Séminaire de matrices, cordes et géométries aléatoires

Mercredi 06/03/2019, 14h15-15h15

Orme des Merisiers Salle Claude Itzykson, Bât. 774

Emergent classical spacetime from microstates of an incipient black hole

Charles Rabideau

VUB

Black holes have an enormous underlying space of microstates, but universal macroscopic physics characterized by mass, charge and angular momentum as well as a causally disconnected interior. This leads two related puzzles: (1) How does the effective factorization of interior and exterior degrees of freedom emerge in gravity?, and (2) How does the underlying degeneracy of states wind up having a geometric realization in the horizon area and in properties of the singularity? We explore these puzzles in the context of an incipient black hole in the AdS/CFT correspondence, the microstates of which are dual to half-BPS states of the N=4 super-Yang-Mills theory. First, we construct a code subspace for this black hole and show how to organize it as a tensor product of a universal macroscopic piece (describing the exterior), and a factor corresponding to the microscopic degrees of freedom (describing the interior). We then study the classical phase space and symplectic form for low-energy excitations around the black hole. On the AdS side, we find that the symplectic form has a new physical degree of freedom at the stretched horizon of the black hole, reminiscent of soft hair, which is absent in the microstates. We explicitly show how such a soft mode emerges from the microscopic phase space in the dual CFT via a canonical transformation and how it encodes partial information about the microscopic degrees of freedom of the black hole.