Photon and dilepton emission in a quark-gluon plasma

François Gelis fgelis@cea.fr

CEA / DSM / SPhT Saclay, France

Outline

- Introduction
- How to compute a thermal rate ?
- Old calculations
 - 1-loop calculation
 - 2-loop calculation, Sum rules and exact result
- Landau-Pomeranchuk-Migdal effect
 - Resummation of multiple scatterings
 - Fast numerical resolution
- Dilepton production
- Non chemical equilibrium
- More on the Debye mass

QCD phase diagram

Temperature

Sketch of a heavy ion collision

▷ Separate description of prompt photons and thermal photons
▷ Usual assumption: very few quarks in the pre-equilibrium
phase + short duration → almost no photon production
▷ One needs:

 \triangleright prompt photon cross-section

 \triangleright rates from QGP

 \triangleright rates from hadronic gas

What can we learn ?

- Photon mean free path ≫ system size:
 ▷ photons escape easily
 ▷ no final state interactions
- Thermal photon rates are very sensitive to the temperature:

$$\frac{dN_{\gamma}}{dtdV} \sim T^4$$

 $\triangleright T$ drops with time \Rightarrow sensitive to the early stages of the collision

Drawback: π⁰ decay is a huge source of photons
 ▷ difficult measurement

Photon spectrum

• Comparison of the various contributions

Photon yield (arbitrary units)

How to compute a rate ?

• Pedestrian approach:

How to compute a rate ?

• Pedestrian approach:

• Using Thermal Field Theory: Weldon (1983) - Gale, Kapusta (1991)

$$\omega \frac{dN_{\gamma}}{dt dV d^{3} \vec{\boldsymbol{q}}} \propto \frac{1}{e^{\omega/T} - 1} \operatorname{Im} \Pi_{\mathrm{ret}}{}^{\mu}{}_{\mu}(\omega, \vec{\boldsymbol{q}})$$

Early calculations

McLerran, Toimela (1985) - Baier, Pire, Schiff (1988) Altherr, Aurenche, Becherrawy (1989)

Early calculations

McLerran, Toimela (1985) - Baier, Pire, Schiff (1988) Altherr, Aurenche, Becherrawy (1989)

 \triangleright For real photons ($Q^2 = 0$), infrared divergence when the exchanged quark is massless:

Im $\Pi_{\rm ret}(\omega, \vec{q}) \propto \alpha \alpha_s \ln(\omega T/Q^2)$

Hard Thermal Loops (1/2)

Braaten, Pisarski (1990) - Frenkel, Taylor (1990)

• In-medium quarks

Medium effects give a mass to quasi-particles: $m_q^2 = \frac{4\pi}{3} \alpha_s T^2$

Hard Thermal Loops (1/2)

Braaten, Pisarski (1990) - Frenkel, Taylor (1990)

• In-medium quarks

Medium effects give a mass to quasi-particles: $m_q^2 = \frac{4\pi}{3} \alpha_s T^2$

• In-medium gluons

$$m_{\rm g}^2 = \frac{4\pi}{3} \alpha_s (1 + \frac{N_f}{6})T^2$$

(N_f = # of quark
flavors)

Hard Thermal Loops (2/2)

• In-medium dispersion relations

Hard Thermal Loops (2/2)

• In-medium dispersion relations

• Debye screening: $\lim_{|\vec{p}|\to 0} \Pi_L(0, \vec{p}) = 3m_g^2, \ \lim_{|\vec{p}|\to 0} \Pi_T(0, \vec{p}) = 0$

D

Hard Thermal Loops (2/2)

• In-medium dispersion relations

- Debye screening: $\lim_{|\vec{p}|\to 0} \Pi_L(0, \vec{p}) = 3m_g^2, \ \lim_{|\vec{p}|\to 0} \Pi_T(0, \vec{p}) = 0$
- Landau damping: $\operatorname{Im} \Pi(\omega, \vec{p}) \neq 0$ if $|\omega| < |\vec{p}|$

1-loop resummed result

• Diagrams

1-loop resummed result

• Diagrams

*m*_q screens the infrared divergence Kapusta, Lichard, Seibert (1991)
 Baier, Nakkagawa, Niegawa, Redlich (1992)

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}{}_{\mu}(\omega, \vec{\boldsymbol{q}}) = \\ = 4\pi \frac{5\alpha\alpha_{s}}{9}T^{2} \left[\ln\left(\frac{\omega T}{m_{q}^{2}}\right) - \frac{1}{2} - \gamma_{E} + \frac{7}{3}\ln(2) + \frac{\zeta'(2)}{\zeta(2)} \right]$$

(for 3 flavors: $5/9 \rightarrow 6/9$)

2-loop resummed result (1/5)

• Diagrams (the gluon is space-like)

2-loop resummed result (1/5)

• Diagrams (the gluon is space-like)

2-loop resummed result (1/5)

Diagrams (the gluon is space-like)

• Space-like gluon: -.....

Collinear enhancement Aurenche, FG, Kobes, Petitgirard (1996) Aurenche, FG, Kobes, Zaraket (1998)

singularity when a real photon is emitted forward: $\alpha_s^2 \frac{T^2}{m_s^2} \sim \alpha_s$

2-loop resumed result (2/5)

• Result:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}{}_{\mu}(\omega, \vec{q}) = \\ = \frac{64 \alpha \alpha_{s}}{3\pi^{2}} \left(\sum_{f} e_{f}^{2}\right) \left(J_{T} + J_{L} + K_{T} + K_{L}\right) \left[\pi^{2} \frac{T^{3}}{\omega} + \omega T\right]$$

2-loop resummed result (2/5)

• Result:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}{}_{\mu}(\omega, \vec{q}) = \\ = \frac{64\alpha\alpha_{s}}{3\pi^{2}} \left(\sum_{f} e_{f}^{2}\right) \left(J_{T} + J_{L} + K_{T} + K_{L}\right) \left[\pi^{2} \frac{T^{3}}{\omega} + \omega T\right]$$

• The $J_{\rm T,L}, K_{\rm T,L}$ are numerical constants that depend only on $m_{\rm q}^2/m_{\rm g}^2$

2-loop resummed result (2/5)

• Result:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}{}_{\mu}(\omega, \vec{q}) = \\ = \frac{64 \alpha \alpha_{s}}{3\pi^{2}} \left(\sum_{f} e_{f}^{2}\right) \left(J_{T} + J_{L} + K_{T} + K_{L}\right) \left[\pi^{2} \frac{T^{3}}{\omega} + \omega T\right]$$

- The $J_{\rm T,L}, K_{\rm T,L}$ are numerical constants that depend only on $m_{\rm q}^2/m_{\rm g}^2$
- Term in T^3/ω : mainly from $qS \rightarrow q\gamma S$ (S = scattering center from the medium)
- Term in ωT : mainly from $q\bar{q}S \rightarrow \gamma S$

2-loop resummed result (3/5)

$$\begin{split} J_{T,L} &\equiv \int_{-\infty}^{0} dt \, \mathcal{C}_{T,L}(t) \sqrt{\frac{-t}{4m_{\rm q}^2 - t}} \tanh^{-1} \sqrt{\frac{-t}{4m_{\rm q}^2 - t}} \\ K_{T,L} &\equiv 2m_{\rm q}^2 \int_{-\infty}^{0} \frac{dt}{t} \mathcal{C}_{T,L}(t) \left[\sqrt{\frac{-t}{4m_{\rm q}^2 - t}} \tanh^{-1} \sqrt{\frac{-t}{4m_{\rm q}^2 - t}} + \frac{t}{4m_{\rm q}^2} \right] \end{split}$$

2-loop resummed result (3/5)

$$\begin{split} J_{T,L} &\equiv \int_{-\infty}^{0} dt \, \mathcal{C}_{T,L}(t) \sqrt{\frac{-t}{4m_{\rm q}^2 - t}} \tanh^{-1} \sqrt{\frac{-t}{4m_{\rm q}^2 - t}} \\ K_{T,L} &\equiv 2m_{\rm q}^2 \int_{-\infty}^{0} \frac{dt}{t} \mathcal{C}_{T,L}(t) \left[\sqrt{\frac{-t}{4m_{\rm q}^2 - t}} \tanh^{-1} \sqrt{\frac{-t}{4m_{\rm q}^2 - t}} + \frac{t}{4m_{\rm q}^2} \right] \end{split}$$

$$\mathcal{C}_{T,L}(t) \equiv \int_0^1 \frac{dx}{x} \frac{\left| \operatorname{Im} \Pi_{T,L}(x) \right|}{(t - \operatorname{Re} \Pi_{T,L}(x))^2 + (\operatorname{Im} \Pi_{T,L}(x))^2}$$

$$\Pi_{T}(x) = 3m_{g}^{2} \left[\frac{x^{2}}{2} + \frac{x(1-x^{2})}{4} \ln\left(\frac{x+1}{x-1}\right) \right]$$
$$\Pi_{L}(x) = 3m_{g}^{2}(1-x^{2}) \left[1 - \frac{x}{2} \ln\left(\frac{x+1}{x-1}\right) \right]$$

Sum rule (1/4)

Aurenche, FG, Zaraket (2002)

• If:

 $\operatorname{Im} \Pi(0) = 0 ,$ $\operatorname{Im} \Pi(x) = 0 \quad \text{if } x \ge 1 ,$ $\operatorname{Re} \Pi(x) \ge 0 \quad \text{if } x \ge 1 ,$

then

$$\mathcal{C}(t) \equiv \int_0^1 \frac{dx}{x} \frac{\operatorname{Im} \Pi(x)}{(t - \operatorname{Re} \Pi(x))^2 + (\operatorname{Im} \Pi(x))^2} =$$
$$= \frac{\pi}{2} \left[\frac{1}{t - \operatorname{Re} \Pi(0)} - \frac{1}{t - \operatorname{Re} \Pi(\infty)} \right]$$

Sum rule (2/4)

• Spectral representation of a propagator:

$$\frac{1}{p_0^2 - \boldsymbol{p}^2 - \boldsymbol{\Sigma}(\boldsymbol{p}_0, \boldsymbol{p})} = \int_0^\infty \frac{d\omega}{\pi} \omega \frac{\rho(\omega, \boldsymbol{p})}{p_0^2 - \omega^2 + i\epsilon}$$

with

$$\rho(\omega, \boldsymbol{p}) = \frac{-2 \operatorname{Im} \Sigma(\omega, \boldsymbol{p})}{(\omega^2 - \boldsymbol{p}^2 - \operatorname{Re} \Sigma(\omega, \boldsymbol{p}))^2 + (\operatorname{Im} \Sigma(\omega, \boldsymbol{p}))^2}$$

Sum rule (2/4)

• Spectral representation of a propagator:

$$\frac{1}{p_0^2 - \boldsymbol{p}^2 - \boldsymbol{\Sigma}(\boldsymbol{p}_0, \boldsymbol{p})} = \int_0^\infty \frac{d\omega}{\pi} \omega \frac{\rho(\omega, \boldsymbol{p})}{p_0^2 - \omega^2 + i\epsilon}$$

with

$$\rho(\omega, \boldsymbol{p}) = \frac{-2 \operatorname{Im} \Sigma(\omega, \boldsymbol{p})}{(\omega^2 - \boldsymbol{p}^2 - \operatorname{Re} \Sigma(\omega, \boldsymbol{p}))^2 + (\operatorname{Im} \Sigma(\omega, \boldsymbol{p}))^2}$$

• Taking the real part gives:

$$\int_{0}^{\infty} \frac{d\omega}{\pi} \omega \frac{\rho(\omega, \boldsymbol{p})}{p_0^2 - \omega^2} = \frac{p_0^2 - \boldsymbol{p}^2 - \operatorname{Re} \boldsymbol{\Sigma}(\boldsymbol{p}_0, \boldsymbol{p})}{(p_0^2 - \boldsymbol{p}^2 - \operatorname{Re} \boldsymbol{\Sigma}(\boldsymbol{p}_0, \boldsymbol{p}))^2 + (\operatorname{Im} \boldsymbol{\Sigma}(\boldsymbol{p}_0, \boldsymbol{p}))^2}$$

Sum rule (3/4)

•
$$p_0 = 0$$
 : if Im $\Sigma(0, p) = 0$,

$$\int_{0}^{\infty} \frac{d\omega}{\omega} \rho(\omega, \boldsymbol{p}) = \frac{\pi}{\boldsymbol{p}^{2} + \operatorname{Re} \Sigma(0, \boldsymbol{p})}$$

Sum rule (3/4)

•
$$p_0 = 0$$
 : if Im $\Sigma(0, p) = 0$,

$$\int_{0}^{\infty} \frac{d\omega}{\omega} \rho(\omega, \boldsymbol{p}) = \frac{\pi}{\boldsymbol{p}^{2} + \operatorname{Re} \Sigma(0, \boldsymbol{p})}$$

• $p_0 \to \infty$: if $\operatorname{Im} \Sigma(p_0, \boldsymbol{p}) = 0$ for $p_0 > |\boldsymbol{p}|$,

$$\int_{0}^{\infty} d\omega \, \omega \rho(\omega, \boldsymbol{p}) = \lim_{p_0 \to \infty} \frac{\pi p_0^2}{p_0^2 - \operatorname{Re} \Sigma(p_0, \boldsymbol{p})}$$

Sum rule (3/4)

•
$$p_0 = 0$$
 : if Im $\Sigma(0, p) = 0$,

$$\int_{0}^{\infty} \frac{d\omega}{\omega} \rho(\omega, \boldsymbol{p}) = \frac{\pi}{\boldsymbol{p}^{2} + \operatorname{Re} \Sigma(0, \boldsymbol{p})}$$

• $p_0 \to \infty$: if $\operatorname{Im} \Sigma(p_0, \boldsymbol{p}) = 0$ for $p_0 > |\boldsymbol{p}|$,

$$\int_{0}^{\infty} d\omega \, \omega \rho(\omega, \boldsymbol{p}) = \lim_{p_0 \to \infty} \frac{\pi p_0^2}{p_0^2 - \operatorname{Re} \Sigma(p_0, \boldsymbol{p})}$$

• Contribution of the time-like region:

$$\int_{|\mathbf{p}|}^{\infty} \frac{d\omega}{\omega} f(\omega) \rho(\omega, \mathbf{p}) = \pi \sum_{\text{poles } \omega_i} Z(\omega_i) \frac{f(\omega_i)}{\omega_i^2}$$

Sum rule (4/4)

• Then:

$$\mathcal{C}(t) = -\frac{1}{2t} \int_{0}^{|\mathbf{p}|} \frac{d\omega}{\omega} (\omega^2 - \mathbf{p}^2) \rho(\omega, \mathbf{p})$$

with $\Sigma(p_0, p) \equiv t^{-1}(p_0^2 - p^2) \Pi(p_0/|p|)$

Sum rule (4/4)

• Then:

$$\mathcal{C}(t) = -\frac{1}{2t} \int_{0}^{|\mathbf{p}|} \frac{d\omega}{\omega} (\omega^2 - \mathbf{p}^2) \rho(\omega, \mathbf{p})$$

with $\Sigma(p_0, p) \equiv t^{-1}(p_0^2 - p^2) \Pi(p_0/|p|)$

 The propagator of self-energy Σ has no pole with ω > |p| (here we need Re Σ(ω, p) ≥ 0 if ω > |p|)

Sum rule (4/4)

• Then:

$$\mathcal{C}(t) = -\frac{1}{2t} \int_{0}^{|\mathbf{p}|} \frac{d\omega}{\omega} (\omega^2 - \mathbf{p}^2) \rho(\omega, \mathbf{p})$$

with $\Sigma(p_0, p) \equiv t^{-1}(p_0^2 - p^2) \Pi(p_0/|p|)$

- The propagator of self-energy Σ has no pole with ω > |p| (here we need Re Σ(ω, p) ≥ 0 if ω > |p|)
- Finally:

$$\mathcal{C}(t) = \frac{\pi}{2} \left[\frac{1}{t - \operatorname{Re} \Pi(0)} - \frac{1}{t - \operatorname{Re} \Pi(\infty)} \right]$$

• All the conditions are satisfied by $\Pi_{T,L}(x)$

2-loop resumed result (4/5)

• The sum rule implies:

$$\mathcal{C}_{T}(t) = \frac{\pi}{2} \left[\frac{1}{t - m_{g}^{2}} - \frac{1}{t} \right] , \ \mathcal{C}_{L}(t) = \frac{\pi}{2} \left[\frac{1}{t - 3m_{g}^{2}} - \frac{1}{t - m_{g}^{2}} \right]$$

2-loop resumed result (4/5)

• The sum rule implies:

$$\mathcal{C}_{T}(t) = \frac{\pi}{2} \left[\frac{1}{t - m_{g}^{2}} - \frac{1}{t} \right] , \ \mathcal{C}_{L}(t) = \frac{\pi}{2} \left[\frac{1}{t - 3m_{g}^{2}} - \frac{1}{t - m_{g}^{2}} \right]$$

•
$$J_T + J_L = \pi F(4m_q^2/3m_g^2)$$

 $K_T + K_L = \pi \left[\frac{1}{2} + \frac{1}{4}\ln\left(\frac{m_q^2}{3m_g^2}\right) - \frac{2m_q^2}{3m_g^2}F(4m_q^2/3m_g^2)\right]$
with $F(x) \equiv \int_0^1 du \, \frac{\tanh^{-1}(u)}{1+(x-1)u^2}$
2-loop resummed result (4/5)

• The sum rule implies:

$$\mathcal{C}_{T}(t) = \frac{\pi}{2} \left[\frac{1}{t - m_{g}^{2}} - \frac{1}{t} \right] , \ \mathcal{C}_{L}(t) = \frac{\pi}{2} \left[\frac{1}{t - 3m_{g}^{2}} - \frac{1}{t - m_{g}^{2}} \right]$$

•
$$J_T + J_L = \pi F(4m_q^2/3m_g^2)$$

 $K_T + K_L = \pi \left[\frac{1}{2} + \frac{1}{4}\ln\left(\frac{m_q^2}{3m_g^2}\right) - \frac{2m_q^2}{3m_g^2}F(4m_q^2/3m_g^2)\right]$
with $F(x) \equiv \int_0^1 du \, \frac{\tanh^{-1}(u)}{1+(x-1)u^2}$

• For 3 colors and 2 flavors $(m_q^2/m_g^2 = 3/4)$: $\operatorname{Im} \Pi_{\mathrm{ret}}{}^{\mu}{}_{\mu}(\omega, \vec{q}) = \frac{32}{3\pi} \frac{5\alpha\alpha_s}{9} \left[\pi^2 \frac{T^3}{\omega} + \omega T \right]$

2-loop resummed result (5/5)

• For 3 colors and 3 flavors $(m_q^2/m_g^2 = 2/3)$:

$$\operatorname{Im} \Pi_{\mathrm{ret}}{}^{\mu}{}_{\mu}(\omega, \vec{q}) = \frac{32}{3\pi} \left[1 + \frac{5\pi^2}{36} + \ln\left(\frac{\sqrt{2}}{3}\right) - \frac{55}{12}\ln^2(2) + \frac{10}{3}\ln(2)\ln(3) - \frac{5}{3}\operatorname{Li}_2\left(\frac{3}{4}\right) - \frac{5}{3}\operatorname{Li}_2\left(-\frac{1}{2}\right) \right] \times \frac{6\alpha\alpha_s}{9} \left[\pi^2 \frac{T^3}{\omega} + \omega T \right]$$

with $\operatorname{Li}_2(z) \equiv \sum_{n=1}^{+\infty} z^n / n^2$.

LPM effect (1/6)

• Photon formation time

$$R \equiv P + Q$$
$$(r_0 = p_0 + \omega)$$
$$P^2 = m_q^2$$

$$t_F^{-1} \sim \delta E = r_0 - \sqrt{\vec{r}^2 + m_q^2}$$

LPM effect (1/6)

• Photon formation time

$$R \equiv P + Q$$
$$(r_0 = p_0 + \omega)$$
$$P^2 = m_q^2$$

$$t_F^{-1} \sim \delta E = r_0 - \sqrt{\vec{r}^2 + m_q^2}$$

$$t_F^{-1} = \frac{\omega}{2p_0r_0} \left[\vec{p}_\perp^2 + m_q^2 \right]$$

LPM effect (1/6)

• Photon formation time

$$R \equiv P + Q$$

($r_0 = p_0 + \omega$)
 $P^2 = m_q^2$

- Other scales
 - \triangleright Mean free path: $\lambda \sim (\alpha_s T \ln(1/\alpha_s))^{-1}$
 - \triangleright Electric screening: $\ell_{\text{elec}} \sim (\sqrt{\alpha_s}T)^{-1}$

 \triangleright Magnetic screening: $\ell_{mag} \sim (\alpha_s T)^{-1}$

- Other scales
 - \triangleright Mean free path: $\lambda \sim (\alpha_s T \ln(1/\alpha_s))^{-1}$
 - \triangleright Electric screening: $\ell_{\text{elec}} \sim (\sqrt{\alpha_s}T)^{-1}$
 - \triangleright Magnetic screening: $\ell_{\text{mag}} \sim (\alpha_s T)^{-1}$
- LPM effect: multiple scatterings are important if

$$t_{F}\gtrsim\lambda$$

LPM effect (3/6)

• How bad could it be?

LPM effect (3/6)

How bad could it be?
 ▷ Short ranged interactions: ℓ ≪ λ

LPM effect (3/6)

How bad could it be?
 ▷ Short ranged interactions: ℓ ≪ λ

 \triangleright Long ranged interactions: $\ell \gtrsim \lambda$

Arnold, Moore, Yaffe (2001,2002)

 A cancellation between vertex and self-energy topologies prevents long ranged interactions
 ▷ Only ladder topologies contribute to Π_{ret}

Arnold, Moore, Yaffe (2001,2002)

A cancellation between vertex and self-energy topologies prevents long ranged interactions
 ▷ Only ladder topologies contribute to Π_{ret}
 ▷ Interpretation: long ranged interactions correspond to very small momentum transfers:

$$l_{\perp} \sim \ell^{-1}$$
,

which are inefficient to induce the emission of a photon.

• Resummation of ladder diagrams:

• Resummation of ladder diagrams:

⊳ Dyson equation:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}_{\mu} = \boldsymbol{\alpha} \operatorname{Im} \int dp_0 \, d^2 \vec{\boldsymbol{p}}_{\perp} \left[\cdots\right] \, 2 \vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp})$$

• Resummation of ladder diagrams:

⊳ Dyson equation:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}_{\mu} = \boldsymbol{\alpha} \operatorname{Im} \int dp_0 \, d^2 \vec{\boldsymbol{p}}_{\perp} \left[\cdots\right] \, 2 \vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp})$$

 \triangleright Bethe-Salpeter equation ($\mathcal{C} \equiv \mathcal{C}_T + \mathcal{C}_L$):

$$\frac{\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp})}{t_{F}} = 2\vec{\boldsymbol{p}}_{\perp} + i\alpha_{s}T \int d^{2}\vec{\boldsymbol{l}}_{\perp} \,\mathcal{C}(-\boldsymbol{l}_{\perp}^{2})[\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) - \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp} + \vec{\boldsymbol{l}}_{\perp})]$$

• Resummation of ladder diagrams:

$$\Pi = - \prod_{p} p \cdots p = - p \cdots + [p] p \cdots p \cdots p p \cdots$$

⊳ Dyson equation:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}_{\mu} = \boldsymbol{\alpha} \operatorname{Im} \int dp_0 \, d^2 \vec{\boldsymbol{p}}_{\perp} \left[\cdots\right] \, 2 \vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp})$$

 \triangleright Bethe-Salpeter equation ($\mathcal{C} \equiv \mathcal{C}_T + \mathcal{C}_L$):

$$\frac{\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp})}{t_{F}} = 2\vec{\boldsymbol{p}}_{\perp} + i\alpha_{s}T \int d^{2}\vec{\boldsymbol{l}}_{\perp} \,\mathcal{C}(-\boldsymbol{l}_{\perp}^{2})[\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) - \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp} + \vec{\boldsymbol{l}}_{\perp})]$$

• Note: the term in $C(-l_{\perp}^2)\vec{f}(\vec{p}_{\perp})$ is due to self-energy resummations required by gauge invariance

• The collision kernel is:

$$\mathcal{C}(-\boldsymbol{l}_{\perp}^{2}) = \frac{\pi}{2} \left[\frac{1}{\boldsymbol{l}_{\perp}^{2}} - \frac{1}{\boldsymbol{l}_{\perp}^{2} + 3m_{g}^{2}} \right]$$

• The collision kernel is:

$$\mathcal{C}(-\boldsymbol{l}_{\perp}^{2}) = \frac{\pi}{2} \left[\frac{1}{\boldsymbol{l}_{\perp}^{2}} - \frac{1}{\boldsymbol{l}_{\perp}^{2} + 3m_{g}^{2}} \right]$$

• Notes:

 $\triangleright C(-l_{\perp}^2) \rightarrow +\infty \text{ if } l_{\perp} \rightarrow 0.$ This divergence is cancelled by the difference $\vec{f}(\vec{p}_{\perp}) - \vec{f}(\vec{p}_{\perp} + \vec{l}_{\perp})$

• The collision kernel is:

$$\mathcal{C}(-\boldsymbol{l}_{\perp}^{2}) = \frac{\pi}{2} \left[\frac{1}{\boldsymbol{l}_{\perp}^{2}} - \frac{1}{\boldsymbol{l}_{\perp}^{2} + 3m_{g}^{2}} \right]$$

• Notes:

 $\triangleright C(-l_{\perp}^2) \rightarrow +\infty \text{ if } l_{\perp} \rightarrow 0.$ This divergence is cancelled by the difference $\vec{f}(\vec{p}_{\perp}) - \vec{f}(\vec{p}_{\perp} + \vec{l}_{\perp})$ \triangleright all ladder diagrams contribute to $O(\alpha \alpha_s)$: each extra gluon brings $\alpha_s T p_0 r_0 / \omega m_0^2$

• The collision kernel is:

$$\mathcal{C}(-\boldsymbol{l}_{\perp}^{2}) = \frac{\pi}{2} \left[\frac{1}{\boldsymbol{l}_{\perp}^{2}} - \frac{1}{\boldsymbol{l}_{\perp}^{2} + 3m_{g}^{2}} \right]$$

• Notes:

 $\triangleright C(-\boldsymbol{l}_{\perp}^{2}) \rightarrow +\infty \text{ if } \boldsymbol{l}_{\perp} \rightarrow 0. \text{ This divergence is}$ cancelled by the difference $\boldsymbol{\vec{f}}(\boldsymbol{\vec{p}}_{\perp}) - \boldsymbol{\vec{f}}(\boldsymbol{\vec{p}}_{\perp} + \boldsymbol{\vec{l}}_{\perp})$ $\triangleright \text{ all ladder diagrams contribute to } \mathcal{O}(\alpha \alpha_{s}):$ each extra gluon brings $\alpha_{s} T p_{0} r_{0} / \omega m_{q}^{2}$

 \triangleright the LPM-resummed result depends only on m_q^2 and m_{debye}^2 (= $3m_g^2$ in the HTL framework)

Arnold, Moore, Yaffe (2001)

• Variational method: the solution is an extremum of:

$$\begin{split} Q[\boldsymbol{f}] &= \left\langle 2\boldsymbol{p}_{\perp}, \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) \right\rangle - \frac{1}{2} \left\langle \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}), \widehat{\mathcal{O}}\vec{\boldsymbol{f}}(\boldsymbol{p}_{\perp}) \right\rangle \\ \text{with:} \left\langle \vec{\boldsymbol{f}}_{1}(\vec{\boldsymbol{p}}_{\perp}), \vec{\boldsymbol{f}}_{2}(\vec{\boldsymbol{p}}_{\perp}) \right\rangle \equiv \int_{\vec{\boldsymbol{p}}_{\perp}} \vec{\boldsymbol{f}}_{1}(\vec{\boldsymbol{p}}_{\perp}) \cdot \vec{\boldsymbol{f}}_{2}(\vec{\boldsymbol{p}}_{\perp}) \end{split}$$

$$\widehat{\mathcal{O}}\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) \equiv \frac{\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp})}{t_{F}} + i\alpha_{s}T \int_{\vec{\boldsymbol{l}}_{\perp}} \mathcal{C}(-\boldsymbol{l}_{\perp}^{2})[\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) - \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp} + \vec{\boldsymbol{l}}_{\perp})]$$

Arnold, Moore, Yaffe (2001)

• Variational method: the solution is an extremum of:

$$\begin{split} Q[\boldsymbol{f}] &= \left\langle 2\boldsymbol{p}_{\perp}, \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) \right\rangle - \frac{1}{2} \left\langle \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}), \widehat{\mathcal{O}}\vec{\boldsymbol{f}}(\boldsymbol{p}_{\perp}) \right\rangle \\ \text{with:} \left\langle \vec{\boldsymbol{f}}_{1}(\vec{\boldsymbol{p}}_{\perp}), \vec{\boldsymbol{f}}_{2}(\vec{\boldsymbol{p}}_{\perp}) \right\rangle \equiv \int_{\vec{\boldsymbol{p}}_{\perp}} \vec{\boldsymbol{f}}_{1}(\vec{\boldsymbol{p}}_{\perp}) \cdot \vec{\boldsymbol{f}}_{2}(\vec{\boldsymbol{p}}_{\perp}) \end{split}$$

$$\widehat{\mathcal{O}}\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) \equiv \frac{\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp})}{t_{F}} + i\alpha_{s}T \int_{\vec{\boldsymbol{l}}_{\perp}} \mathcal{C}(-\boldsymbol{l}_{\perp}^{2})[\vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) - \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp} + \vec{\boldsymbol{l}}_{\perp})]$$

Problem: the extremum is a saddle point
 b the accuracy is not guaranteed to increase when one enlarges the variational ansatz

Aurenche, FG, Zaraket (2002)

• Fourier transform the integral equation:

$$\frac{\omega}{2p_0r_0} [m_q^2 - \boldsymbol{\nabla}_{\perp}^2] \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) = 2\vec{\boldsymbol{\nabla}}_{\perp}\delta(\vec{\boldsymbol{x}}_{\perp}) + i\alpha_s TD(\boldsymbol{x}_{\perp})\widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp})$$
$$D(\boldsymbol{x}_{\perp}) \equiv \frac{1}{2\pi} \left[\gamma_E + \ln\left(\frac{m_{\text{debye}}\boldsymbol{x}_{\perp}}{2}\right) + K_0(m_{\text{debye}}\boldsymbol{x}_{\perp}) \right]$$

Aurenche, FG, Zaraket (2002)

• Fourier transform the integral equation:

$$\frac{\omega}{2p_0r_0} [m_q^2 - \boldsymbol{\nabla}_{\perp}^2] \tilde{\boldsymbol{f}}(\boldsymbol{\vec{x}}_{\perp}) = 2\boldsymbol{\vec{\nabla}}_{\perp}\delta(\boldsymbol{\vec{x}}_{\perp}) + i\alpha_s T D(\boldsymbol{x}_{\perp}) \tilde{\boldsymbol{f}}(\boldsymbol{\vec{x}}_{\perp})$$
$$D(\boldsymbol{x}_{\perp}) \equiv \frac{1}{2\pi} \left[\gamma_E + \ln\left(\frac{m_{\text{debye}}\boldsymbol{x}_{\perp}}{2}\right) + K_0(m_{\text{debye}}\boldsymbol{x}_{\perp}) \right]$$

• Boundary conditions:

$$\lim_{x_{\perp}\to+\infty} \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) = 0, \quad \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) \approx_{x_{\perp}\to0^{+}} \frac{2}{\pi} \frac{p_{0}r_{0}}{\omega} \frac{\vec{\boldsymbol{x}}_{\perp}}{x_{\perp}^{2}} + \mathcal{O}(x_{\perp})$$

Aurenche, FG, Zaraket (2002)

• Fourier transform the integral equation:

$$\frac{\omega}{2p_0r_0} [m_q^2 - \boldsymbol{\nabla}_{\perp}^2] \tilde{\boldsymbol{f}}(\boldsymbol{\vec{x}}_{\perp}) = 2 \boldsymbol{\vec{\nabla}}_{\perp} \delta(\boldsymbol{\vec{x}}_{\perp}) + i\alpha_s T D(\boldsymbol{x}_{\perp}) \tilde{\boldsymbol{f}}(\boldsymbol{\vec{x}}_{\perp})$$
$$D(\boldsymbol{x}_{\perp}) \equiv \frac{1}{2\pi} \left[\gamma_E + \ln\left(\frac{m_{\text{debye}}\boldsymbol{x}_{\perp}}{2}\right) + K_0(m_{\text{debye}}\boldsymbol{x}_{\perp}) \right]$$

- Boundary conditions: $\lim_{x_{\perp} \to +\infty} \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) = 0, \quad \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) \underset{x_{\perp} \to 0^{+}}{\approx} \frac{2}{\pi} \frac{p_{0}r_{0}}{\omega} \frac{\vec{\boldsymbol{x}}_{\perp}}{x_{\perp}^{2}} + \mathcal{O}(x_{\perp})$
- Rotational invariance: $\widetilde{f}(\vec{x}_{\perp}) \equiv \vec{x}_{\perp}h(x_{\perp})$ $h(\infty) = 0, \ h(x_{\perp} \to 0^+) \approx \frac{2p_0r_0}{\pi\omega x_{\perp}^2} + \mathcal{O}(1)$

Aurenche, FG, Zaraket (2002)

• Fourier transform the integral equation:

$$\frac{\omega}{2p_0r_0} [m_q^2 - \boldsymbol{\nabla}_{\perp}^2] \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) = 2 \vec{\boldsymbol{\nabla}}_{\perp} \delta(\vec{\boldsymbol{x}}_{\perp}) + i\alpha_s T D(\boldsymbol{x}_{\perp}) \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp})$$
$$D(\boldsymbol{x}_{\perp}) \equiv \frac{1}{2\pi} \left[\gamma_E + \ln\left(\frac{m_{\text{debye}} \boldsymbol{x}_{\perp}}{2}\right) + K_0(m_{\text{debye}} \boldsymbol{x}_{\perp}) \right]$$

- Boundary conditions: $\lim_{x_{\perp} \to +\infty} \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) = 0, \quad \widetilde{\boldsymbol{f}}(\vec{\boldsymbol{x}}_{\perp}) \underset{x_{\perp} \to 0^{+}}{\approx} \frac{2}{\pi} \frac{p_{0}r_{0}}{\omega} \frac{\vec{\boldsymbol{x}}_{\perp}}{x_{\perp}^{2}} + \mathcal{O}(x_{\perp})$
- Rotational invariance: $\tilde{f}(\vec{x}_{\perp}) \equiv \vec{x}_{\perp}h(x_{\perp})$ $h(\infty) = 0, \ h(x_{\perp} \to 0^+) \approx \frac{2p_0r_0}{\pi\omega x_{\perp}^2} + \mathcal{O}(1)$
- At the end, we need: Im $\int_{\boldsymbol{p}_{\perp}} \vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) = 2 \operatorname{Im} \boldsymbol{h}(0^+)$

Numerical resolution (3/3)

• Linear second order differential equation for $h(x_{\perp})$

Linear second order differential equation for h(x⊥)
 ▷ take two linearly independent solutions h₁(x⊥), h₂(x⊥)
 (not obeying the boundary conditions unless you're lucky)

Linear second order differential equation for h(x⊥)
 b take two linearly independent solutions h₁(x⊥), h₂(x⊥)
 (not obeying the boundary conditions unless you're lucky)
 b compute: r ≡ lim_{x⊥→+∞} h₁(x⊥)/h₂(x⊥) by a forward numerical quadrature ⇒ h(x⊥) = s(h₁(x⊥) - rh₂(x⊥))

• Linear second order differential equation for $h(x_{\perp})$ \triangleright take two linearly independent solutions $h_1(x_{\perp}), h_2(x_{\perp})$ (not obeying the boundary conditions unless you're lucky) \triangleright compute: $r \equiv \lim_{x_{\perp} \to +\infty} h_1(x_{\perp})/h_2(x_{\perp})$ by a forward numerical quadrature $\Rightarrow h(x_{\perp}) = s(h_1(x_{\perp}) - rh_2(x_{\perp}))$ \triangleright compute: $s \equiv \lim_{x_{\perp} \to 0^+} \frac{2p_0 r_0}{\omega x_{\perp}^2} \frac{1}{h_1(x_{\perp}) - rh_2(x_{\perp})}$ by a retrograde numerical quadrature

Linear second order differential equation for h(x⊥)
take two linearly independent solutions h₁(x⊥), h₂(x⊥)
(not obeying the boundary conditions unless you're lucky)
compute: r ≡ lim_{x⊥→+∞} h₁(x⊥)/h₂(x⊥) by a forward
numerical quadrature ⇒ h(x⊥) = s(h₁(x⊥) - rh₂(x⊥))
compute: s ≡ lim_{x⊥→0+} ^{2p_0r_0}/_{ωx⊥} 1/_{h₁(x⊥)-rh₂(x⊥)} by a
retrograde numerical quadrature
finally: Im h(0⁺) = lim_{x⊥→0+} s Im (h₁(x⊥) - rh₂(x⊥))

- Linear second order differential equation for h(x⊥)
 take two linearly independent solutions h₁(x⊥), h₂(x⊥)
 (not obeying the boundary conditions unless you're lucky)
 compute: r ≡ lim_{x⊥→+∞} h₁(x⊥)/h₂(x⊥) by a forward
 numerical quadrature ⇒ h(x⊥) = s(h₁(x⊥) rh₂(x⊥))
 compute: s ≡ lim_{x⊥→0+} ^{2p_0r_0} 1/(h_1(x⊥) rh_2(x⊥)) by a
 retrograde numerical quadrature
 finally: Im h(0⁺) = lim_{x⊥→0+} s Im (h₁(x⊥) rh₂(x⊥))
- Advantages:

no need to make an ansatz for the unknown function
the accuracy is only limited by the numerical quadrature
much faster than the variational method

LPM effect - Results

• Photon rate at $\mathcal{O}(\alpha \alpha_s)$

 $\alpha_s=0.3$, 3 colors, 3 flavors, T=1 GeV

Dilepton production (1/4)

• What's different?

$$\ge \frac{dN_{l+l-}}{dtdVd^4Q} \propto \frac{\alpha}{Q^2} \frac{1}{e^{\omega/T} - 1} \mathrm{Im} \, {\Pi_{\mathrm{ret}}}^{\mu}{}_{\mu}(Q)$$

Dilepton production (1/4)

• What's different?

$$\ge \frac{dN_{l+l-}}{dtdVd^4Q} \propto \frac{\alpha}{Q^2} \frac{1}{e^{\omega/T} - 1} \mathrm{Im} \, {\Pi_{\mathrm{ret}}}^{\mu}{}_{\mu}(Q)$$

 \triangleright For $Q^2 \ge 4m_q^2$, there is a contribution at $\mathcal{O}(\alpha^2)$ from the process $q\bar{q} \to \gamma^* \to l^+l^-$ (Drell-Yan process)

Dilepton production (1/4)

• What's different?

$$\ge \frac{dN_{l+l-}}{dtdVd^4Q} \propto \frac{\alpha}{Q^2} \frac{1}{e^{\omega/T} - 1} \mathrm{Im} \, {\Pi_{\mathrm{ret}}}^{\mu}{}_{\mu}(Q)$$

 \triangleright For $Q^2 \ge 4m_q^2$, there is a contribution at $\mathcal{O}(\alpha^2)$ from the process $q\bar{q} \to \gamma^* \to l^+l^-$ (Drell-Yan process)

 \triangleright The kinematics is more complicated: $\omega \neq |\vec{q}|$
Dilepton production (1/4)

• What's different?

$$\geq \frac{dN_{l^+l^-}}{dtdVd^4Q} \propto \frac{\alpha}{Q^2} \frac{1}{e^{\omega/T} - 1} \mathrm{Im} \, {\Pi_{\mathrm{ret}}}^{\mu}{}_{\mu}(Q)$$

 \triangleright For $Q^2 \ge 4m_q^2$, there is a contribution at $\mathcal{O}(\alpha^2)$ from the process $q\bar{q} \rightarrow \gamma^* \rightarrow l^+l^-$ (Drell-Yan process)

 \triangleright The kinematics is more complicated: $\omega \neq |\vec{q}|$

 \triangleright The longitudinal mode of the γ^* contributes

F. Gelis – 2003

Dilepton production (2/4)

Aurenche, FG, Moore, Zaraket (2002)

• Resummation of ladder diagrams

⊳ Dyson equation:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}_{\mu} = \boldsymbol{\alpha} \operatorname{Im} \int dp_0 \, d^2 \vec{\boldsymbol{p}}_{\perp} \left[\cdots \right] \, \left[2 \vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) + Q^2 g(\vec{\boldsymbol{p}}_{\perp}) \right]$$

Dilepton production (2/4)

Aurenche, FG, Moore, Zaraket (2002)

• Resummation of ladder diagrams

⊳ Dyson equation:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}_{\mu} = \boldsymbol{\alpha} \operatorname{Im} \int dp_0 \, d^2 \vec{\boldsymbol{p}}_{\perp} \left[\cdots\right] \left[2\vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) + Q^2 g(\vec{\boldsymbol{p}}_{\perp})\right]$$

▷ Bethe-Salpeter equation:

$$\begin{split} \frac{g(\vec{p}_{\perp})}{t_{F}} &= 1 + i\alpha_{s}T \int d^{2}\vec{l}_{\perp} \,\mathcal{C}(-\boldsymbol{l}_{\perp}^{2})[g(\vec{p}_{\perp}) - g(\vec{p}_{\perp} + \vec{l}_{\perp})]\\ \text{with } t_{F}^{-1} &= \frac{\omega}{2p_{0}r_{0}} \left[\vec{p}_{\perp}^{2} + m_{q}^{2}\right] + \frac{Q^{2}}{2\omega} \end{split}$$

Dilepton production (2/4)

Aurenche, FG, Moore, Zaraket (2002)

• Resummation of ladder diagrams

⊳ Dyson equation:

$$\operatorname{Im} \Pi_{\operatorname{ret}}{}^{\mu}_{\mu} = \boldsymbol{\alpha} \operatorname{Im} \int dp_0 \, d^2 \vec{\boldsymbol{p}}_{\perp} \left[\cdots\right] \left[2\vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{f}}(\vec{\boldsymbol{p}}_{\perp}) + \boldsymbol{Q}^2 g(\vec{\boldsymbol{p}}_{\perp})\right]$$

 \triangleright Bethe-Salpeter equation:

$$\frac{g(\vec{p}_{\perp})}{t_{_F}} = 1 + i\alpha_s T \int d^2 \vec{l}_{\perp} \, \mathcal{C}(-l_{\perp}^2) [g(\vec{p}_{\perp}) - g(\vec{p}_{\perp} + \vec{l}_{\perp})]$$

with $t_{F}^{-1} = \frac{\omega}{2p_{0}r_{0}} \left[\vec{p}_{\perp}^{2} + m_{q}^{2} \right] + \frac{Q^{2}}{2\omega}$

 \triangleright Note: if $Q^2 > 4m_a^2$, $1/t_F$ can vanish \Rightarrow the solution starts at the order 0 in \mathcal{C} : Drell-Yan term $(q\bar{q} \rightarrow \gamma^*)$ Photon and dilepton emission... – p. 32

Dilepton production (3/4)

• Scaling property:

Im $\Pi_{\mathrm{ret}\mu}^{\mu}(\alpha, \alpha_s, T, \omega, Q^2) = \alpha^2 \alpha_s T^2 F(\omega/T, Q^2/\alpha_s T^2)$

Dilepton production (3/4)

- Scaling property: $Im \Pi_{\text{ret}}^{\mu}(\alpha, \alpha_s, T, \omega, Q^2) = \alpha^2 \alpha_s T^2 F(\omega/T, Q^2/\alpha_s T^2)$
- All terms up to $\mathcal{O}(\alpha^2 \alpha_s)$

 α_s =0.3, 3 colors, 2 flavors, ω/T =50

Photon and dilepton emission... – p. 33

Dilepton production (4/4)

• Dilepton rate at
$$\mathcal{O}(\alpha^2 \alpha_s)$$

 $\alpha_s=0.3, 3 \text{ colors}, 2 \text{ flavors}, T=1GeV, \omega=5GeV$

Non chemical equilibrium (1/2)

FG, Rasanen, Ruuskanen (2003)

• Phenomenological attempt in order to deal with the pre-equilibrium stage:

$$n(\omega) = \lambda n_{eq}(\omega) , \quad 0 \le \lambda \le 1$$

Non chemical equilibrium (1/2)

FG, Rasanen, Ruuskanen (2003)

• Phenomenological attempt in order to deal with the pre-equilibrium stage:

$$n(\omega) = \lambda n_{eq}(\omega) , \quad 0 \le \lambda \le 1$$

• The quark and gluon effective masses become:

$$m_{\rm q}^2 = \frac{8\pi}{9} \left(\lambda_{\rm g} + \frac{1}{2} \lambda_{\rm q} \right) \alpha_s T^2$$
$$m_{\rm g}^2 = \frac{4\pi}{3} \left(\lambda_{\rm g} + \frac{N_f}{6} \lambda_{\rm q} \right) \alpha_s T^2$$

F. Gelis – 2003

Non chemical equilibrium (2/2)

• Example: effect of quark underpopulation

 α_s =0.3, 3 colors, 3 flavors, T=1 GeV

More on the Debye mass (1/2)

• The sum rule gives: $\mathcal{C}(-\boldsymbol{l}_{\perp}^2) = \frac{\pi}{2} \left[\frac{1}{\boldsymbol{l}_{\perp}^2 + \Pi_T(0)} - \frac{1}{\boldsymbol{l}_{\perp}^2 + \Pi_L(0)} \right]$ $\triangleright \Pi_T(0) = 0, \ \Pi_L(0) = m_{\text{debye}}^2$

▷ the screening mass matters, not the gluon pole mass

More on the Debye mass (1/2)

- The sum rule gives: $C(-l_{\perp}^2) = \frac{\pi}{2} \left[\frac{1}{l_{\perp}^2 + \Pi_T(0)} \frac{1}{l_{\perp}^2 + \Pi_L(0)} \right]$ $\triangleright \Pi_T(0) = 0, \quad \Pi_L(0) = m_{debye}^2$ \triangleright the screening mass matters, not the gluon pole mass
- Photon/dilepton rates depend on m_q/m_{debye}
- HTL prediction: m_q/m_{debye} is a constant

More on the Debye mass (1/2)

- The sum rule gives: $C(-l_{\perp}^2) = \frac{\pi}{2} \left[\frac{1}{l_{\perp}^2 + \Pi_T(0)} \frac{1}{l_{\perp}^2 + \Pi_L(0)} \right]$ $\triangleright \Pi_T(0) = 0, \quad \Pi_L(0) = m_{debye}^2$ \triangleright the screening mass matters, not the gluon pole mass
- Photon/dilepton rates depend on m_q/m_{debye}
- HTL prediction: m_q/m_{debye} is a constant
- On physical grounds, this cannot be exact:

Heavy quasiparticles (large m_q or m_g) \triangleright medium difficult to polarize \Rightarrow small m_{debye}

More on the Debye mass (2/2)

Quasiparticle fits of the lattice entropy (or pressure) require large m_q and m_g near T_c
 ▷ m_{debye} computed in this model is small near T_c

Conclusions

- Under control:
 - All rates are known at leading order
 - Efficient methods to resum the LPM corrections
 - Rough estimates of effects due to non chemical equilibrium

Conclusions

- Under control:
 - All rates are known at leading order
 - Efficient methods to resum the LPM corrections
 - Rough estimates of effects due to non chemical equilibrium
- Needs more attention:
 - Size of higher order corrections?
 - What should be done in the regime of high gradients? (when the formation time is larger than the scale over which the temperature changes)
 - How to connect the initial production of prompt photons to the thermal stage? (equilibration...)
 Photon and dilepton emission... p. 39