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Overview of heavy quark production
in heavy ion collisions at the LHC
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Outline

n Introduction
n pp collisions

u Reference when looking for “anomalous” effects in pA or AA
u Note: things we do not understand in pp collisions are unlikely to

get better with nuclei...

n pA collisions
u Reference for “normal” nuclear suppression
u Interesting by itself for the physics of saturation

n AA collisions
u Quarkonium states are a probe of the surrounding medium
u Recent lattice results on quarkonia

n Conclusions
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Initial impact

z

t

τ ∼ 0 fm
n Prompt particle production (jets, heavy quarks, photons)

high p⊥, large x physics, calculable in pQCD



introduction
l QCD phase diagram
l HIC overview
l heavy quark production
l J/psi in medium

proton-proton

proton-nucleus

nucleus-nucleus

conclusions

François Gelis – 2004 DIMUONnet meeting, Clermont-Ferrand, December 13-15, 2004 – p. 5

Soft glue liberation

τ ∼ 0.2 fm
n Soft gluon production : small p⊥; requires to know the

small-x component of the hadron wave function
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Thermalization

τ ∼ 1−2 fm ?
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Quark-Gluon plasma

τ ∼ 10−15 fm
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Hadron gas

τ ∼ 20 fm
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Freeze-out and free streaming

τ → ∞
n Easy, not much happens after freeze-out...
n Unstable hadrons decay
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Heavy quark production
n Standard collinear factorization

n ...or higher twist effects ?
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In-medium J/psi suppression

n Debye screening prevents the formation of quarkonium
states Matsui, Satz (1986)
u the heavy quarks pick a light quark instead and form a D meson

n Heavy quark potential, screening masses, and spectral
functions calculable on the lattice

n Relevant observable :

[J/ψ] / [Open charm]
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...or QQbar recombination ?

n Many QQ pairs are produced in each AA collision
Braun-Munzinger, Stachel (2000)
Thews, Schroedter, Rafelski (2001)
u A Q from one pair can recombine with a Q from another pair

n Avoids the conclusion of the Matsui-Satz scenario, provided
that the average distance between heavy quarks is smaller
than the Debye screening length

n Leads to an enhancement of J/ψ formation
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1 - pp
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Collinear factorization

n Common wisdom: m
Q
À Λ

QCD
, so that αs(m2

Q
)¿ 1

n Factorization formula for open charm production :

dσpp→H+X

dΦ
H

=
∑

ij

∫
fi/p(x1)fj/p(x2)

dσij→QQ

dΦ
Q
dΦ

Q

DQ→H(z)

u fi/p(x): distribution of parton i in the proton, known at NLO
from fits of DIS data

u DQ→H(z): fragmentation function of quark Q into hadron H
u dσij→QQ/dΦQ

dΦ
Q

: perturbative cross-section for the
production of heavy quarks, known up to NLO

n Remarks :
u NLO results depend on renormalization and factorization scales
u Factorization is broken by corrections that are power

suppressed, e.g. (Q2
0/Q

2)n where Q0 is some non-perturbative
hadronic scale and Q the large momentum scale in the process
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Fixed order calculations

n LO [O(α2
s)] :

n NLO [O(α3
s)] : Nason, Dawson, Ellis (1988)

...

...

n NLO almost as large as LO + rather large scale dependence
n NNLO not known yet for this process
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Fixed order calculations

n Plain LO+NLO has been problematic for a long time:
B production at CDF vs NLO-pQCD, as of 2001

B data / theory ∼ 2.9... somewhat embarassing for pQCD...
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Resummation of logarithms

n The coefficients of the perturbative expansion may be
enhanced by logarithms

dσij→QQ =

∞∑

n=2

cnα
n
s , cn =

n−2∑

k=0

c(n−2−k)
n

[
lnQ

]n−2−k

where Q might be large enough so that αslnQ ≥ 1

n Logs that are independent of the observable :
u Threshold logs: Q = ŝ/4m2

Q
− 1

u Small-x logs: Q = ŝ/m2
Q

n Logs that depend on the details of the observable :
u Single Q spectrum at large momentum: Q = p⊥(Q)/m

Q

u QQ spectrum at low pair momentum: Q = m
Q
/p⊥(QQ)

u QQ spectrum in a back-to-back configuration: Q = 1− φ
QQ
/π
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Resummation of logarithms

n Including these logarithms amounts to taking into account
extra radiation in the final state

n Rearrangement of the perturbative expansion:

dσ = α2s

∞∑

n=0

αns

∞∑

i=0

r
(n)
i [αslnQ]i +O

(
Q−1)

u n = 0 : Leading Log (LL)
u n = 1 : Next-to-Leading Log (NLL)

n Two different implementations :
u FONLL : NLO fixed order + analytic resummation of leading logs

Cacciari, Greco, Nason (1998)
u MC@NLO : NLO fixed order + resummation of logs via a

“parton shower” Frixione, Webber (2002)
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Present data vs theory situation

n Resummations + better fragmentation functions: better
agreement with data : B production at Tevatron II

B Note : the data has gone down as well...
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Azimuthal correlations

n cc̄ angular correlation

B loss of the back-to-back correlation when a p⊥ cut is
applied (high-p⊥ production dominated by gluon splitting)
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Azimuthal correlations

n bb̄ angular correlation
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Kt-factorization

n x coverage for cc̄ production at the LHC : central rapidity
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Kt-factorization

n x coverage for cc̄ production at the LHC : forward rapidity

B very small values of x reached in one of the projectiles.
Small-x effects may be important, especially for Pb.
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Kt-factorization

n Collinear factorization : s ∼ p2
⊥
À Λ2

QCD

x1G1(x1,p⊥
2
)

x2G2(x2,p⊥
2
)

n k⊥-factorization : sÀ p2
⊥
À Λ2

QCD

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)

φ1(x1,k1⊥)

φ2(x2,k2⊥)

n k⊥-factorization + BFKL: resum
[
αs ln(s/p

2
⊥
)
]n

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)
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Kt-factorization
n Included diagrams :

n QQ cross-section in k⊥-factorized form :

dσpp→QQ

dΦQdΦQ
=

∫
δ(~k1⊥ + ~k2⊥−~p⊥(QQ))

k2
1⊥k2

2⊥

ϕp(x1, k1⊥)ϕp(x2, k2⊥)|M|2

n Pros :
u Proper way of including intrinsic k⊥
u Some NLO and NNLO diagrams are already included
u This formalism can be generalized to include higher twist effects

n Cons :
u The incoming gluons are off-shell⇒ difficult calculations
u Only a subset of the NLO terms is included
u No formal “factorization theorem”...
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Quarkonium production

n More difficult than the inclusive fragmentation c→ D +X

n LO is clearly insufficient in order to get the p⊥ distribution of
J/ψ or Υ, since by construction p⊥(QQ) = 0 at this order

n Several approaches :

u Color Singlet Model (CSM)

u Non-Relativistic QCD (NRQCD) [aka Color Octet Model]

u Color Evaporation Model (CEM)

u Comover Enhancement Scenario (CES)
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Quarkonium production

n Color Singlet Model :
u The QQ pair is assumed to be produced with the proper

quantum numbers by the hard sub-process
B No further interactions are required

u The QQ pair is simply projected on the non-relativistic
wave-function of the bound state

u Not too bad for J/ψ photoproduction
u undershoots by more than an order of magnitude for J/ψ, ψ′

(even Υ) hadroproduction...
u Problem : in this model, the gluon emission is controlled by a

hard scale B suppressed by αs(4m2
Q
)¿ 1
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Quarkonium production

n Non-Relativistic QCD :
u Based on a double expansion in αs and v2 (v2(c, b) ∼ 0.3, 0.1)
u Provides a factorization formula:

dσij→H+X =
∑

n

〈
ÔH [n]

〉
dσij→QQ[n] , n = {c=(1, 8), 2s+1L

J
}

u The matrix elements
〈
ÔH(n)

〉
play the same role as

fragmentation functions B non-perturbative, but universal.
u The extra emissions occur at a soft non-perturbative scale

B no penalty associated to them
u Problem : the sum over the states n is infinite. It can be

truncated since higher states are of higher order in v.
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Quarkonium production

n Non-Relativistic QCD : comparison with CDF

10
-3

10
-2

10
-1

1

10

5 10 15 20

BR(J/ψ→µ+µ-) dσ(pp
_
→J/ψ+X)/dpT (nb/GeV)

√s =1.8 TeV; |η| < 0.6

pT (GeV)

total
colour-octet 1S0 + 3PJ
colour-octet 3S1
LO colour-singlet
colour-singlet frag.
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Quarkonium production

n Non-Relativistic QCD : polarization

′

B according to the literature : “theory is in good agreement
with data”... nothing to see here...
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Quarkonium production

n Color Evaporation Model :
u Based on the idea that (unspecified) soft non-perturbative

interactions will bring the quantum numbers of the QQ pair to
those of the hadron

u Assumes that all the QQ pairs produced in a certain range of
invariant mass become quarkonium states with a certain
probability

σij→H+X = F
H

∫ 4m2

D,B

4m2

Q

dŝ σij→QQ(ŝ)

u The constants F
H

depend only on the quarkonium state being
produced, but not on p⊥, s, y, or on the state in which the QQ
pair is produced

u The upper limit in the integral is the threshold for the production
of a pair of D or B mesons
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Quarkonium production

n Comparison between NRQCD and CEM :

Left : J/ψ Right : Υ



introduction

proton-proton
l perturbative expansion
l log resummations
l Kt-factorization
l quarkonium production

proton-nucleus

nucleus-nucleus

conclusions

François Gelis – 2004 DIMUONnet meeting, Clermont-Ferrand, December 13-15, 2004 – p. 33

Quarkonium production

n Comover Enhancement Scenario :
u Assumes that the quarkonia states are formed within a comoving

color field (produced by spectator partons), through gluon
absorption (rather than emission, as assumed in in the CSM or
in NRQCD)

u May lead to an enhancement over the CSM predictions
u May explain why the CSM works for photoproduction (no

comoving field in that case), but not for hadroproduction
u This physics is included in approaches that contain rescatterings

(see pA collisions)
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2 - pA
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Nuclear effects

n pA collisions are useful as a reference in which no QGP is
expected while there are some high density effects

n Saturation, shadowing
u Saturation effects are more pronounced for a large projectile
u Usually included within collinear factorization by using special

parton distribution functions (e.g. EKS98, HKM)

n Rescattering effects
u Strong color field produced in the collision
u Models of Comovers

n All these effects can be addressed simultaneously in the
Color Glass Condensate framework

n Heavy quark production in pA collisions is also interesting
per se as a means of studying the physics of saturation
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Leading twist shadowing

n Interactions among the partons in the nuclear target :

u Non-perturbative modification of the expectation value of twist-2
operators due to the nucleus

u Collinear factorization can accomodate these effects
u The PDFs of a nucleus differ from A fp(x,Q

2)
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Parametrizations of nuclear PDFs

n Eskola, Kolhinen, Salgado (1998)
Hirai, Kumano, Miyama (2001)
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u The discrepancy is mostly due to the scarcity of data
B importance of doing a pA run at the LHC...
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Shadowing and rescatterings

n Single scattering at high p⊥ (large x) :

u In the absence of leading twist shadowing, differential
cross-sections at high p⊥ scale like A (volume scaling)

u Single scattering dominates B leading twist formalism
u As seen previously, the PDFs may be modified by intra-nuclear

effects
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Shadowing and rescatterings

n Multiple scatterings at low p⊥ (small x) :

u One of the scatterings “produces” the final state, while the others
just change its momentum

u Each extra scattering corresponds to a correction αsA1/3Λ2/p2⊥
u If there is no leading twist shadowing, differential cross-sections

at low p⊥ scale like A2/3 (area scaling)
u Cannot be included in the leading twist formalism of collinear

factorization
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Wrapping it all in colored glass...

n Rescattering effects are important in collisions involving
nuclei, but cannot be included in a natural way by using
collinear factorization

n The Color Glass Condensate framework can address this
problem. It incorporates :
u Interactions between partons inside the projectiles
u Non-linear effects in the evolution with energy
u Multiple scatterings of the incoming/outgoing particles

(equivalent to the color field present in hard comover scenarios)

n Drawbacks :
u Exists only at LO so far
u More difficult implementation
u PDFs are replaced by correlators of Wilson lines (universal, but

one may need different correlators for different final states)
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Color glass condensate
McLerran, Venugopalan (1994)
Iancu, Leonidov, McLerran (2001)
n Small x modes have a large occupation number

B they are described by a classical color field
n Large x modes are described by “frozen” color sources ρa
n The classical field obeys Yang-Mills equations:

[Dν , F
νµ]a = δµ+δ(x−)ρa(~x⊥)

n The color sources ρa are random, and their distribution is
described by a functional Wx0

[ρ], where x0 is the separation
between “small x” et “large x”. Wx0

[ρ] changes with x0

according to the JIMWLK equation.
n Observables are calculated in the presence of the classical

field, and then averaged over the configurations of the
sources ρa:

〈O〉 =
∫

[Dρa]Wx0
[ρa] O[ρa]
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Quark production in the CGC

B get Wx1
[ρ1] for the first projectile
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Quark production in the CGC

B get Wx2
[ρ2] for the second projectile
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Quark production in the CGC

B solve the Yang-Mills equations for the sources ρ1, ρ2
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Quark production in the CGC

B compute the quark propagator in the classical field
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Quark production in the CGC

n The program outlined above cannot be completed
analytically in general

n For pA collisions, one may assume that the proton is a dilute
object while the nucleus is dense
B keep all orders in ρ

A
, but only the first order in ρp

Blaizot, FG, Venugopalan (2004)
n (Very sketchy) diagrammatic content :

n In this approximation, all the steps can be carried out
analytically
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Quark production in the CGC

n Pair production cross-section :

dσ

dΦ
Q
dΦ

Q

=

∫
δ(~k1⊥ + ~k2⊥−~p⊥(QQ))

k2
1⊥k2

2⊥

ϕp(x1, ~k1⊥)

×
{∫

~k⊥,~k
′

⊥

Mqq̄(~k⊥)M∗
qq̄(~k

′

⊥)φ
(4)
A

(x2, ~k2⊥|~k⊥, ~k
′

⊥)

+

∫

~k⊥

[
Mqq̄(~k⊥)M∗

g + h.c.
]
φ(3)
A

(x2, ~k2⊥|~k⊥)

+MgM∗
g φ

(2)
A

(x2, ~k2⊥)
}

u k⊥-factorization valid on the proton side, but not for the nucleus:
one needs three different “distributions” to describe the nucleus

u φ(2,3,4)
A

are correlators of 2,3 and 4 Wilson lines
u Reduces to the k⊥-factorized formula of Collins & Ellis in some

approximations
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Quark production in the CGC

n Single quark production cross-section :

dσ

dΦ
Q

=

∫
1

k2
1⊥k2

2⊥

ϕp(x1, ~k1⊥)

×
{
8 +

∫

~k⊥

I3(~k⊥)φ
(3)
A

(x2, ~k2⊥|~k⊥) + I2 φ
(2)
A

(x2, ~k2⊥)
}

u still no k⊥-factorization on the nucleus side

u contains only 2-point and 3-point correlators

u The functions I2 and I3 are known in closed form

u This formula (as well as the previous one) includes leading-twist
shadowing and multiple scatterings (hard “comovers”) for pA
collisions
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Quark production in the CGC
n Take the McLerran-Venugopalan model (gaussian Wx0

[ρ])

n Then assume for simplicity that :

φ(3)
A

(x2, ~k2⊥|~k⊥) ≈ (2π)2
1

2

[
δ(~k⊥) + δ(~k⊥ − ~k2⊥)

]
φ(2)
A

(x2, ~k2⊥)

(this is the condition to have k⊥-factorization)
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Quark production in the CGC

n How good is the assumption of k⊥-factorization?
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B far from a sum of two δ functions, strong broadening
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Quark production in the CGC

n Full single quark cross-section: (preliminary)
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B the breaking of k⊥-factorization has a moderate effect
(∼ 20% increase for charm)
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3 - AA
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Charmonium suppression in the QGP

Matsui, Satz (1986), Kharzeev, Satz (1994), and many others...

n If the Debye screening radius is smaller than the size of
quarkonium state, the binding of the Q and Q is destroyed by
the surrounding light quarks and gluons

n The Q and Q drift in the QGP, and cannot find each other
again

n At hadronization time, they pick up a light quark and form D
or B mesons

n A suppression of the ratio [J/ψ] / [Open charm] could be a
signature of the QGP

n Not as simple though : there is also a suppression in pA
collisions. One should therefore look for “anomalous”
suppression effects
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Normal nuclear suppression

n Parameterization of the J/ψ absorption in cold nuclear
matter :

σabs(
√
s) = σabs(

√
s0)

(
s

s0

)∆/2

σabs(
√
s0 = 17.3 GeV) = 5± 0.5 mb , ∆ ≈ 0.125

n Quarkonium survival probability in an AB collision :

S(~b) =

∫
d2~sdz

A
dz

B
ρ
A
(~s, z

A
)ρ

B
(~b− ~s, z

B
)

× exp

[
−(A− 1)

∫ ∞

z
A

dzρ
A
σabs

]
exp

[
−(B − 1)

∫ ∞

z
B

dzρ
B
σabs

]
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Normal nuclear suppression

n Impact parameter dependence of the survival probability :
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Normal nuclear suppression

n Npart dependence of the survival probability :
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Lattice results

n Reminder : only Euclidean quantities can be calculated
directly in lattice Monte-Carlo simulations :

Minkowkian : eiS[A
µ] −→ Euclidean : e−S[A

µ]

n Potential between pairs of heavy quarks in a QGP
u Can be fed into a non-relativistic Shöedinger equation in order to

compute the binding energy of the bound states

n Extraction of the QQ spectral functions from lattice data
u Fairly new method, still in developement
u Results in qualitative agreement with the previous one

n These issues are totally unexplored at finite µ
B
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Heavy quark potential

n The “averaged” free-energy is obtained from Polyakov loops :

e−F (r,T )/T =
1

9

〈
trL(~r) trL†(~0)

〉
, L(~r) =

Nτ∏

i=1

U0(~r, τ)

n It can be divided into a color singlet and a color octet parts :

e−F (r,T )/T =
1

9
e−F1(r,T )/T +

8

9
e−F8(r,T )/T

e−F1(r,T )/T =
1

3

〈
trL(~r)L†(~0)

〉

e−F8(r,T )/T =
1

8

〈
trL(~r) trL†(~0)

〉
− 1

24

〈
trL(~r)L†(~0)

〉

n In principle, one needs to transform that into the potential
energy U :

F = U − TS , S = −∂F
∂T
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Heavy quark potential

n Results for T/Tc = 1.5 :
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Heavy quark potential

n T -dependence of the potential above Tc :
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Heavy quark potential

n What do we do with that?
u Shröedinger equation for QQ bound states :

[
2m

Q
+

1

m
Q

~∇
2
+ U1(r, T )

]
ψi =Mi(T )ψi

u Non-relativistic
u Assumes 2-body interactions only

n Dissociation temperatures :

state J/ψ χc ψ′ Υ χb Υ′

Td/Tc 2.0 1.1 1.1 4.5 2.0 2.0

B the quarkonium states do not get immediately dissolved
above the critical temperature
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Heavy quark spectral functions

n Method for extracting spectral functions :

G
H
(τ, ~p) =

∫ ∞

0

dω ρ
H
(ω, ~p|T ) cosh(ω(τ − 1/2T ))

sinh(ω/2T )

G
H
(τ, ~p) =

∫
d3~x ei~p·~x

〈
J
H
(τ, ~x)J

H
(0,~0)

〉
, J

H
= ψ Γ

H
ψ

state χ0c ηc J/ψ χ1c

Γ
H

1 γ5 γµ γµγ5

n ρ
H
(ω,p) has a sharp peak for stable states in the

corresponding channel (broad peak for an unstable state)
n Main problem : G

H
(τ, ~p) is known at a finite number of τ ’s

B the inversion of the spectral integral in order to obtain the
function ρ

H
is a mathematically ill-defined problem
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Heavy quark spectral functions

n Maximum Entropy Method :
u Many more degrees of freedom in ρ

H
(ω, ~p) than data points

B a χ2-fit would have flat directions...
u Most of the multiple solutions would have unphysical features:

non-positivity, not smooth, incorrect large ω behavior
u Idea : add a convex term F to the χ2 so that there is a unique

minimum
χ2 −→ χ2 + αF [ρ

H
]

u MEM :

F [ρ
H
] =

∫ ∞

0

dω [ρ
H
(ω)− ρ0(ω)− ρH (ω) ln(ρ

H
(ω)/ρ0(ω))]

B ensures the positivity of ρ
H

B for α→∞, the solution wants to be identical to the “prior” ρ0
B use with extreme caution because you may only get what you
bring...
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Heavy quark spectral function

n J/ψ spectral function below Tc :
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n The second and third peaks (the fat ones...) are lattice
artifacts. Shouldn’t we worry about them contaminating the
physical peak?
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Heavy quark spectral function

n J/ψ spectral function above Tc :
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n The J/ψ peak starts going down for T above 2Tc
B good qualitative agreement with the method based on the
heavy quark potential
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QQbar recombination

n What has been said so far is correct if there is only a few QQ
pairs in the system

n At LHC energies, pQCD predicts that hundreds of cc pairs
are being produced in a central PbPb collision

n Q and Q that have been produced uncorrelated may
encounter and form a quarkonium state

n Model independent estimates :
u Prob(J/ψ) ∼ Nc/Nu,d,s ∼ Ncc̄/Nch

u NJ/ψ ∼ N2
cc̄/Nch

u Since N2
cc̄ grows faster with energy than Nch, this mechanism of

J/ψ production will eventually be dominant

n Two different implementations :
u Statistical hadronization
u Kinetic models
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Statistical hadronization
Braun-Munzinger, Stachel (2000)

n Early attemps to include charm in thermal fits
underpredicted the yield of charmed hadrons

n However, the ratio σψ′/σJ/ψ measured at SPS goes to its
thermal value when Npart is large

n One assumes that the number of c, c̄ quarks is determined
by early hard collisions (no thermal production/annihilation)

n Hadronization is assumed to follow thermal distributions,
modified by an “enhancement factor” γc (one power of γc per
c or c̄ quark in the hadron). Conservation of charm :

Ndirect
cc̄ =

1

2
γcV

∑

i

(nth(Di) + nth(Λi)) + γ2cV
∑

i

nth(ψi) + · · ·

n Then : N
D
= γcV nth(D) and NJ/ψ = γ2

cV nth(J/ψ)
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Statistical hadronization

n LHC : J/ψ yield per participant
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Statistical hadronization

n LHC : J/ψ yield per cc̄ pair
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B this behavior with centrality is the opposite of what one
expects in the Matsui-Satz scenario



introduction

proton-proton

proton-nucleus

nucleus-nucleus
l in-medium suppression
l lattice results
l QQbar recombination

conclusions

François Gelis – 2004 DIMUONnet meeting, Clermont-Ferrand, December 13-15, 2004 – p. 70

Kinetic formation

Thews, Schroedter, Rafelski (2001)

n Dominant in-medium J/ψ breakup process : g + J/ψ → cc̄

n The reverse process cc̄→ J/ψ + g should also occur, with a
probability that increases like the square of the density of
charmed quarks

n Kinetic equation :

dNJ/ψ
dτ

= λ
F

NcNc̄
V (τ)

− λ
D
ρgNJ/ψ

u V (τ) : τ -dependent volume (expansion plays against
recombination)

u ρg: gluon density
u λ

F,D
: formation and dissociation rates (λ = σvrel)

n Solution : NJ/ψ(τ) = ε(τ)
[
NJ/ψ(τi) +N2

cc̄

∫ τ
τi
dτ

λ
F

V (τ)ε(τ)

]

with ε(τ) = exp(−
∫ τ
τi
dτ ρgλD )
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Kinetic formation

n LHC : J/ψ yield per cc̄ pair
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u very sensitive to the distribution of initial charm
See Gossiaux, Guiho, Aichelin (2004) for a Fokker-Plank
description of the time evolution of the c, c̄ distributions
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Conclusions
n pp collisions :

u Well under theoretical control for inclusive observables
u J/ψ production still has some rough edges, especially spin

n pA collisions :
u Shadowing corrections
u Rescattering corrections (breaking of k⊥-factorization fairly small

for c quarks or heavier)
u Forward measurements are very useful in order to probe

saturation physics
u A pA run at LHC energy would bring very valuable informations

on all these issues

n AA collisions :
u Lattice news : the J/ψ may survive in a QGP up to T ∼ 2Tc
u Quarkonium suppression if few QQ pairs are produced
u Quarkonium enhancement due to QQ recombination if many

heavy quarks are produced (although no hint of this at RHIC)
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