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Quantum gases in a 1D disordered potential 

What happens if we load interacting particles in a 1D disordered potential ?

- Random external potential 

• Bosons in 1D with repulsive interactions
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Quantum gases in a 1D disordered potential 

• Interacting fermions in 1D

T. Giamarchi, H. Schulz, Phys. Rev. B, 37, 325  (1988)
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- Does weak disorder decouple the species ? 
- What is the mechanism of localization ? Does the localization of 
one species trigger the localization of the other ?
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Bose-Fermi mixture in a 1D disordered potential 

Questions :

- Phase diagram ? New phases ?
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Outline

1. Cold atoms: highly tuneable correlated systems

2. Disordered 1D interacting systems

3. Bose-Fermi mixture in a disordered potential: 

• Does fermion localization induce boson localization?

4. Conclusions and perspectives

• Observables 

• Phase diagram



I-Cold atoms: 

highly tuneable correlated systems



Cold atoms: Control of dimensionality

Optical lattices

1-3 dimensions

Bloch, Dalibard, and Zwerger, RMP 2008

- pairs of counter-propagating beams  standing waves  

1 pair

2 pairs

3 pairs

Pancakes (quasi 2D)

tubes (quasi 1D)

3D cubic lattice



Hopping from site to site …

tight binding approximation (single band)

Kinetic Hamiltonian:

Cold atoms: control of parameters

Incident energy

closed channel

open channel

Bound states

Δµ B

a

B

a>0

a<0

Feshbach resonances

Fantastic control over sign and amplitude of interactions

For a deep lattice: 

: height of the lattice

: recoil energy

Controlling interactions

Van der Waals interactions with an effective potential :



Quantum phase transition from a 
superfluid to a Mott insulator in a 
gas of ultracold atoms.
Greiner, Markus; Mandel, Olaf; Esslinger, Tilman; Hansch, 
Theodor; Bloch, Immanuel

Nature. 415, 39-44, 2002.Absorption images of multiple matter wave interference patterns. These were 
obtained after suddenly releasing the atoms from an optical lattice potential with 
different potential depths V0 after a time of flight of 15 ms. Values of V0 were: a, 
0 Er; b, 3 Er; c, 7 Er; d, 10 Er; e, 13 Er; f, 14 Er; g, 16 Er; and h, 20 Er.

Time of flight experiment with bosonic atoms

Superfluid to Mott insulator

Science, 322, 1522 (2008)

See also 



- Pinning transition for a Luttinger liquid of strongly interacting bosons (Cs atoms)

E. Haller et al., Nature 466, 597 (2010)

In 1D, provided interactions are strong enough, a 
periodic potential commensurate with the 
atomic density will pin the gas and open a gap, 
no matter how weak the potential. 

Crossover from the Bose-Hubbard regime for 
weak interactions to the sine-Gordon model for 
large interactions 

Interaction parameter tuned by a 

Feshbach resonance

Pinning transition in strongly interacting 1D systems



- 2 main classes of experimental systems

1D tube (optical confinement)

ground-glass plate

Laser

Speckle Incommensurate potentials

+

deep optical lattice

shallow incommensurate wave 

=

Control of the disorder potential



J. Billy, et al. Direct observation of Anderson Localization of 
matter-waves in a controlled disorder. Nature, 453, 891 (2008)

- weakly interacting BEC of 87Rb in a speckle potential

Anderson localization

Direct observation of Anderson localization

See also G. Roati et al., Nature, 453, 895 (2008)



II-Disorder 1D interacting systems



Hydrodynamic approach

- Rewrite the dynamics of the system in terms of density fluctuations :

long wavelength
density fluctuations

Higher harmonics 

phase field « Interaction energy »« kinetic energy »

vb is the velocity of phonons in the quasi-condensate.

Kb is the so-called Luttinger parameter and is related to the 
interaction strength 

mean density

- Creation operator: 

Bosonic fields

Treating interacting particles in 1D: bosonization

Haldane, PRL (1981)



Remarks on Luttinger parameters for bosons and fermions (            )

Fermions Bosons
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- External lattice potential:

with

- Full low-energy Hamiltonian

1) Variationnal calculation: look for best quadratic action.

Lock φb to optimal valueMinimize 
fluctuations in φb

Quantum
fluctuations

Gap in the excitation spectrum
for

2) Renormalization group calculation, perturbative in 

BKT transition at

Adding a commensurate potential



- Random external potential 

White noise, the Fourier component tries to pin the density wave.

random phase

1D disordered quantum gases … another kind of pinning transition

Adding a disorder potential 



A variational argument

random phase

• The density wave tries to adjust its phase to the random phase, in order to  
minimize its potential energy.

• any adjustment costs « elastic » energy through  

• quantum fluctuations work against the pinning of the density wave through

Y. Suzumura, H. Fukuyama
J. Phys. Soc. Jap., 8, 2870 (1983)

Self-consistent calculation including quantum fluctuations:

Localization length

T. Giamarchi, H. Schulz, Phys. Rev. B, 37, 325  (1988)

This simple picture is in agreement with a RG analysis in replica space



III- Bose-Fermi Mixture
in a 1D disordered potential



Experimental considerations
• Array of  tubes, with a tight transverse confinement.

Mixtures of bosons and spinless fermions e.g. 87Rb/40K, 7Li/6Li

• Transverse motion in the ground state
of the harmonic oscillator.

• VdW interactions are effectively point like.

• 2 knobs to control Ub and Ubf independantly.

Feshbach 
resonance

b.,..⊥ω bfa.



Disordered Bose-Fermi mixture

Clean case

Disordered Bose-Fermi mixture

- Is the usual mechanism of 

localization affected ?

- Does the disorder decouple the species or does the localization of one species trigger  
the  localization of the other because of interactions ?

Spinless fermions should be localized

Bosons should undergo a transition

- What is the phase diagram ?

87Rb – 40K ; 7Li – 6Li ; 23Na – 6Li 

- Bosons and fermions interact, repulsively of attractively.

Effective (attractive) intra-species interactions

- Bosons interact repulsively. Spinless fermions are non interacting.



Kinetic energy Random potential

Bose-Bose interaction Bose-Fermi interaction

Disordered 1D Bose-Fermi mixtures
Model

Interaction parameters
Disorder

In the continuum

- Integrating out transverse degrees of freedom:



1D Bose-Fermi mixtures: clean case
Model (continued)

is the universal low-energy Hamiltonian of a 1D Bose gas – Luttinger liquid theory.

Kb and vb are model-dependant, Kb ≥ 1 for repulsive interactions

Bose-Fermi interactions couple two Luttinger liquids

vf  is the Fermi velocity 
Kf = 1 for non interacting fermions



1D Bose-Fermi mixtures: clean case
Model (continued)

is the universal low-energy Hamiltonian of a 1D Bose gas – Luttinger liquid theory.

Kb and vb are model-dependant, Kb ≥ 1 for repulsive interactions

Bose-Fermi interactions couple two Luttinger liquids through density fluctuations.

vf  is the Fermi velocity 
Kf = 1 for non interacting fermions



(Wentzel-Bardeen instability)

Linear transformation

• sound velocity

• dimensionless coupling 

• instability: 1|| →g

Cazalilla and Ho, PRL 2003; Mathey et al., PRL 2004

1D Bose-Fermi mixtures : clean case



Disordered 1D Bose-Fermi mixtures
Model (continued)

- Perturb the 2-component Luttinger liquid fixed point with disorder 

Pinning of the density wave
(backscattering on disorder)

Random chemical potential
(forward scattering on disorder)

can be gauged away in the quadratic Hamiltonian.

is responsible for the localization.

- Competition between :
• the random potential that tries to pin the phase 
• the « elastic » energy (coming from the interactions)  
• the quantum fluctuations



Replica trick

Replica Trick: 
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Renormalization group equations

Relevance of disorder:

Feed-back of disorder:  

Localization length: 



Phase diagram obtained from simple RG

LL



Beyond simple RG

Are bosons really  superfluid when                   ? 

In the regime                                             the RG predicts

that fermions are localized while bosons are superfluid.

However, fermionic density fluctuations become `` gapped’’  beyond 

RG must be done in two steps:

This extends the phase where bosons do localize 

This argument is substantiated by a more elaborated
approach: the Gaussian variationnal method in replica space



Phase diagram obtained from 2-step RG

F Crépin, G. Zaránd, PS
PRL., 105, 115301  (2010)



A word on the Gaussian variational method
- Replicated action:

- One looks for the best quadratic action

by minimizing the variational free energy:

with:

self-energy

Mézard, Parisi, 91’
Giamarchi, Le Doussal, 96’



Disordered 1D Bose-Fermi mixtures

Gaussian variationnal method, in replica space

T. Giamarchi, P. Le Doussal, Phys. Rev. B, 53, 15206  (1996)



Gaussian variationnal method, in replica space

T. Giamarchi, P. Le Doussal, Phys. Rev. B, 53, 15206  (1996)

U=0
Fermions are localized

(1RSB)
+

Boson superfluid
(RS)

Fermions are localized
(1RSB)

+
Boson are localized

(1RSB)

Disordered 1D Bose-Fermi mixtures



Gaussian variationnal method, in replica space

T. Giamarchi, P. Le Doussal, Phys. Rev. B, 53, 15206  (1996)

U=0
Fermions are localized

(1RSB)
+

Boson superfluid
(RS)

Fermions are localized
(1RSB)

+
Boson are localized

(1RSB)

Fermions (1RSB) 
+ Bosons (RS)

Disordered 1D Bose-Fermi mixtures



Gaussian variationnal method, in replica space

T. Giamarchi, P. Le Doussal, Phys. Rev. B, 53, 15206  (1996)

U=0
Fermions are localized

(1RSB)
+

Boson superfluid
(RS)

Fermions are localized
(1RSB)

+
Boson are localized

(1RSB)

Fermions (1RSB) 
+ Bosons (RS)

Fully localized
Fermions (2RSB) 
+ Bosons (1RSB)

Disordered 1D Bose-Fermi mixtures



• Modified RG flow from the variational solution (1RSB + RS) 

- Short-distance cutoff:

- Disorder strength Db(l):Ubf /v0= 2

Example of  typical flow trajectories



Boson localization length

- In the fully localized phase, both species are localized, but interactions are still 
very important, since the bosonic localization length is controlled by Bose-Fermi 
interactions.

Results for a 87Rb – 40K 
mixture.

F Crépin, G. Zaránd, PS
PRL  105, 115301  (2010)



Phase diagram for   Rb - K mixture87 40



Observables : Bragg scattering

Bragg scattering experiments give access to the dynamic structure factor
See D. Clément et al., PRL 09’

Fermionic structure factor in the Bose-Fermi glass phase 

In the AG+SFB phase

F Crépin, G. Zaránd, PS
PRL., 105, 115301  (2010)

Peak at 

Peak at 



Observables 2:time of flight

Average bosonic density after a time of flight t

Localized phase

Luttinger liquid phase



Conclusions

- We have studied a Bose-Fermi mixture in a disordered potential

Several phases: Bose-Fermi glass, 
coexisting localized/LL phases

- Phase transitions can be detected by
• Bragg scattering experiement

- Open question: bf ρρ =

Composite fermion glass ?
competition between various insulating orders

Localization length of bosons controlled by fermions

F Crépin, G. Zaránd, PS, PRL, 105, 115301  (2010)
F Crépin, G. Zaránd, PS,  arXiv 1109.xxxx (2011)







A zest of integral equations ...

with



Solution of resulting integral equations

• Replica symmetry breaking (~ ``gap’’ )
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