Distance statistics in planar graphs

Jérémie Bouttier, Philippe Di Francesco, Emmanuel Guitter

Service de Physique Théorique
CEA Saclay

Nucl.Phys.B663 [FS] 535 (2003), cond-mat/0303272
Nucl.Phys.B675 [FS] 631 (2003), cond-mat/0307606
J.Phys.A: Math.Gen. 3612349 (2003), cond-mat/0306602

From graphs to labeled trees

Start with a planar quadrangulation with an origin

From graphs to labeled trees

Start with a planar quadrangulation with an origin

From graphs to labeled trees

Start with a planar quadrangulation with an origin

0

From graphs to labeled trees

Start with a planar quadrangulation with an origin

End up with a planar well-labeled tree

Well-labeled trees

Well-labeled:

Well-labeled trees

Well-labeled:
(i) positive integer labels;

Well-labeled trees

Well-labeled:
(i) positive integer labels;
(ii) labels vary by at most 1 between neighbors;

Well-labeled trees

Well-labeled:
(i) positive integer labels;
(ii) labels vary by at most 1 between neighbors;
(iii) there is at least one label 1 ;

Well-labeled trees

Well-labeled:
(i) positive integer labels;
(ii) labels vary by at most 1 between neighbors;
(iii) there is at least one label 1 ;

Generating function for rooted tree:

- $G_{n}(g)$ with a weight g per edge and a root labeled n

Well-labeled trees

Well-labeled:
(i) positive integer labels;
(ii) labels vary by at most 1 between neighbors;
(iii) there is at leastonolabol-1;

Generating function for rooted tree:

- $G_{n}(g)$ with a weight g per edge and a root labeled n
- $R_{n}(g)$

$$
G_{n}(g)=R_{n}(g)-R_{n-1}(g), \quad R_{0} \equiv 0
$$

Graph-tree correspondence

planar quadrangulation with an origin vertex
well-labeled tree

Graph-tree correspondence

planar quadrangulation with an origin vertex
vertices at geodesic distance n from the origin
well-labeled tree
vertices labeled n

Graph-tree correspondence

planar quadrangulation with an origin vertex
vertices at geodesic distance n from the origin
edges $(n-1) \leftrightarrow n$

half-edges incident to vertices labeled n

Graph-tree correspondence

planar quadrangulation with an origin vertex
well-labeled tree
vertices labeled n
from the origin
edges $(n-1) \leftrightarrow n$

half-edges incident to vertices labeled n
marked edge $(n-1) \leftrightarrow n$
rooting at a vertex labeled n

Graph-tree correspondence

planar quadrangulation with an origin vertex
well-labeled tree vertices labeled n from the origin
edges $(n-1) \leftrightarrow n$

half-edges incident to vertices labeled n
rooting at a vertex labeled n
R_{n} is the g.f. for quadrangulations with an origin and a marked edge $(m-1) \leftrightarrow m$ with $m \leq n$, and weight g per face

Recursion relations

$$
R_{n}=\frac{1}{1-g\left(R_{n+1}+R_{n}+R_{n-1}\right)}
$$

with $R_{0}=0$ and $R_{n} \xrightarrow{n \rightarrow \infty} R$ Here R is the "combinatorial" solution of $R=1 /(1-3 g R)$, namely

$$
R=\frac{1-\sqrt{1-12 g}}{6 g}=\sum_{N \geq 0} \frac{3^{N}}{(N+1)}\binom{2 N}{N} g^{N}
$$

R is the g.f. of quadrangulations with an origin and a marked edge

Solution

$$
R_{n}=R \frac{u_{n} u_{n+3}}{u_{n+1} u_{n+2}}, \quad u_{n} \equiv 1-x^{n}, \quad x+\frac{1}{x}=\frac{1-4 g R}{g R}
$$

Solution

$$
R_{n}=R \frac{u_{n} u_{n+3}}{u_{n+1} u_{n+2}}, \quad u_{n} \equiv 1-x^{n}, \quad x+\frac{1}{x}=\frac{1-4 g R}{g R}
$$

Integral of motion: $\quad F\left(R_{n+1}, R_{n}\right)=F\left(R_{n}, R_{n-1}\right)$

$$
F(X, Y) \equiv X Y(1-g(X+Y))-X-Y
$$

Solution

$$
R_{n}=R \frac{u_{n} u_{n+3}}{u_{n+1} u_{n+2}}, \quad u_{n} \equiv 1-x^{n}, \quad x+\frac{1}{x}=\frac{1-4 g R}{g R}
$$

Integral of motion: $\quad F\left(R_{n+1}, R_{n}\right)=F\left(R_{n}, R_{n-1}\right)$

$$
F(X, Y) \equiv X Y(1-g(X+Y))-X-Y
$$

In particular:

$$
\begin{gathered}
F\left(R_{1}, R_{0}=0\right)=F(R, R) \rightarrow R_{1}=R-g R^{3} \\
\left.R_{1}\right|_{g^{N}}=\left.\frac{2}{(N+2)} R\right|_{g^{N}}=2 \frac{3^{N}}{(N+1)(N+2)}\binom{2 N}{N}
\end{gathered}
$$

number of rooted (marked oriented edge) quadrangulations with $(N+2)$ vertices

Average properties

The average number $\left\langle e_{n}\right\rangle$ of edges at geodesic distance n (i.e. $n-1 \leftrightarrow n$) in infinite quadrangulations is given by

$$
\frac{\left\langle e_{n}\right\rangle}{\left\langle e_{1}\right\rangle}=\lim _{N \rightarrow \infty} \frac{\left.\left(R_{n}-R_{n-1}\right)\right|_{g^{N}}}{\left.R_{1}\right|_{g^{N}}}
$$

with $\left\langle e_{1}\right\rangle=4$ from Euler's relation,

$$
\begin{aligned}
\left\langle e_{n}\right\rangle=\frac{6}{35} \frac{\left(n^{2}+2 n-1\right)\left(5 n^{4}+20 n^{3}+27 n^{2}+\right.}{n(n+1)(n+2)} & \stackrel{n n+4)}{\sim} \\
& \stackrel{6}{7} n^{3}
\end{aligned}
$$

\rightarrow fractal dimension $d_{F}=4$

The average number $\left\langle v_{n}\right\rangle$ of vertices at geodesic distance n in infinite quadrangulations is given by

$$
\begin{array}{r}
\left\langle v_{n}\right\rangle=\frac{3}{35}\left((n+1)\left(5 n^{2}+10 n+2\right)\right.
\end{array} \begin{aligned}
& \left.+\delta_{n, 1}\right) \\
n \rightarrow \infty & \sim \frac{3}{7} n^{3}
\end{aligned}
$$

first values:

$$
\begin{array}{lll}
\left\langle e_{1}\right\rangle=4 & \left\langle e_{2}\right\rangle=19 & \left\langle e_{3}\right\rangle=\frac{1234}{25} \\
\left\langle v_{1}\right\rangle=3 & \left\langle v_{2}\right\rangle=\frac{54}{5} & \left\langle v_{3}\right\rangle=\frac{132}{5}
\end{array}
$$

Neighbor statistics

Beyond averages, what are the probabilities?

$$
P_{N}\left(e_{1}, e_{2}, \cdots, e_{k} ; v_{1}, v_{2}, \cdots, v_{l}\right)
$$

of having exactly e_{i} edges at distance i and v_{j} vertices at distance j from the origin.

Introduce:

- weight α_{i} per edge $(i-1) \leftrightarrow i$
- weight ρ_{j} per vertex j

On the well-labeled tree:

- weight α_{i} per half-edge incident to i
- weight ρ_{j} per vertex labeled j

$$
R_{n}\left(g ;\left\{\alpha_{i}\right\},\left\{\rho_{j}\right\}\right)
$$

The g.f. for the probabilities are

$$
\begin{aligned}
\Gamma_{N}\left(\left\{\alpha_{i}\right\},\left\{\rho_{j}\right\}\right) & \equiv \sum_{\left\{e_{i}\right\},\left\{v_{j}\right\}} \prod_{i=1}^{k} \alpha_{i}{ }_{i}^{e_{i}} \prod_{j=1}^{l} \rho_{j}{ }_{j} P_{N}\left(\left\{e_{i}\right\},\left\{v_{j}\right\}\right) \\
& =\frac{\left.\int_{0}^{\alpha_{1}} \frac{d \alpha}{\alpha} R_{1}\left(g ;\left\{\alpha, \alpha_{2}, \cdots \alpha_{k}\right\},\left\{\rho_{j}\right\}\right)\right|_{g^{N}}}{\left.\int_{0}^{1} \frac{d \alpha}{\alpha} R_{1}(g ;\{\alpha, 1, \cdots 1\},\{1\})\right|_{g^{N}}}
\end{aligned}
$$

$\frac{d \alpha}{\alpha}$ to get rid of the marking of a $0 \leftrightarrow 1$ edge (rooting of the tree)
for quadrangulations of size N

The g.f. for the probabilities are

$$
\begin{aligned}
\Gamma_{\infty}\left(\left\{\alpha_{i}\right\},\left\{\rho_{j}\right\}\right) & \equiv \sum_{\left\{e_{i}\right\},\left\{v_{j}\right\}} \prod_{i=1}^{k} \alpha_{i}{ }_{i}^{e_{i}} \prod_{j=1}^{l} \rho_{j}{ }_{j}^{v_{j}} P_{\infty}\left(\left\{e_{i}\right\},\left\{v_{j}\right\}\right) \\
& =\frac{\left.\int_{0}^{\alpha_{1}} \frac{d \alpha}{\alpha} R_{1}\left(g ;\left\{\alpha, \alpha_{2}, \cdots \alpha_{k}\right\},\left\{\rho_{j}\right\}\right)\right|_{\text {sing }}}{\left.\int_{0}^{1} \frac{d \alpha}{\alpha} R_{1}(g ;\{\alpha, 1, \cdots 1\},\{1\})\right|_{\text {sing }}}
\end{aligned}
$$

$\frac{d \alpha}{\alpha}$ to get rid of the marking of a $0 \leftrightarrow 1$ edge (rooting of the tree)
for infinite quadrangulations

$$
R_{n}=\frac{\rho_{n}}{1-g \alpha_{n}\left(\alpha_{n+1} R_{n+1}+\alpha_{n} R_{n}+\alpha_{n-1} R_{n-1}\right)}
$$

or, upon changing from R_{n} to $\tilde{R}_{n}=\alpha_{n} R_{n}$:

$$
\tilde{R}_{n}=\frac{\alpha_{n} \rho_{n}}{1-g \alpha_{n}\left(\tilde{R}_{n+1}+\tilde{R}_{n}+\tilde{R}_{n-1}\right)}
$$

Neighbors at a finite distance: $\alpha_{n}=\rho_{n}=1$ for $n>L$

- use the above equations (\star) for $n \leq L$ only
- complete by the integral of motion

$$
F\left(\tilde{R}_{L}, \tilde{R}_{L+1}\right)=F(R, R)
$$

$L+1$ equations \rightarrow algebraic equation for \tilde{R}_{1} (or for R_{1})

Nearest neighbors

Immediate neighbors ($L=1$): $\alpha_{1} \rightarrow \alpha, \rho_{1} \rightarrow \rho$

$$
\begin{aligned}
& \left(R_{1}-\rho\right)\left(R_{1}(\alpha-1)+\rho-1\right)+2 g^{2} \alpha R^{3} R_{1} \\
& =g \alpha R_{1}\left(R_{1}^{2} \alpha(\alpha-1)+\alpha \rho R_{1}+R(R-2)\right)
\end{aligned}
$$

\rightarrow cubic equation for Γ_{∞} :

$$
\begin{aligned}
\alpha\left(2 \Gamma_{\infty}\left(1+4 \Gamma_{\infty}+\Gamma_{\infty}^{2}\right)\right. & \left.+3 \rho\left(1+\Gamma_{\infty}\right)^{2}\left(2+\Gamma_{\infty}\right)\right) \\
& =6 \Gamma_{\infty}\left(1+\Gamma_{\infty}\right)\left(3+\Gamma_{\infty}\right)
\end{aligned}
$$

with $\Gamma_{\infty}=1$ for $\alpha=\rho=1$.

$$
\Gamma_{\infty}(1 ; \rho)=\frac{2}{\sqrt{4-3 \rho}}-1=\sum_{v \geq 1} \rho^{v}\left(\frac{3}{16}\right)^{v}\binom{2 v}{v}
$$

$$
P_{\infty}(v)=\left(\frac{3}{16}\right)^{v}\binom{2 v}{v}, \quad\left\langle v_{1}\right\rangle=3, \quad\left\langle v_{1}^{2}\right\rangle=\frac{33}{2}, \quad\left\langle v_{1}^{3}\right\rangle=\frac{579}{4}
$$

Incident edges:

$$
\begin{aligned}
& \Gamma_{\infty}(\alpha ; 1)=\frac{1}{2}\left(\sqrt{\frac{3(2+\alpha)}{6-5 \alpha}}-1\right)=\frac{1}{3} \alpha+\frac{1}{6} \alpha^{2}+\frac{13}{108} \alpha^{3}+\cdots \\
& P_{\infty}(e=1)=\frac{1}{3}, \quad P_{\infty}(e=2)=\frac{1}{6}, \quad P_{\infty}(e=3)=\frac{13}{108}, \cdots \\
& \quad\left\langle e_{1}\right\rangle=4, \quad\left\langle e_{1}^{2}\right\rangle=\frac{100}{3}, \quad\left\langle e_{1}^{3}\right\rangle=\frac{1372}{3}
\end{aligned}
$$

In general, there are multiple nearest neighbors: $e \geq v$
We may impose $e=v$ by considering

$$
\Pi(t)=\lim _{\alpha \rightarrow 0} \Gamma_{\infty}\left(\alpha, \frac{t}{\alpha}\right)=\frac{1}{2}\left(\sqrt{\frac{18-t}{2-t}}-3\right)
$$

g.f. for the probability of having v neighbors, all simple.

The probability for having no multiple neighbors is

$$
\Pi(1)=\frac{\sqrt{17}-3}{2}
$$

Next-nearest neighbors

Probabilities for next-nearest neighbor vertices

Scaling limit (1)

In the g.f. language
$R_{n}=R \frac{u_{n} u_{n+3}}{u_{n+1} u_{n+2}}, R=\frac{1}{1-3 g R}, u_{n}=1-x^{n}, x+\frac{1}{x}=\frac{1-4 g R}{g R}$
scaling limit: $g=\frac{1}{12}\left(1-\epsilon^{4}\right), \quad n=\frac{r}{\epsilon}$

$$
g R=\frac{1}{6}\left(1-\epsilon^{2}\right), \quad x=e^{-\sqrt{6} \epsilon}+\mathcal{O}\left(\epsilon^{2}\right)
$$

\rightarrow continuum generating function $\mathcal{F}(r)$ for graphs with two marked point at distance larger to r

$$
\mathcal{F}(r)=\lim _{\epsilon \rightarrow 0} \frac{R-R_{n}}{\epsilon^{2} R}=\frac{3}{\sinh ^{2}(\sqrt{3 / 2} r)}
$$

Scaling limit (2)

In the probability language (fixed size N)

$$
\left.R_{n}\right|_{g^{N}}=\oint \frac{d g}{2 i \pi g^{N+1}} R_{n}(g)
$$

for N large and $n=\alpha N^{1 / 4}$
Upon changing variable from g to $V \equiv g R$, we get

$$
\left.R_{n}\right|_{g^{N}}=\oint \frac{d V(1-6 V)}{2 i \pi(V(1-3 V))^{N+1}} R_{n}(g)
$$

\rightarrow saddle point $V=\frac{1}{6}\left(1+i \frac{\xi}{\sqrt{N}}\right)$

$$
\epsilon=\sqrt{-i \xi} / N^{1 / 4}
$$

$$
\begin{gathered}
g=\frac{1}{12}\left(1+\frac{\xi^{2}}{N}\right), \quad g R_{n}=V\left(1+\frac{i \xi}{\sqrt{N}} \mathcal{F}(\alpha \sqrt{-i \xi})\right) \\
\left.\quad R_{n}\right|_{g^{N}} \sim 4 \frac{12^{N}}{\pi N^{3 / 2}} \int_{-\infty}^{\infty} d \xi \xi^{2} e^{-\xi^{2}}(1+\mathcal{F}(\alpha \sqrt{-i \xi}))
\end{gathered}
$$

Probability $\Phi(\alpha)$ for a point (vertex or edge) to be at geodesic distance less than α :

$$
\begin{aligned}
& \Phi(\alpha)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} d \xi \xi^{2} e^{-\xi^{2}} \times \\
& \frac{\cosh (2 \alpha \sqrt{3 \xi})+\cos (2 \alpha \sqrt{3 \xi})+8 \cosh (\alpha \sqrt{3 \xi}) \cos (\alpha \sqrt{3 \xi})-10}{(\cosh (\alpha \sqrt{3 \xi})-\cos (\alpha \sqrt{3 \xi}))^{2}}
\end{aligned}
$$

$\rho(\alpha)$: point at distance equal to α

$\Phi(\alpha)$

$$
\rho(\alpha) \stackrel{\alpha \rightarrow 0}{\sim} \frac{3}{7} \alpha^{3}, \quad \rho(\alpha) \stackrel{\alpha \rightarrow \infty}{\sim} \exp \left(-3(3 / 8)^{2 / 3} \alpha^{4 / 3}\right)
$$

in agreement with $\left\langle v_{n}\right\rangle$ and with Fisher's law $\delta=\frac{4}{3}=\frac{1}{1-\nu}$
with $\nu=\frac{1}{4}=\frac{1}{d_{F}}$

Generalization

Graphs with faces of even valences $4,6, \cdots 2(m+1)$, weights g_{k} per face of valence $2 k \rightarrow$ well-labeled mobiles g.f. for mobiles with a root-label n

$$
R_{n}=R \frac{U_{n}\left(w_{1}, \ldots, w_{m}\right) U_{n+3}\left(w_{1}, \ldots, w_{m}\right)}{U_{n+1}\left(w_{1}, \ldots, w_{m}\right) U_{n+2}\left(w_{1}, \ldots, w_{m}\right)}
$$

with $R=1 /\left(1-\sum_{k=1}^{m} g_{k+1}\binom{2 k+1}{k+1} R^{k}\right)$

$$
U_{n}\left(w_{1}, \ldots, w_{m}\right) \equiv \operatorname{det}\left[U_{n+2 j-2}\left(w_{i}\right)\right]_{1 \leq i, j \leq m}
$$

in terms of Chebyshev polynomials
$w=\sqrt{x}+\frac{1}{\sqrt{x}}$ roots of $\sum_{k=0}^{m} g_{k+1} R^{k} \sum_{l=0}^{k}\binom{2 k+1}{l} U_{2 k-2 l}(w)=1$

Multicritical points

Fine tuning: $g_{k}=g^{k-1}(-1)^{k} \frac{\frac{1}{m+1}\binom{m+1}{k}}{\binom{2 k-1}{k-1}}\left(\frac{6}{m}\right)^{k-1}$ with $g=g_{2}$ approaching the critical value $g_{c}=\frac{m}{6(m+1)}$
Scaling function:

Wronskian determinant

$\mathcal{F}(r)=-2 \frac{d^{2}}{d r^{2}} \log \mathcal{W}\left(\sinh \left(a_{1} \frac{r}{2}\right), \sinh \left(a_{2} \frac{r}{2}\right), \ldots, \sinh \left(a_{m} \frac{r}{2}\right)\right)$

$$
r \equiv \frac{n}{\epsilon}, \quad \epsilon=\left(\frac{g_{c}-g}{g_{c}}\right)^{\nu}, \quad \sum_{l=0}^{m}\left(-a^{2}\right)^{l} \frac{l!}{(2 l+1)!} \frac{m!}{(m-l)!}=0
$$

with $\nu=1 / d_{F}$ and $d_{F}=2 m+2$

Probability distribution for a point to be at rescaled geodesic distances less than α with $\alpha=n / N^{\frac{1}{2(m+1)}}$

$$
\begin{array}{r}
\Phi(\alpha)=\frac{(m+1)^{2}}{\cos \left(\frac{\pi(m-1)}{2(m+1)}\right) \Gamma\left(\frac{1}{m+1}\right)} \int_{0}^{\infty} d \xi \xi^{m+1} e^{-\xi^{m+1}} \\
\quad \operatorname{Re}\left(e^{-i \frac{\pi(m-1)}{2(m+1)}}\left(1+\mathcal{F}\left(\alpha e^{i \frac{\pi}{2(m+1)}} \sqrt{\xi}\right)\right)\right)
\end{array}
$$

distances equal to α : $\rho(\alpha)=\Phi^{\prime}(\alpha)$

$$
\rho(\alpha) \stackrel{\alpha \rightarrow 0}{\sim} \alpha^{2 m+1}, \quad \rho(\alpha) \stackrel{\alpha \rightarrow \infty}{\sim} \exp \left(-C \alpha^{2(m+1) /(2 m+1)}\right)
$$

Tree vs labels

In the simple critical case, the fractal dimension 4 for the graph is the product of:

- the dimension 2 for the tree
- the dimension 2 for the labels
- mass N (number of edges of the tree \equiv number of faces of the graph)
- generation T along the tree
- position n (label n on the tree \equiv distance on the graph)

Tree vs labels

In the simple critical case, the fractal dimension 4 for the graph is the product of:

- the dimension (2) for the tree
- the dimension 2 for the labels
- mass N (number of edges of the tree \equiv number of faces of the graph)
- generation T along the tree
- position n (label n on the tree \equiv distance on the graph)

$$
T \sim N^{1 / 2}
$$

Tree vs labels

In the simple critical case, the fractal dimension 4 for the graph is the product of:

- the dimension 2 for the tree
- the dimension (2) for the labels
- mass N (number of edges of the tree \equiv number of faces of the graph)
- generation T along the tree
- position n (label n on the tree \equiv distance on the graph)

$$
T \sim N^{1 / 2}, \quad n \sim T^{1 / 2}
$$

Tree vs labels

In the simple critical case, the fractal dimension (4) for the graph is the product of:

- the dimension 2 for the tree
- the dimension 2 for the labels
- mass N (number of edges of the tree \equiv number of faces of the graph)
- generation T along the tree
- position n (label n on the tree \equiv distance on the graph)

$$
T \sim N^{1 / 2}, \quad n \sim T^{1 / 2}, \quad n \sim N^{1 / 4}
$$

multicritical case:

both the tree and the labels are multicritical

$$
\begin{gathered}
T \sim N^{\frac{m}{m+1}}, \quad n \sim T^{\frac{1}{2 m}}, \quad n \sim N^{\frac{1}{2(m+1)}} \\
d_{F}=2(m+1)=\frac{m+1}{m} \times 2 m \\
\text { tree }
\end{gathered}
$$

continuum limit \rightarrow multicritical continuous random tree (CRT)

Generation $T=t / N^{\frac{m}{m+1}}$
Density profile (density of points at generation t)

$$
\rho(t)=A_{m} \operatorname{Im}\left[\int_{0}^{\infty} d \xi \xi^{m} e^{\frac{\xi^{m+1}}{m+1}+\omega \xi^{m} t}\right], \quad \omega=e^{\frac{i \pi}{m+1}}
$$

The multicritical CRT has vertices of valence $1,2, \cdots$, up to $(m+2)$
with fine tuned couplings
with both signs and derivatives

$$
\rho_{p_{3}, \cdots, p_{m+2}}\left(\left\{t_{l}\right\}\right)=\prod_{i=3}^{m+2}\left[\left(-\frac{d}{d t}\right)^{\frac{m+2-i}{m}}(-1)^{i-1} \frac{\binom{m+1}{i-1}}{m+1}\right]^{p_{i}} \rho(t)
$$

with $t=\sum t_{l}$

Branching processes

A random graph is the "superposition" of

Branching processes

A random graph is the "superposition" of

- a random planar tree

Branching processes

A random graph is the "superposition" of

- a random planar tree
- integer labels on the tree

Branching processes

A random graph is the "superposition" of

- a random planar tree
- integer labels on the tree
- boundary condition (positive labels)

Branching processes

A random graph is the "superposition" of

- a random planar tree \rightarrow genealogical tree
- integer labels on the tree
- boundary condition (positive labels)

A parent individual gives rise to k children with probability $p(k)=(1-p) p^{k}, \quad$ (average number of children $\left.\frac{p}{1-p}\right)$

Branching processes

A random graph is the "superposition" of

- a random planar tree \rightarrow genealogical tree
- integer labels on the tree \rightarrow diffusion process in 1D
- boundary condition (positive labels)

A parent individual gives rise to k children with probability $p(k)=(1-p) p^{k}, \quad$ (average number of children $\frac{p}{1-p}$)

The child of a parent at position n lives at position $n, n \pm 1$

Branching processes

A random graph is the "superposition" of

- a random planar tree \rightarrow genealogical tree
- integer labels on the tree \rightarrow diffusion process in 1D
- boundary condition (positive labels) \rightarrow walls, forbidden zone

A parent individual gives rise to k children with probability $p(k)=(1-p) p^{k}, \quad$ (average number of children $\frac{p}{1-p}$)

The child of a parent at position n lives at position $n, n \pm 1$
What is the probability $\mathcal{P}_{n}(p)$ for the population whose germ is at position n to reach position 0 ?

$$
\mathcal{P}_{n}(p)=1-(1-p) R_{n}(g) \text { with } g=\frac{p(1-p)}{3}
$$

$$
\mathcal{P}_{n}(p)=1-\frac{1-|2 p-1|}{2 p} \frac{\left(1-x^{n}\right)\left(1-x^{n+3}\right)}{\left(1-x^{n+1}\right)\left(1-x^{n+2}\right)}
$$

with $x=\frac{1+2|1-2 p|-\sqrt{3|1-2 p|} \sqrt{2+|1-2 p|}}{1-|1-2 p|}$
$\mathcal{P}_{n}(p) \stackrel{n \rightarrow \infty}{\sim} S(p):$ survival probability

$$
S(p)=1-\frac{1-|2 p-1|}{2 p}=\left\{\begin{array}{cl}
0 & p \leq \frac{1}{2} \\
\frac{2 p-1}{p} & p \geq \frac{1}{2}
\end{array}\right.
$$

scaling behavior around $p=\frac{1}{2}$:

$$
\mathcal{P}_{n}(p) \sim|2 p-1|\left(\frac{3}{\sinh ^{2}\left(\sqrt{3 / 2} n|2 p-1|^{1 / 2}\right)}+1\right)+(2 p-1)
$$

Summary

- Quadrangulations as well labeled trees
- Statistics of distances
- Probabilities for immediate neighbors
- Scaling limit
- Generalization to multicritical points
- (Multicritical) continuous random trees
- Application to branching processes

More to come:
Ising model, hard objects, ...

