Problems in
 QUANTUM FIELD THEORY
 With Fully-Worked Solutions
 FRANÇOIS GELIS

ERRATA

April 28, 2022

1. In the left hand side of the last equation in the solution of this problem, a subscript " I " is missing on the derivative of the Lagrangian, tho indicate that only the interaction part of the Lagrangian should appear here. The LHS of this equation should therefore read

$$
\left(\square+\mathrm{m}^{2}\right) \phi(\mathrm{x})-\mathcal{L}_{\mathrm{I}}^{\prime}(\phi(\mathrm{x})) .
$$

Alternatively, one may replace $-\mathcal{L}_{\text {int }}^{\prime}$ by $+\mathrm{V}^{\prime}$. Credit: typo found by Krzysztof KUTAK.
42. The order of the last of the three-loop examples in (3.47) is incorrectly stated. Its correct power counting reads

(This graph can still be embedded on the surface of a sphere.) If one wants to include in the statement of the problem an example that belongs to a different topological class, one may consider the following 4-loop graph

In the solution, the first sentence of $\mathbf{4 2 . b}$ should read: Interestingly, all the examples listed in (3.47) are of the form $\left(g^{2} N\right)^{p} N^{2}$, while the above 4-loop example is of the form $\left(g^{2} N\right)^{p} N^{0}$.
The last sentence of $\mathbf{4 2}$.d should read: In the above examples, one may check that all the graphs of order $\left(g^{2} N\right)^{p} N^{2}$ can be embedded on the surface of a 2-sphere, while the example of order $\left(g^{2} N\right)^{p} N^{0}$ requires a torus with one hole.

[^0]
[^0]: Email me at francois.gelis@ipht.fr if you discover mistakes not yet listed here.
 Permanent link to this file: www.ipht.fr/Pisp/francois.gelis/Book/QFT-Problems-errata.pdf

