QUANTUM FIELD THEORY From Basics to Modern Topics FRANÇOIS GELIS

ERRATA/ADDENDUM

February 2, 2023
(The elements affected by the modifications are highlighted in red.)

1. Page 1: In the third line of the second paragraph, the electron mass should read $m_{e} \approx 0.5 \mathrm{MeV} / \mathrm{c}^{2}$. (suggested by Michael Ratz)
2. Generators of the Lorentz algebra: There is an inconsistency between the sign convention used in Eq. (1.8) for the generators of the Lorentz algebra, and the explicit form of these generators in the spin-1/2 representation, in Eq. (3.5). The following changes in chapter 1 restore the consistency:

- Eq. (1.8): $U(1+\omega)=1-\frac{i}{2} \omega_{\mu \nu} M^{\mu \nu}+\mathcal{O}\left(\omega^{2}\right)$.

With the sign convention of this equation, the Lorentz algebra generators for the spin-1 and spin-1/2 representations take the following form:

$$
\operatorname{spin}-1 / 2: \quad\left(M^{\mu v}\right)_{a b}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{v}\right]_{a b}, \quad \operatorname{spin}-1: \quad\left(M^{\mu v}\right)_{\alpha \beta}=i\left(\delta_{\alpha}^{\mu} \delta^{v}{ }_{\beta}-\delta_{\beta}^{\mu} \delta^{v}{ }_{\alpha}\right)
$$

In addition, the following changes are necessary:

- Eq. (1.10): $\left[M^{\mu \nu}, M^{\rho \sigma}\right]=-i\left(g^{\mu \rho} M^{\nu \sigma}-g^{\nu \rho} M^{\mu \sigma}\right)+\mathfrak{i}\left(g^{\mu \sigma} M^{\nu \rho}-g^{\nu \sigma} M^{\mu \rho}\right)$,
- Eq. (1.15): $\left[P^{\mu}, M^{\rho \sigma}\right]=-i\left(g^{\mu \sigma} P^{\rho}-g^{\mu \rho} P^{\sigma}\right)$,
- Eq. (1.27): $U(\Sigma) \approx 1+i \theta M^{12}+i \alpha_{1}\left(M^{10}+M^{31}\right)+i \alpha_{2}\left(M^{20}-M^{23}\right)$,
- Exercise 1.1: $U^{-1}(\Lambda) M^{\mu \nu} U(\Lambda) \approx M^{\mu \nu}-\frac{i}{2} \omega_{\rho \sigma}\left[M^{\mu \nu}, M^{\rho \sigma}\right]$,
- Exercise 1.2: $\mathrm{U}^{-1}(\Lambda) \mathrm{P}^{\mu} \mathrm{U}(\Lambda) \approx \mathrm{P}^{\mu}-\frac{i}{2} \omega_{\rho \sigma}\left[\mathrm{P}^{\mu}, M^{\rho \sigma}\right]$.
- Page 248, below Eq. (9.74): $\Lambda^{\mu \nu}=\left[\exp \left(-\frac{i}{2} \omega^{\rho \sigma} M_{\rho \sigma}^{(1)}\right)\right]^{\mu \nu}$

3. Page 22: Eq. (1.97) should read: $\left\langle 0_{\text {out }}\right| a_{\mathbf{q}, \text { out }} a_{\mathbf{p}, \text { out }}^{\dagger}\left|0_{\text {in }}\right\rangle=(2 \pi)^{3} 2 E_{\mathbf{p}} \delta(\mathbf{p}-\mathbf{q})\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$.
4. Page 24: In the second line of Eq. (1.105), one should read: $e^{i q_{j} \cdot y_{j}}$.

[^0]5. Page 27: In the second line of Eq. (1.117), one should read: $e^{i q_{j} \cdot y_{j}}$.
6. Page 27: In Eq. (1.121), the last factor should read $\mathrm{U}\left(\chi_{n}^{0},-\infty\right)$. (suggested by Xinrui Liu)
7. Page 29: Between eqs. (1.128) and (1.129), one should read: [...] the annihilation operators are on the right and the creation operators are on the left [...]. (suggested by Michael Ratz)
8. Page 34: In the second line of Exercice 1.11, one should read $M^{2-}=B^{2}$ instead of $M^{-2}=S^{2}$.
9. Page 70: In the sentence following Eq. (3.40), one should read: [...] which is automatically satisfied for any A^{μ} thanks to the
10. Page 77: Four lines before the bottom, one should read: [...] various kinds of [...]
11. Page 81: In the second line of Eq. (3.80), one should read: $\left\langle\beta_{\text {out }}\right| \cdots\left|\alpha_{\text {in }}\right\rangle$.
12. Page 85: In the line above Eq. (3.93), one should read: $F_{r}^{\mu}(k, p, q) \equiv S_{r}(-q)\left(-i \Gamma_{r}^{\mu}(k, p, q)\right) S_{r}(p)$.
13. Page 85: Footnote 11 should be completed as follows: Note that this statement may be invalid with non-linear gauge fixing conditions (see the Exercise 8.1).
14. Page 97: In the first line of section 4.1.3, one should read: [...] under a teat continuous [...]
15. Page 98: A more accurate version of Footnote 3 reads: This formula is known as Ky Fan's theorem. It is closely related to Courant-Fischer's min-max theorem.
16. Page 107: Eq. (4.61) should read
$$
\mathbb{F}_{\mathrm{a}, \mathrm{i}}^{0}=i \sigma_{\mathrm{a}, \mathrm{i}} \underbrace{|f(0)|^{2} \int \frac{\mathrm{dp}^{-}}{(4 \pi)^{2}}\left|\mathrm{~g}\left(\mathrm{p}^{-}\right)\right|^{2}}_{\text {constant indep. of } \lambda}
$$
17. Page 155: In Eqs. (6.28) and (6.29), all instances of \mathfrak{S}_{n} should read \mathfrak{S}_{N}.
18. Page 156: Eq. (6.37) should read:
$$
\int d \chi_{N} d \bar{\chi}_{N} \cdots d \chi_{1} d \bar{\chi}_{1} \exp \left(\overline{\boldsymbol{\chi}}^{\top} \boldsymbol{M} \boldsymbol{\chi}+\overline{\boldsymbol{\eta}}^{\top} \boldsymbol{\chi}-\overline{\boldsymbol{\chi}}^{\top} \boldsymbol{\eta}\right)=\operatorname{det}(\boldsymbol{M}) \exp \left(+\overline{\boldsymbol{\eta}}^{\top} \boldsymbol{M}^{-1} \boldsymbol{\eta}\right)
$$
19. Page 168: The right hand side of Eq. (6.103) should not have a leading minus sign.
20. Page 175: First and third lines, one should read: $\exp (i t X)$.
21. Page 181: Eq. (7.40) may be completed as follows: If we parameterize $\Omega=\exp (i g \theta)$, a non-Abelian gauge transformation can also be written as
$$
A_{\mu}^{\Omega}(x)=\Omega^{-1}(x)\left(A_{\mu}(x)-\partial_{\mu} \theta(x)\right) \Omega(x)
$$

Denoting $\theta=\theta_{a} t^{a}$, the components of the transformed field A_{μ}^{Ω} read

$$
A_{\mu a}^{\Omega}(x)=\Omega_{a b}^{-1}(x)\left(A_{\mu b}(x)-\partial_{\mu} \theta_{b}(x)\right)
$$

In this form, a non-Abelian gauge transformation appears to be the combination of an Abelian-like transformation applied independently to each component of the gauge field followed by a local adjoint rotation of the result.
22. Page 181: In Eq. (7.42), it is more appropriate to write $f^{b c a}$ instead of $f^{a b c}$ (this turns out to be the same in the case relevant for non-Abelian gauge theories, where the structure constants may be taken fully antisymmetric, but we have not yet established this fact at this point).
23. Page 188: The second of Eqs. (7.74) should read $m_{a}=2 \operatorname{tr}\left(M t_{f}^{a}\right)$.
24. Page 189: Two lines below Eq. (7.80), one should read: the tracelessness of the generators.
25. Page 210: The last equation of Exercise 7.6 should read $2(U-V)=U \otimes\left(i g A^{0}\right) \otimes V$.
26. Page 210: The first equation of Exercise 7.7 should read $U(x) \equiv T \exp \left(i g \int_{-\infty}^{+\infty} d x^{0} A_{a}^{0}\left(x^{0}, x\right) t_{f}^{a}\right)$.
27. Page 210: In Exercise 7.9, one should read $C_{3 f}$ instead of $C_{3 r}$.
28. Page 228: Eq. (8.78) should read:
(Since $\chi_{c} \chi_{d} \chi_{e}$ is invariant under cyclic permutations, we can replace the prefactor $f^{a b c} f^{b d e}$ by one third of its sum over the circular permutations of (c, d, e), which is zero by Jacobi's identity.)
29. Pages 232-233: In Exercise 8.2, one should read: [...] of the quark loop contribution to the imaginary part of the photon self-energy [...].
30. Page 238: After Eq. (9.19), the transformation law of the measure can be justified as follows: The transformation law of the measure is obvious for transformations that do not mix commuting and anticommuting variables, i.e., when the Jacobian matrix is block-diagonal. For mixed transformations, note that

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
1 & B^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A-B^{-1} C & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
D^{-1} C & 1
\end{array}\right)
$$

and that the leftmost and rightmost matrices in the right hand side represent translations that preserve the measure.
31. Page 249: The footnote 3 should read: For spin- $0, \frac{1}{2}$ and $1,[\ldots]$.
32. Page 314: The first of Eqs. (12.11) should read: $\widetilde{J}_{5}^{\mu}(q) \equiv \int d^{4} x e^{-i q \cdot x} J_{5}^{\mu}(x)$
33. Page 336: In the last sentence of the first paragraph of Section 12.5.3, one should read: [...] the divergence of the dilatation tenser current is the trace [...].
34. Page 346: In the caption of Figure 13.3, one should read: Left: notations for the pelar spherical coordinates local frame [...].
35. Page 347: Three lines above Eq. (13.19), one should read: See Figure 13.6.
36. Page 352: Four lines before the bottom of the page, one should read: [...] in Figure 13.6.
37. Page 353: In the line after Eq. (13.39), one should read: [...] in Figure 13.5.
38. Page 353: The left hand side of Eq. (14.49) should read: $\mathcal{A}_{5}\left(1^{-} 2^{-} 3^{+} 4^{+} 5^{+}\right)$.
39. Page 371: In Exercice 13.10, the equation should read:

$$
N=g^{2} \int \frac{d^{4} x}{64 \pi^{2}} \epsilon_{i j k l} F_{i j}^{a} F_{k l}^{a}=\lim _{R \rightarrow \infty} g^{2} \int_{S_{R}} \frac{d^{3} S_{i}}{32 \pi^{2}} K^{i} .
$$

40. Page 391: A closing parenthesis is missing at the end of the first trace in Eqs. (14.82) and (14.84).
41. Page 409: Three lines before the bottom of the page, one should read: the pole at $z=0$ of $[\ldots]$.
42. Page 414: Two lines above Eq. (14.179), one should read: $G L(2, \mathbb{C})$.
43. Page 416: In the second part of Exercise 14.10, one should read: $1^{-} 2^{+} \ldots j^{-} \ldots n^{+}$.
44. Page 433: The second of Eqs. (15.78) should read: $\ddot{G}\left(\tau, \tau^{\prime}\right) \equiv \partial_{\tau} \partial_{\tau} G\left(\tau, \tau^{\prime}\right)=2 \delta\left(\tau-\tau^{\prime}\right)-\frac{2}{T}$.
45. Page 439: In Exercise 15.9, one should read: Bernoulli instead of Bernouilli.
46. Page 454: Eq. (16.45) should read:

$$
\mathcal{F}_{\text {Landau }}[\mathrm{U}, \Omega] \equiv-2 \mathrm{a}^{2} \sum_{x} \sum_{\mu} \operatorname{Re} \operatorname{tr}\left(\Omega^{\dagger}(x+\widehat{\mu}) \mathrm{U}_{\mu}(x) \Omega(x)\right) .
$$

47. Page 466: Eq. (17.5) should read: $\lim _{\mathrm{T} \rightarrow 0} \frac{\operatorname{tr}(\rho \mathcal{O})}{\operatorname{tr}(\rho)}=\langle 0| \mathcal{O}|0\rangle$.
48. Page 472: The left hand side of Eqs. (17.32) and (17.36) should read:

$$
\begin{aligned}
& \operatorname{tr}\left(e^{-\beta\left(\mathcal{H}_{0}+\mu Q\right)} a_{\mathfrak{p}, \text { in }}^{\dagger} a_{p^{\prime}, \text { in }}\right)=\cdots \\
& \operatorname{tr}\left(e^{-\beta\left(\mathcal{H}_{0}+\mu Q\right)} b_{p, \text { in }}^{\dagger} b_{p^{\prime}, \text { in }}\right)=\cdots
\end{aligned}
$$

49. Page 474: Eq. (17.42) should read:

$$
(2 \pi)^{3} E_{p} \frac{d N_{\gamma}}{\operatorname{dtd}^{3} \boldsymbol{x} d^{3} p}=\frac{1}{2} \Pi_{+-}\left(E_{p}, p\right)=\frac{\operatorname{Im}\left(-i \Pi_{++}\left(E_{p}, p\right)\right)}{e^{\beta E_{p}+1}}=\frac{\operatorname{Im}\left(-i \Pi_{R}\left(E_{p}, p\right)\right)}{e^{\beta E_{p}}-1}
$$

50. Page 512: The second of Eqs. (18.40) should read: $\lim _{x^{0} \rightarrow-\infty} \Phi(x)=\Phi_{\chi}(x)$.
51. Page 527: The third of Eqs. (18.100) should read: $\mathrm{G}_{\mathrm{s}}^{0}=\frac{1}{2}\left(\mathrm{G}_{++}^{0}+\mathrm{G}_{--}^{0}\right), \quad \mathcal{G}_{\mathrm{s}}=\frac{1}{2}\left(\mathcal{G}_{++}^{0}+\mathcal{G}_{--}^{0}\right)$.
52. Page 542: Eq. (18.180) should read:

$$
\mathrm{G}_{22}^{0}(x, y)=\int \frac{\mathrm{d}^{3} \mathrm{k}}{(2 \pi)^{3} 2 \mathrm{E}_{\mathrm{k}}} e^{i \mathrm{k} \cdot(x-y)}
$$

53. Page 554: Just above Eq. (19.16), one should read: Generically, the loop integral is a linear combination of integrals, [...]
54. Page 563: In the fifth line, one should read 19.6 instead of 1936.
55. Page 575: In the first paragraph, one should read: [...] a very important object is its Gröbner basis $\mathbb{G}=\left\{g_{1}, \cdots, g_{p}\right\}$, defined as [...]

[^0]: Email me at francois.gelis@ipht.fr if you discover mistakes not yet listed here.

