative, but universal.
- The extra emissions occur at a soft non-perturbative scale
 no penalty associated to them
- Problem : the sum over the states n is infinite. It can be truncated since higher states are of higher order in v.

introduction

- proton-proton
- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

Non-Relativistic QCD : comparison with CDF

introduction

proton-proton

• perturbative expansion

log resummations

Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

introduction

pr	oto	a-n	roto	on
P'	0.00			

- perturbative expansion
- log resummations
- Kt-factorization

• quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

Non-Relativistic QCD : polarization

▷ according to the literature : "theory is in good agreement with data"... nothing to see here...

introduction

- proton-proton
- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

Color Evaporation Model :

- Based on the idea that (unspecified) soft non-perturbative interactions will bring the quantum numbers of the QQ pair to those of the hadron
- Assumes that all the QQ pairs produced in a certain range of invariant mass become quarkonium states with a certain probability

$$\sigma_{ij \to H+X} = F_H \int_{4m_Q^2}^{4m_{D,B}^2} d\widehat{s} \ \sigma_{ij \to Q\overline{Q}}(\widehat{s})$$

- The constants F_H depend only on the quarkonium state being produced, but not on p_⊥, s, y, or on the state in which the QQ pair is produced
- The upper limit in the integral is the threshold for the production of a pair of D or B mesons

introduction

pr	0	[0	n-	pr	oto	n	
-					1.1		

- perturbative expansion
- log resummations
- Kt-factorization

quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

Comparison between NRQCD and CEM :

Left : J/ψ

Right : Υ

introduction

- proton-proton
- perturbative expansion
- log resummations
- Kt-factorization
- quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

Comover Enhancement Scenario :

 Assumes that the quarkonia states are formed within a comoving color field (produced by spectator partons), through gluon absorption (rather than emission, as assumed in in the CSM or in NRQCD)

- May lead to an enhancement over the CSM predictions
- May explain why the CSM works for photoproduction (no comoving field in that case), but not for hadroproduction
- This physics is included in approaches that contain rescatterings (see pA collisions)

introduction

proton-proton

proton-nucleus

nuclear effects

shadowing

rescatterings

• color glass condensate

nucleus-nucleus

Nuclear effects

introduction

proton-proton

proton-nucleus

- nuclear effectsshadowing
- rescatterings
- color glass condensate

nucleus-nucleus

- PA collisions are useful as a reference in which no QGP is expected while there are some high density effects
- Saturation, shadowing
 - Saturation effects are more pronounced for a large projectile
 - Usually included within collinear factorization by using special parton distribution functions (e.g. EKS98, HKM)
- Rescattering effects
 - Strong color field produced in the collision
 - Models of Comovers
- All these effects can be addressed simultaneously in the Color Glass Condensate framework
- Heavy quark production in pA collisions is also interesting per se as a means of studying the physics of saturation

Leading twist shadowing

introduction

proton-proton

proton-nucleus

nuclear effects

shadowing

rescatterings

color glass condensate

nucleus-nucleus

conclusions

Interactions among the partons in the nuclear target :

- Non-perturbative modification of the expectation value of twist-2 operators due to the nucleus
- Collinear factorization can accomodate these effects
- The PDFs of a nucleus differ from $A f_p(x, Q^2)$

Parametrizations of nuclear PDFs

Eskola, Kolhinen, Salgado (1998) Hirai, Kumano, Miyama (2001)

 u_V^A/u_V^D q^A/q^D \bar{u}^A / \bar{u}^D 1.3 ----- 1.3 1.2 1.2 1.1 1.1 $1.0 \\ 0.9 \\ 0.8$ 1.00.9 $Q^2 = 2.25 \text{ GeV}^2$ 0.8 0.8 EKS98 0.7 0.7 —-- НКМ 0.6 0.6 -+++++++ ------1.3 1.3 1.2 1.2 1.1 1.1 1.0 0.9 0.8 1.00.9 0.8 0.7 0.7 0.6 0.6 2 10⁻¹ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁻⁵ 10⁻⁴ 10⁻³ 1.1.1.000 10^{-2} 10^{-3} 10^{-4} 10^{-2} 10^{-5} 10^{-1} xxx

The discrepancy is mostly due to the scarcity of data
 importance of doing a pA run at the LHC...

introduction

proton-proton

proton-nucleus

nuclear effects

shadowing

rescatterings

• color glass condensate

nucleus-nucleus

Shadowing and rescatterings

introduction

proton-proton

proton-nucleus

nuclear effects

shadowing

rescatterings

color glass condensate

nucleus-nucleus

conclusions

Single scattering at high p_{\perp} (large x) :

- In the absence of leading twist shadowing, differential cross-sections at high p_{\perp} scale like A (volume scaling)
- Single scattering dominates > leading twist formalism
- As seen previously, the PDFs may be modified by intra-nuclear effects

Shadowing and rescatterings

proton-proton proton-nucleus • nuclear effects • shadowing • rescatterings • color glass condensate nucleus-nucleus

conclusions

introduction

• Multiple scatterings at low p_{\perp} (small x) :

- One of the scatterings "produces" the final state, while the others just change its momentum
- Each extra scattering corresponds to a correction $\alpha_s A^{1/3} \Lambda^2 / p_{\perp}^2$
- If there is no leading twist shadowing, differential cross-sections at low p⊥ scale like A^{2/3} (area scaling)
- Cannot be included in the leading twist formalism of collinear factorization

Wrapping it all in colored glass...

introduction

proton-proton

proton-nucleus

- nuclear effects
- shadowing
- rescatterings
 color glass condensate

nucleus-nucleus

- Rescattering effects are important in collisions involving nuclei, but cannot be included in a natural way by using collinear factorization
- The Color Glass Condensate framework can address this problem. It incorporates :
 - Interactions between partons inside the projectiles
 - Non-linear effects in the evolution with energy
 - Multiple scatterings of the incoming/outgoing particles (equivalent to the color field present in hard comover scenarios)
- Drawbacks :
 - Exists only at LO so far
 - More difficult implementation
 - PDFs are replaced by correlators of Wilson lines (universal, but one may need different correlators for different final states)

Color glass condensate

McLerran, Venugopalan (1994) Iancu, Leonidov, McLerran (2001)

Small x modes have a large occupation number by a classical color field

- Large x modes are described by "frozen" color sources ρ_a
- The classical field obeys Yang-Mills equations:

 $[D_{\nu}, \boldsymbol{F}^{\nu\mu}]_{a} = \delta^{\mu+} \delta(x^{-}) \boldsymbol{\rho}_{a}(\vec{\boldsymbol{x}}_{\perp})$

- The color sources ρ_a are random, and their distribution is described by a functional $W_{x_0}[\rho]$, where x_0 is the separation between "small x" et "large x". $W_{x_0}[\rho]$ changes with x_0 according to the JIMWLK equation.
- Observables are calculated in the presence of the classical field, and then averaged over the configurations of the sources ρ_a:

$$\langle \mathcal{O}
angle = \int [D
ho_a] \ W_{x_0}[
ho_a] \ \mathcal{O}[
ho_a]$$

proton-nucleus

• nuclear effects

introduction

shadowing

rescatterings
color glass condensate

nucleus-nucleus

proton-proton

proton-nucleus

nuclear effects

shadowing

rescatterings

● color glass condensate

nucleus-nucleus

conclusions

 \triangleright get $W_{x_1}[\rho_1]$ for the first projectile

 \triangleright solve the Yang-Mills equations for the sources ρ_1, ρ_2

CED |

> compute the quark propagator in the classical field

introduction

proton-nucleus

nuclear effects

shadowing

rescatterings

color glass condensate

Œ

nucleus-nucleus

conclusions

The program outlined above cannot be completed analytically in general

For pA collisions, one may assume that the proton is a dilute object while the nucleus is dense
 keep all orders in ρ_A, but only the first order in ρ_p

Blaizot, FG, Venugopalan (2004)

(Very sketchy) diagrammatic content :

In this approximation, all the steps can be carried out analytically

introduction

proton-proton

proton-nucleus
nuclear effects
shadowing

rescatterings

nucleus-nucleus

conclusions

• color glass condensate

Quark production in the CGC

Pair production cross-section :

 $egin{aligned} rac{d\sigma}{d\Phi_Q d\Phi_{\overline{Q}}} &= \int rac{\delta(ec{m{k}}_{1\perp}+ec{m{k}}_{2\perp}-ec{m{p}}_{\perp}(Q\overline{Q}))}{m{k}_{1\perp}^2m{k}_{2\perp}^2}arphi_p(x_1,ec{m{k}}_{1\perp})) \ & imes \left\{\int_{ec{m{k}}_{\perp},ec{m{k}}_{\perp}'}\mathcal{M}_{qar{q}}(ec{m{k}}_{\perp})\mathcal{M}_{qar{q}}^*(ec{m{k}}_{\perp}')\,\phi_A^{(4)}(x_2,ec{m{k}}_{2\perp}|ec{m{k}}_{\perp},ec{m{k}}_{\perp}')
ight. \ &+ \int_{ec{m{k}}_{\perp}}\left[\mathcal{M}_{qar{q}}(ec{m{k}}_{\perp})\mathcal{M}_{g}^*+ ext{h.c.}
ight]\phi_A^{(3)}(x_2,ec{m{k}}_{2\perp}|ec{m{k}}_{\perp}) \ &+ \mathcal{M}_g\mathcal{M}_g^*\,\phi_A^{(2)}(x_2,ec{m{k}}_{2\perp})
ight\} \end{aligned}$

- ★ k_⊥-factorization valid on the proton side, but not for the nucleus:
 one needs three different "distributions" to describe the nucleus
- $\phi_A^{(2,3,4)}$ are correlators of 2,3 and 4 Wilson lines
- Reduces to the k_⊥-factorized formula of Collins & Ellis in some approximations

introduction

proton-proton

proton-nucleus

- nuclear effects
- shadowing
- rescatterings
- color glass condensate

(A)

```
nucleus-nucleus
```

```
conclusions
```

Single quark production cross-section :

$$\begin{aligned} \frac{d\sigma}{d\Phi_Q} &= \int \frac{1}{k_{1\perp}^2 k_{2\perp}^2} \varphi_p(x_1, \vec{k}_{1\perp}) \\ &\times \Big\{ 8 + \int_{\vec{k}_\perp} I_3(\vec{k}_\perp) \, \phi_A^{(3)}(x_2, \vec{k}_{2\perp} | \vec{k}_\perp) + I_2 \, \phi_A^{(2)}(x_2, \vec{k}_{2\perp}) \Big\} \end{aligned}$$

- still no k_{\perp} -factorization on the nucleus side
- contains only 2-point and 3-point correlators
- The functions I_2 and I_3 are known in closed form
- This formula (as well as the previous one) includes leading-twist shadowing and multiple scatterings (hard "comovers") for pA collisions

introd	uction

proton-proton

proton-nucleus

nuclear effects

shadowing

rescatterings

color glass condensate

nucleus-nucleus

conclusions

Quark production in the CGC

Take the McLerran-Venugopalan model (gaussian W_{x0}[ρ])
 Then assume for simplicity that :

 $\phi_A^{(3)}(x_2, \vec{k}_{2\perp} | \vec{k}_{\perp}) \approx (2\pi)^2 \frac{1}{2} \left[\delta(\vec{k}_{\perp}) + \delta(\vec{k}_{\perp} - \vec{k}_{2\perp}) \right] \phi_A^{(2)}(x_2, \vec{k}_{2\perp})$

(this is the condition to have k_{\perp} -factorization)

 R_{pA} for inclusive heavy quark production

 \triangleright far from a sum of two δ functions, strong broadening

12

> the breaking of k_{\perp} -factorization has a moderate effect (~ 20% increase for charm)

 $C \in \mathcal{T}$

introduction

proton-proton

proton-nucleus

nucleus-nucleus

• in-medium suppression

lattice results

• QQbar recombination

Charmonium suppression in the QGP

introduction

proton-proton

proton-nucleus

nucleus-nucleus

in-medium suppression

Œ

lattice results

QQbar recombination

conclusions

Matsui, Satz (1986), Kharzeev, Satz (1994), and many others...

- If the Debye screening radius is smaller than the size of quarkonium state, the binding of the Q and Q is destroyed by the surrounding light quarks and gluons
- The Q and \overline{Q} drift in the QGP, and cannot find each other again
- At hadronization time, they pick up a light quark and form D or B mesons
- A suppression of the ratio $[J/\psi]$ / [Open charm] could be a signature of the QGP
- Not as simple though : there is also a suppression in pA collisions. One should therefore look for "anomalous" suppression effects

Normal nuclear suppression

introduction

proton-proton

proton-nucleus

nucleus-nucleus

in-medium suppression

 $C \in \mathcal{D}$

lattice results

QQbar recombination

conclusions

Parameterization of the J/ψ absorption in cold nuclear matter :

$$\sigma_{
m abs}(\sqrt{s}) = \sigma_{
m abs}(\sqrt{s_0}) \left(rac{s}{s_0}
ight)^{\Delta/2}$$

 $\sigma_{\rm abs}(\sqrt{s_0} = 17.3 \text{ GeV}) = 5 \pm 0.5 \text{ mb}$, $\Delta \approx 0.125$

Quarkonium survival probability in an AB collision :

$$\begin{split} S(\vec{b}) &= \int d^2 \vec{s} dz_A dz_B \ \rho_A(\vec{s}, z_A) \rho_B(\vec{b} - \vec{s}, z_B) \\ &\times \exp\left[-(A-1) \int_{z_A}^{\infty} dz \rho_A \sigma_{\rm abs}\right] \exp\left[-(B-1) \int_{z_B}^{\infty} dz \rho_B \sigma_{\rm abs}\right] \end{split}$$

Normal nuclear suppression

Impact parameter dependence of the survival probability :

Normal nuclear suppression

François Gelis – 2004

Lattice results

introduction

proton-proton

proton-nucleus

nucleus-nucleus

in-medium suppression

lattice results

QQbar recombination

conclusions

Reminder : only Euclidean quantities can be calculated directly in lattice Monte-Carlo simulations :

Minkowkian : $e^{iS[A^{\mu}]} \longrightarrow$ Euclidean : $e^{-S[A^{\mu}]}$

Potential between pairs of heavy quarks in a QGP

- Can be fed into a non-relativistic Shöedinger equation in order to compute the binding energy of the bound states
- Extraction of the $Q\overline{Q}$ spectral functions from lattice data
 - Fairly new method, still in developement
 - Results in qualitative agreement with the previous one
- These issues are totally unexplored at finite μ_B

ceo Heavy c

Heavy quark potential

The "averaged" free-energy is obtained from Polyakov loops :

$$e^{-F(r,T)/T} = rac{1}{9} \left\langle \operatorname{tr} L(\vec{r}) \operatorname{tr} L^{\dagger}(\vec{0}) \right\rangle \quad , \quad L(\vec{r}) = \prod_{i=1}^{N_{\tau}} U_0(\vec{r},\tau)$$

It can be divided into a color singlet and a color octet parts :

$$e^{-F(r,T)/T} = \frac{1}{9}e^{-F_1(r,T)/T} + \frac{8}{9}e^{-F_8(r,T)/T}$$
$$e^{-F_1(r,T)/T} = \frac{1}{3}\left\langle \operatorname{tr} L(\vec{r}) L^{\dagger}(\vec{0}) \right\rangle$$
$$e^{-F_8(r,T)/T} = \frac{1}{8}\left\langle \operatorname{tr} L(\vec{r}) \operatorname{tr} L^{\dagger}(\vec{0}) \right\rangle - \frac{1}{24}\left\langle \operatorname{tr} L(\vec{r}) L^{\dagger}(\vec{0}) \right\rangle$$

In principle, one needs to transform that into the potential energy U:

$$F = U - TS$$
 , $S = -\frac{\partial F}{\partial T}$

introduction

proton-proton

proton-nucleus

nucleus-nucleus

lattice results

conclusions

in-medium suppression

QQbar recombination

Heavy quark potential

introduction

proton-proton

proton-nucleus

nucleus-nucleus

• in-medium suppression

lattice results

QQbar recombination

• *T*-dependence of the potential above T_c :

Heavy quark potential

introduction

proton-proton

proton-nucleus

nucleus-nucleus

- in-medium suppression
- lattice results
- QQbar recombination

conclusions

What do we do with that?

• Shröedinger equation for $Q\overline{Q}$ bound states :

$$\left[2m_Q + \frac{1}{m_Q}\vec{\nabla}^2 + U_1(r,T)\right]\psi_i = M_i(T)\psi_i$$

- Non-relativistic
- Assumes 2-body interactions only
- Dissociation temperatures :

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'
T_d/T_c	2.0	1.1	1.1	4.5	2.0	2.0

▷ the quarkonium states do not get immediately dissolved above the critical temperature

Heavy quark spectral functions

introduction

proton-proton

proton-nucleus

nucleus-nucleus

in-medium suppression

lattice results

QQbar recombination

conclusions

Method for extracting spectral functions :

$$\begin{split} G_{H}(\tau, \vec{p}) &= \int_{0}^{\infty} d\omega \; \rho_{H}(\omega, \vec{p} | T) \; \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} \\ G_{H}(\tau, \vec{p}) &= \int d^{3}\vec{x} \; e^{i\vec{p}\cdot\vec{x}} \left\langle J_{H}(\tau, \vec{x})J_{H}(0, \vec{0}) \right\rangle \quad , \quad J_{H} = \overline{\psi} \, \Gamma_{H} \psi \end{split}$$

state	χ^0_c	η_c	J/ψ	χ^1_c
Γ_{H}	1	γ_5	γ_{μ}	$\gamma_{\mu}\gamma_{5}$

- $\rho_H(\omega, p)$ has a sharp peak for stable states in the corresponding channel (broad peak for an unstable state)
- Main problem : $G_H(\tau, \vec{p})$ is known at a finite number of τ 's by the inversion of the spectral integral in order to obtain the function ρ_H is a mathematically ill-defined problem

introduction

proton-proton

proton-nucleus

nucleus-nucleus

lattice results

conclusions

in-medium suppression

QObar recombination

Heavy quark spectral functions

Maximum Entropy Method :

- Many more degrees of freedom in $\rho_H(\omega, \vec{p})$ than data points > a χ^2 -fit would have flat directions...
- Most of the multiple solutions would have unphysical features: non-positivity, not smooth, incorrect large ω behavior
- Idea : add a convex term F to the χ^2 so that there is a unique minimum

$$\chi^2 \longrightarrow \chi^2 + \alpha F[\rho_H]$$

• MEM :

$$F[\rho_H] = \int_0^\infty d\omega \left[\rho_H(\omega) - \rho_0(\omega) - \rho_H(\omega) \ln(\rho_H(\omega)/\rho_0(\omega))\right]$$

- \triangleright ensures the positivity of ho_{H}
- ▷ for $\alpha \to \infty$, the solution wants to be identical to the "prior" ρ_0 ▷ use with extreme caution because you may only get what you bring...

Heavy quark spectral function

The second and third peaks (the fat ones...) are lattice artifacts. Shouldn't we worry about them contaminating the physical peak?

CAD

Heavy quark spectral function

The J/ψ peak starts going down for T above 2T_c
 ▷ good qualitative agreement with the method based on the heavy quark potential

CAD

QQbar recombination

In	troa	uctio	n

proton-proton

proton-nucleus

nucleus-nucleus

in-medium suppression

Iattice results

QQbar recombination

- What has been said so far is correct if there is only a few $Q\overline{Q}$ pairs in the system
- At LHC energies, pQCD predicts that hundreds of cc pairs are being produced in a central PbPb collision
- Q and \overline{Q} that have been produced uncorrelated may encounter and form a quarkonium state
- Model independent estimates :
 - $\operatorname{Prob}(J/\psi) \sim N_c/N_{u,d,s} \sim N_{c\bar{c}}/N_{ch}$
 - $N_{J/\psi} \sim N_{c\bar{c}}^2/N_{\rm ch}$
 - Since $N_{c\bar{c}}^2$ grows faster with energy than N_{ch} , this mechanism of J/ψ production will eventually be dominant
- Two different implementations :
 - Statistical hadronization
 - Kinetic models

Statistical hadronization

Braun-Munzinger, Stachel (2000)

- introduction
- proton-proton

proton-nucleus

- nucleus-nucleus
- in-medium suppression
- Iattice results

QQbar recombination

- Early attemps to include charm in thermal fits underpredicted the yield of charmed hadrons
- However, the ratio $\sigma_{\psi'}/\sigma_{J/\psi}$ measured at SPS goes to its thermal value when N_{part} is large
- One assumes that the number of c, \bar{c} quarks is determined by early hard collisions (no thermal production/annihilation)
- Hadronization is assumed to follow thermal distributions, modified by an "enhancement factor" γ_c (one power of γ_c per c or \bar{c} quark in the hadron). Conservation of charm :

$$N_{car{c}}^{ ext{direct}} = rac{1}{2} \gamma_c V \sum_i (n_{ ext{th}}(D_i) + n_{ ext{th}}(\Lambda_i)) + \gamma_c^2 V \sum_i n_{ ext{th}}(\psi_i) + \cdots$$

• Then :
$$N_D = \gamma_c V n_{\rm th}(D)$$
 and $N_{J/\psi} = \gamma_c^2 V n_{\rm th}(J/\psi)$

Statistical hadronization

proton-proton

proton-nucleus

nucleus-nucleus

in-medium suppression

lattice results

• QQbar recombination

conclusions

• LHC : J/ψ yield per participant

Statistical hadronization

• LHC : J/ψ yield per $c\bar{c}$ pair

conclusions

b this behavior with centrality is the opposite of what one expects in the Matsui-Satz scenario

Kinetic formation

Thews, Schroedter, Rafelski (2001)

- Dominant in-medium J/ψ breakup process : $g + J/\psi \rightarrow c\bar{c}$
 - The reverse process $c\bar{c} \rightarrow J/\psi + g$ should also occur, with a probability that increases like the square of the density of charmed quarks
 - Kinetic equation :

$$rac{dN_{J/\psi}}{d au} = \lambda_{_F} rac{N_c N_{ar c}}{V(au)} - \lambda_{_D}
ho_{
m g} N_{J/\psi}$$

- $V(\tau)$: τ -dependent volume (expansion plays against recombination)
- $\rho_{\rm g}$: gluon density
- $\lambda_{F,D}$: formation and dissociation rates ($\lambda = \overline{\sigma v_{rel}}$)
- Solution: $N_{J/\psi}(\tau) = \epsilon(\tau) \left[N_{J/\psi}(\tau_i) + N_{c\bar{c}}^2 \int_{\tau_i}^{\tau} d\tau \frac{\lambda_F}{V(\tau)\epsilon(\tau)} \right]$ with $\epsilon(\tau) = \exp(-\int_{\tau_i}^{\tau} d\tau \, \rho_g \lambda_D)$

proton-proton

proton-nucleus

nucleus-nucleus

• in-medium suppression

lattice results

• QQbar recombination

conclusions

Kinetic formation

• LHC : J/ψ yield per $c\bar{c}$ pair

proton-proton

proton-nucleus

nucleus-nucleus

• in-medium suppression

(A)

lattice results

QQbar recombination

conclusions

very sensitive to the distribution of initial charm
 See Gossiaux, Guiho, Aichelin (2004) for a Fokker-Plank
 description of the time evolution of the c, c distributions

œ

Conclusions

pp collisions :

- Well under theoretical control for inclusive observables
- J/ψ production still has some rough edges, especially spin
- pA collisions :
 - Shadowing corrections
 - Rescattering corrections (breaking of k_⊥-factorization fairly small for c quarks or heavier)
 - Forward measurements are very useful in order to probe saturation physics
 - A pA run at LHC energy would bring very valuable informations on all these issues
- AA collisions :
 - Lattice news : the J/ψ may survive in a QGP up to $T\sim 2T_c$
 - Quarkonium suppression if few $Q\overline{Q}$ pairs are produced
 - Quarkonium enhancement due to $Q\overline{Q}$ recombination if many heavy quarks are produced (although no hint of this at RHIC)

introduction

proton-proton

proton-nucleus

nucleus-nucleus

conclusions