
The IAXO (International Axion Observatory) Helioscope

Esther Ferrer Ribas, IRFU/SEDI

Axion Mini Workshop, IPHT, 10-12 Juin 2015

Outline

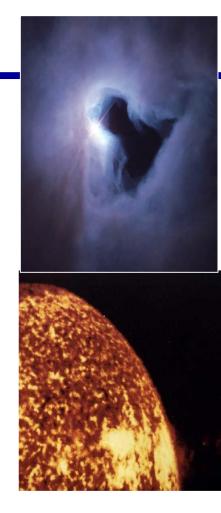
- Axion searches, bounds
- Helioscope principle
- CAST
- IAXO concept and ingredients
- Sensitivity
- Status and plans
- Conclusions

Axion motivations in brief

- Most elegant solution to the strong CP problem
- Axion-like particles predicted by many extensions of the SM (string theory)
- Axions may solve the DM problem
- Hints for axions/ALPS:
 - Transparency of the Universe
 - Anomalous cooling of different types of star

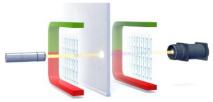
- Neutral Pseudoscalar
- Pratically stable
- Very low mass $m_a \simeq 0.6 \text{ eV} \frac{10^7 \text{GeV}}{f_a}$

• Coupling to photons

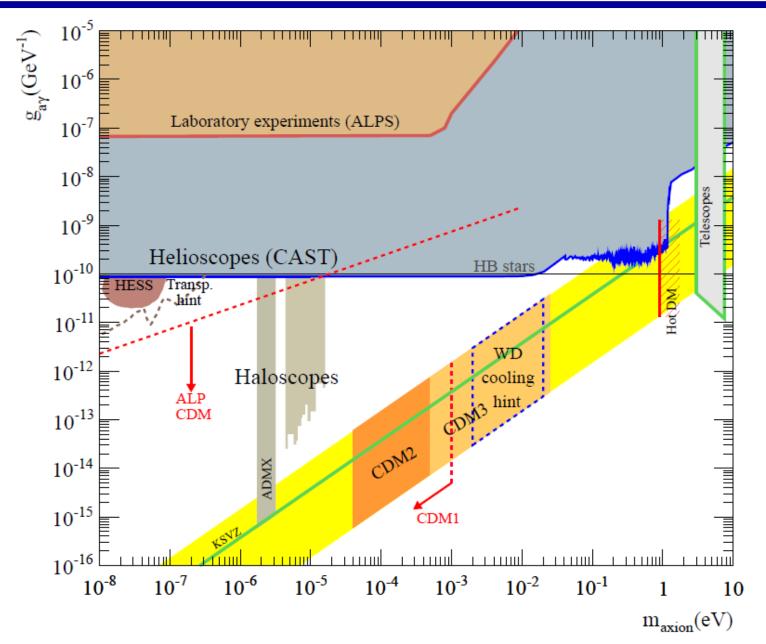

$$L_{a\gamma} = g_{a\gamma} (\vec{E} \cdot \vec{B}) a$$
$$g_{a\gamma} \propto 1 / f_a$$
$$g_{a\gamma} \propto m_a$$

Axion searches

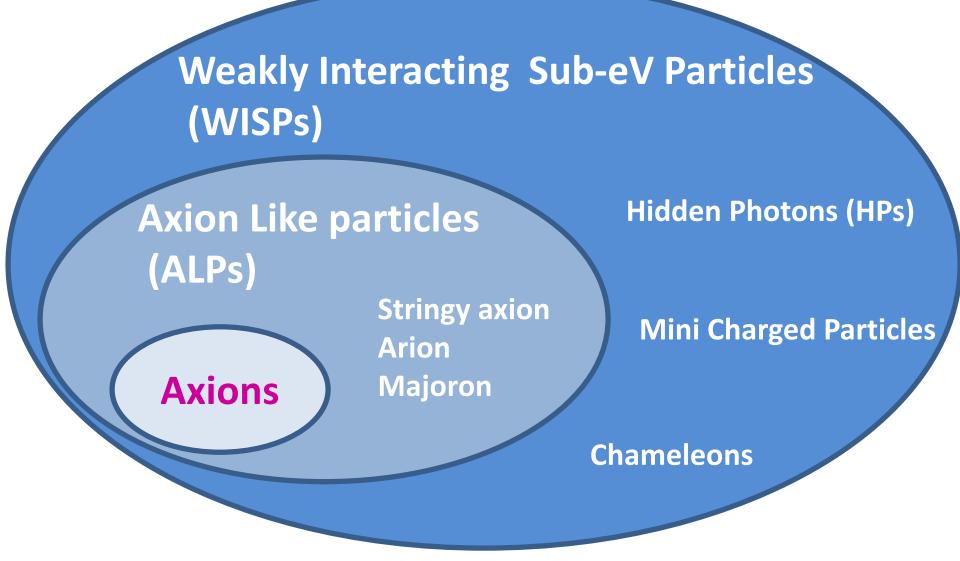
- Relic Axions
 - Axions that are part of galactic dark matter halo:
 - Axion Haloscopes (ADMX)


Direct detection searches for axion dark matter, Gray Rybka et al, 2014 Physics of the Dark Universe **4**

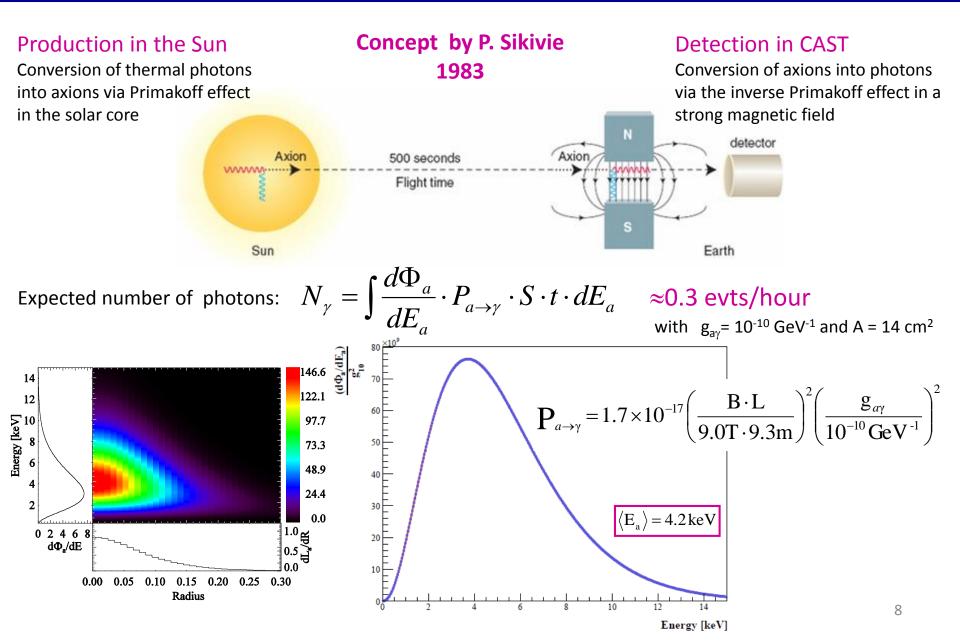
- Solar Axions
 - Emitted by the solar core.
 - Axion Helioscopes (SUMICO, CAST, IAXO)



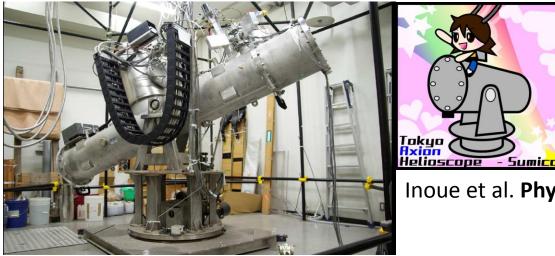
- Axions in the laboratory
 - "Light shinning through wall" experiments (ALPS, OSQAR...)


Any light particle search II — Technical Design Report R Bähre *et al* 2013 *JINST* **8** T09001

Bounds: experimental, astrophysical, cosmological



The WISPs zoo


 $g_{a\gamma}$ and m_a are two independent "phenomenological" parameters

Helioscope physics

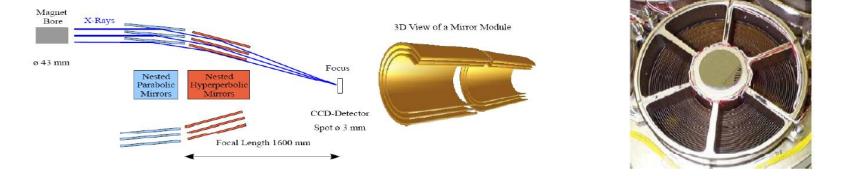
Helioscopes

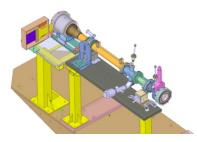
- Brookhaven (a few hours of data): Lazarus et al. PRL 69 (92)
- Tokyo Helioscope (SUMICO): 2.3 m long 4 T magnet

No Liq. He B=4T, L=2.3m 268A persistent current 16 PIN photodiodes Altazimuth:Horiz. 360°, vert.±28°

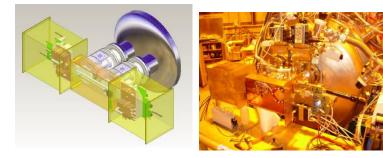
Inoue et al. Phys.Lett.B668:93-97,2008.

Presently running: CERN Axion Solar Telescope (CAST)


CAST (CERN Axion Solar Telescope)


LHC dipole : L = 9.3 m, B = 9 T Rotating platform : vertical movement 16° horizontal movement 100° Solar « Tracking » ~3 h/day, background data rest of the day 4 X-rays detectors

Originalities of CAST


 Use of X-ray telescope → increase S/B noise→ sensitivity improved by a factor 150 by focusing a Ø43 mm x-ray beam to Ø3mm

• Low background techniques → shieldings, low radioactive materials, simulation and modeling of backgrounds....

CAST results

CAST Physics program

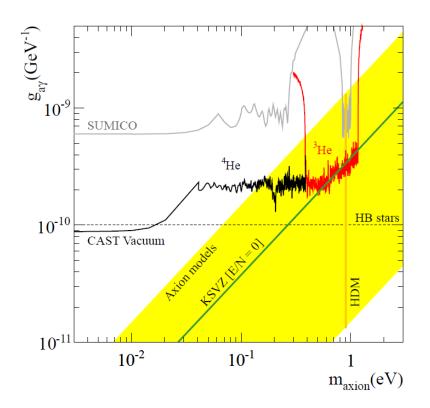
1) CAST Phase I, Vacuum

m_a < 0.02 eV; g_{aγγ} < 0.88·10⁻¹⁰ GeV⁻¹.

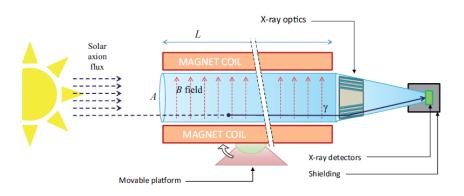
PRL94 (2005) 121301 & JCAP04(2007)020.

2) CAST Phase II, ⁴He

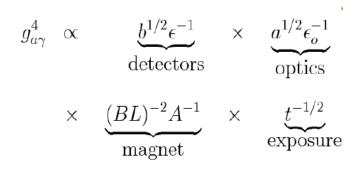
- P < 13.4 mbar (1.8K), 160 steps
- 0.02 < m_a< 0.39 eV; g_{aγγ} < 2.2·10⁻¹⁰ GeV⁻¹
 JCAP02 (2009) 008


3) CAST Phase II, ³He

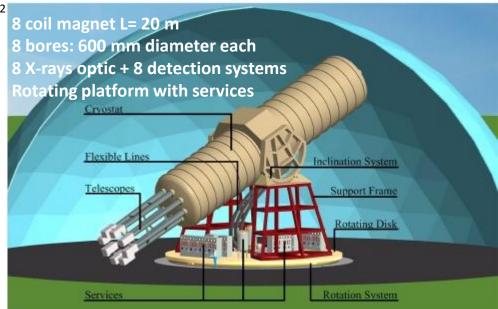
- P < 120 mbar (1.8K), 160 steps
- 0.39 < m_a< 1.17 eV; g_{aγγ} < 3.3·10⁻¹⁰ GeV⁻¹

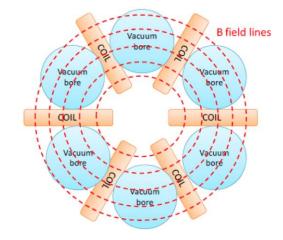

PRL 107 (2011) 261302 & PRL 112 (2014) 091302

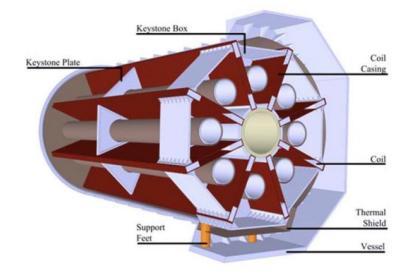
Current activities


- Revisiting the vacuum phase (2013-2015) with more sensitive detectors.
- Looking for non-hadronic axions and other WISPs (chamaleons, paraphotons, etc.)

IAXO concept


Goal: in terms of signal to background ratio **4-5 orders of magnitude** more sensitive in than CAST, which means sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV⁻¹


JCAP 06 (2011) 013


No technology challenge (built on CAST experience)

✓ New dedicated superconducting magnet
 ✓ Use of X-ray focalisation over ~m² area
 ✓ Low background detectors (improve bck by 1-2 orders of magnitude)

IAXO magnet

Optimised configuration: TOROIDAL with 8 bores 25 m long, 5 m diameter and a peak field of 5.4 T

Property		Value
Cryostat dimension	s: Overall length (m)	25
	Outer diameter (m)	5.2
	Cryostat volume (m ³)	~ 530
Toroid size:	Inner radius, R_{in} (m)	1.0
	Outer radius, R_{out} (m)	2.0
	Inner axial length (m)	21.0
	Outer axial length (m)	21.8
Mass:	Conductor (tons)	65
	Cold Mass (tons)	130
	Cryostat (tons)	35
	Total assembly (tons)	~ 250
Coils:	Number of racetrack coils	8
	Winding pack width (mm)	384
	Winding pack height (mm)	144
	Turns/coil	180
	Nominal current, I_{op} (kA)	12.0
	Stored energy, E (MJ)	500
	Inductance (H)	6.9
	Peak magnetic field, B_p (T)	5.4
	Average field in the bores (T)	2.5
Conductor:	Overall size (mm^2)	35×8
	Number of strands	40
	Strand diameter (mm)	1.3
	Critical current @ 5 T, I_c (kA)	58
	Operating temperature, T_{op} (K)	4.5
	Operational margin	40%
	Temperature margin @ 5.4 T (K)	1.9
Heat Load:	at 4.5 K (W)	~ 150
	at 60-80 K (kW)	~ 1.6

(ATLAS toroid 26 m long, 20 m diameter, peak field 3.9 T)

IAXO x-ray optics

Each bore equipped with an X-ray optics 8 systems of 600 mm diameter each

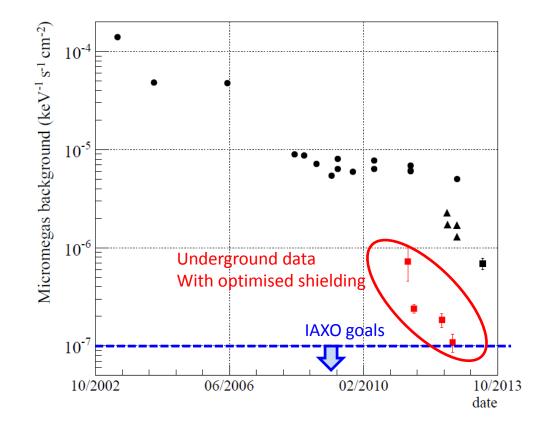
Specifications:

- •Refined imaging not needed
- •Need to cover large area (cost-effective)
- •Good throughput (0.3-0.5)
- •Small focal point (~1 cm²)

Baseline : X-ray optics for NUSTAR satellite


Telescopes	8
N, Layers (or shells) per telescope	123
Segments per telescope	2172
Geometric area of glass per telescope	0.38 m^2
Focal length	5.0 m
Inner radius	50 mm
Outer Radius	300 mm
Minimum graze angle	2.63 mrad
Maximum graze angle	15.0 mrad
Coatings	W/B ₄ C multilayers
Pass band	1-10 keV
IAXO Nominal, 50% EEF (HPD)	0.29 mrad
IAXO Enhanced, 50% EEF (HPD)	0.23 mrad
IAXO Nominal, 80% EEF	0.58 mrad
IAXO Enhanced, 90% EEF	0.58 mgad
FOV	2.9 mrad

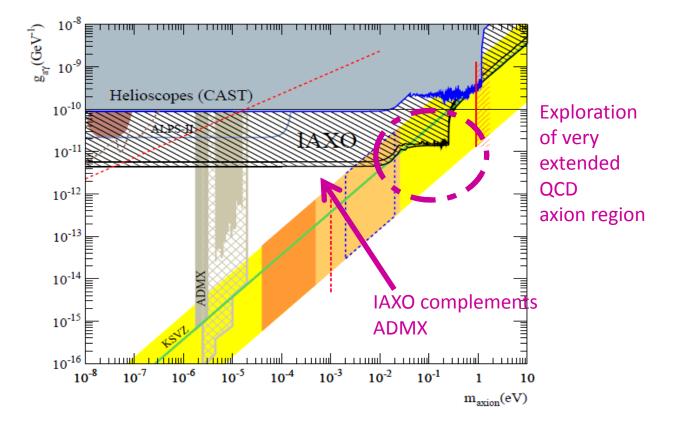
IAXO low background detectors


Baseline: gaseous detectors (Micromegas)

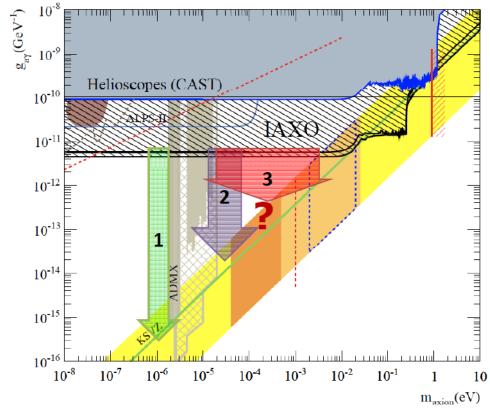
Goal: below 10⁻⁷ c/keV/s/cm²

- Key elements:
- Radiopure components
- •Shielding
- Offline discrimination

Evolution of Micromegas CAST background



Pathfinder system running in CAST:


last generation of Microbulk detectors + optimised shielding + Xray telescope

→ CASTMM 2014 : 0.85 x 10⁻⁶ c/keV/s/cm²

IAXO sensitivity prospects

Additional physics cases

IAXO would improve the sensitivity to g_{ae}

Extending ensitivity to other ALP or WISP models at the low energy frontier: paraphotons, chameleons...

Extend the sensitivity to dark matter halo axions by the use of microwave cavities or dish antennas : IAXO-DM

→IAXO as a « generic axion/ALP facility »

Lots of new ideas, prospects under study

- Precession of nuclear spins (CASPERs): PRD 84, 055013 (2011) and arXiv:1306.6089
- Long thin cavities in dipole fields: PRD85 (2012) 035018
- Directional effect in long thin cavities: JCAP 1210 (2012) 022
- Dish antenna: JCAP 1304 (2013) 016
- Directional effect in dish antenna: arXiv:1307.7181
- LC circuit in B field: PRL 112, 131301 (2014)
- Active resonators: arXiv:1403.6720
- Cavitiy with wires: arXiv:1403.3121 (also old Sikivie paper)

IAXO status of project

•2011: First studies Irtastorza et al. JCAP (2011) 1106:013

•ASPERA/APPEC Roadmap acknowledges axion physics, CAST and recommends progress towards IAXO (C. Spiering Krakow 2012)

•IAXO is also present in US roadmapping (Snowmass and P5 process) (december 2013)

•2013: Conceptual Design: Armengaud et al. JINST 9 (2014) T05002

•August 2013: Letter of Intent submitted to the CERN SPSC [CERN-SPSC-2013-022]

•January 2014: Recommendations of SPSC

SPSC Draft minutes [Jan 2014]
The Committee recognises the physics motivation of an International Axion
Observatory as described in the Letter of Intent SPSC-I-242, and considers that
the proposed setup makes appropriate use of state-of-the-art technologies i.e.
magnets, x-ray optics and low-background detectors.
The Committee encourages the collaboration to take the next steps towards a
Technical Design Report.
The Committee recommends that, in the process of preparing the TDR, the
possibility to extend the physics reach with additional detectors compared to
the baseline goal should be investigated. The collaboration should be further
strengthened.
Considering the required funding, the SPSC recommends that the R&D for the
TDR should be pursuit within an MOU involving all interested parties.

IAXO Collaboration

	inst	
_		

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: January 15, 2014 ACCEPTED: February 17, 2014 PUBLISHED: May 12, 2014

201

4

JINST

6

T05002

TECHNICAL REPORT

Conceptual design of the International Axion Observatory (IAXO)

 E. Armengaud,^a F.T. Avignone,^b M. Betz,^c P. Brax,^d P. Brun,^a G. Cantatore,^e J.M. Carmona,^f G.P. Carosi,^g F. Casper,^c S. Caspi,^h S.A. Cetin,ⁱ D. Chelouche,^j F.E. Christensen,^k A. Dael,^a T. Dafni,^f M. Davenport,^c A.V. Derbin,¹ K. Desch,^m A. Diago,^f B. Döbrich,ⁿ I. Dratchnev,¹ A. Dudarev,^c C. Eleftheriadis,^o G. Fanourakis,^p E. Ferrer-Ribas,^a J. Galán,^a J.A. García,^f J.G. Garza,^f T. Geralis,^p B. Gimeno,^q I. Giomataris,^a S. Gninenko,^r H. Gómez,^f D. González-Diaz,^f E. Guendelman,^x C.J. Hailey,^t T. Hiramatsu,^u D.H.H. Hoffmann,^v D. Horns,^w F.J. Iguaz,^f I.G. Irastorza,^{f,1} J. Isern,^x K. Imai,^y A.C. Jakobsen,^k J. Jaeckel,^z K. Jakovčić,^{aa} J. Kaminski,^m M. Kawasaki,^{ab} M. Karuza,^{ac} M. Krčmar,^{aa} K. Kousouris,^c C. Krieger,^m B. Lakić,^{aa} O. Limousin,^a A. Lindner,ⁿ A. Liolios,^o G. Luzón,^f S. Matsuki,^{ad} V.N. Muratova,¹ C. Nones,^a I. Ortega,^f T. Papaevangelou,^a M.J. Pivovaroff,^g G. Raffelt,^{ac} J. Redondo,^{ac} A. Ringwald,ⁿ S. Russenschuck,^c J. Ruz,^g K. Saikawa,^{af} I. Savvidis,^o T. Sekiguchi,^{ab} Y.K. Semertzidis,^{ag} I. Shilon,^c P. Sikivie,^{ah} H. Silva,^c H. ten Kate,^c A. Tomas,^f S. Troitsky,^r T. Vafeiadis,^c K. van Bibber,^{ai} P. Vedrine,^a J.A. Villar,^f J.K. Vogel,^g L. Walckiers,^c A. Weltman,^{aj} W. Wester,^{ak} S.C. Yildizⁱ and K. Zioutas^{ad}
 ^aCEA Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette, France ^bPhysics Department, University of South Carolina, Columbia, SC, U.S.A. ^cEuropean Organization for Nuclear Research (CERN), Genève, Switzerland ^dIPHT, Centre d'Études de Saclay (CEA-Saclay), Gif-sur-Yvette, France ^cInstituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste and Università di Trieste, Trieste, Italy ^fLaboratorio de Física Nuclear y Altas Energías, Universidad de Zaragoza, Zaragoza, Spain ^gLawrence Livermore National Laboratory, Livermore, CA, U.S.A. ^hLawrence Berkeley National Laboratory, U.S.A. ⁱDogus University, Istanbul, Turkey ^jPhysics Department, University of Haifa, Haifa, 31905 Israel ^kTechnical University of Denmark, DTU Space Kgs. Lyngby, Denmark

~80 authors

IAXO timeline

										Сс	onst	ruct	ion											
										~	2.5	year	s										Integ	ration
			TDR:					1					-								\mathcal{A}			nissior
			~ 18 months																		/ר		~ 2.5	years
		Λ					_N` /																	
		/ -					\sum																	
		$\$														∖∟								 /
	Years		-	1			-	2		-		3		1				r					0	
	Months	35	6		1.2	18		21	22-41	27		33	36	30		48	48	61	84	87	60	624		60 72
Magnet																								
Design	то								1		1	1		1							I			
	T1-T8																							-
Demo co																								
Product																								
Integrati	lon																							
Services																								
Optios																								
Optic de	aign atudy																							
Prototyp	e construction																							
Calibrat	ion																							
Finalize	design																							
Build as	sembly machines																							
Procure	mandreis & ovens																							
Bulld co	ating facilities																							
Slump g	America																							
Deposit	coatings																							
Assemb	le opties																							
Calibrat	e optica																							
Installat	lon																							
Detector	19															_								
Prototyp	5e																							
Constru	etion (incl. spares)																							
Installat	ion & commissioning			I				T																

Short term plans

Complete a Technical Design Report:

- Construction of a demonstration coil IAXO-TO
- Constructiuon of a prototype x-rays optics IAXO-X0
- Construction of a low background detector IAXO-D0
- Study and validate alternative detector technologies
- Feasability for IAXO-DM

Site studies

Enlarge the collaboration

Conclusions and next steps

Axion searches → strong physics case

Increasing experimental effort in the different axion searches strategies: solar axions, relic axions, laboratory axions...

CAST has been a very important milestone in axion research during the last decade

IAXO can probe deep into unexplored axion-ALP parameter space

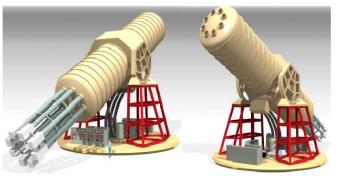
IAXO could become next large project & a generic axion facility with discovery protential in the next decade

Need to continue with TDR & preparatory activities, formal endorsement & resources finding

- •Construction of demonstration coil IAXO-T0
- •Construction of a prototype x-ray optics IAXO-X0
- •Construction of a prototype low background detector IAXO-D0
- •Refine and update physics case
- •Feasability studies for IAXO-DM

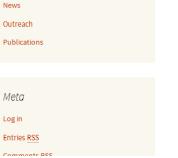
Exciting work in front us: join us!

http://iaxo.web.cern.ch/iaxo/

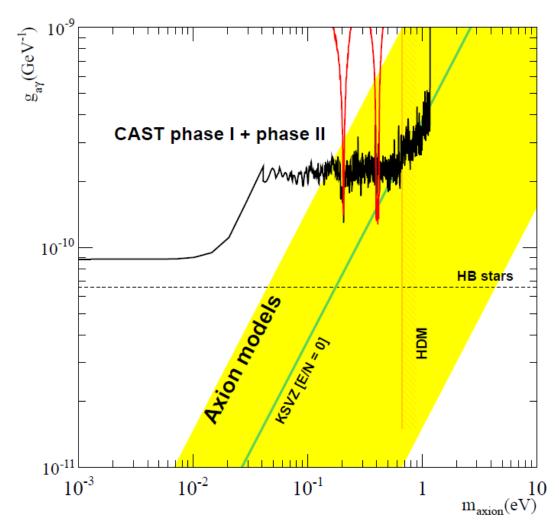


Home

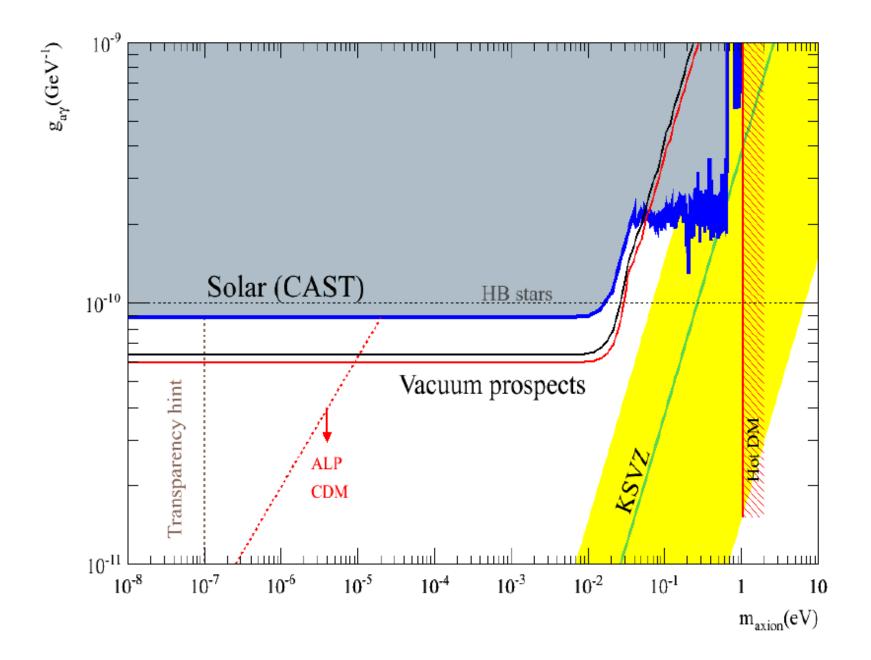
Welcome to the home page of the IAXO project!


The International Axion Observatory (IAXO) is a proposed fourth generation axion helioscope. It aims at a sensitivity much improved with respect to past and current axion searches, with real discovery potential.

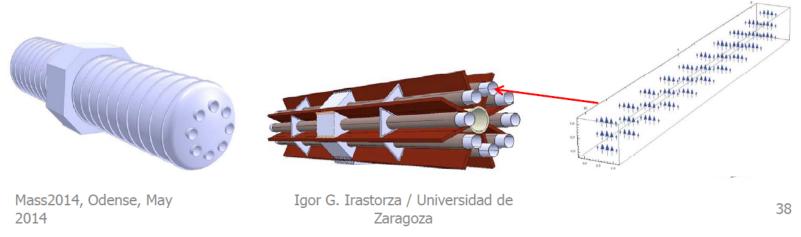
The conceptual design of the experiment has been finished and a Letter of Intent submitted to CERN. Recently, the SPSC has recognised the physics case of IAXO and has recommended to proceed with a Technical Design Report.



Views of the conceptual design of IAXO


Search ...
Recent Posts
IAXO in the CERN Courier
SPSC recommends IAXO
Letter of Intent to CERN submitted
Categories
General

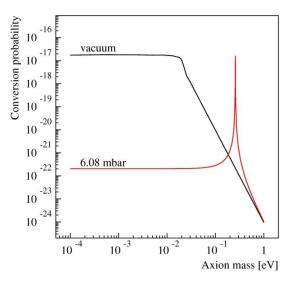
BACK UP



New solar axion search in CAST with ⁴He Filling, Arik et al. Submitted to PRL arXiv:1503.00610 [hep-ex]

IAXO-DM configurations?

- Prospects under study. Very motivated (encouraged by CERN SPSC)
- Needed new know-how (cavities, low noise microwave detectors...)
- Various possible arrangements in IAXO. Profit the huge magnetic volume available:
 - 1. Single large cavity tuned to low masses
 - 2. Thin long cavities tuned to mid-high masses. Possibility for directionality. Add several coherently?
 - 3. Dish antenna focusing photons to the center. Not tuned. Broadband search. Competitive at higher masses?

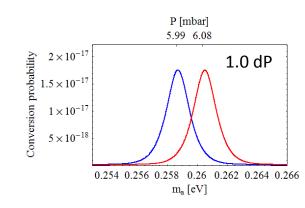

Extending sensitivity to higher masses

Axion to photon conversion probability:

$$\left| P_{a \to \gamma} = \left(\frac{Bg_{a\gamma}}{2} \right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2} \cos(qL) \right] \qquad \text{Vacuum:} \\ \Gamma = 0, \ m_{\gamma} = 0$$

with
$$q = \left| \frac{m_{\gamma}^2 - m_a^2}{2E_a} \right| \quad m_{\gamma}(\text{eV}) = \sqrt{\frac{4\pi\alpha N_e}{m_e}} \approx 28.9 \sqrt{\frac{Z}{A}\rho\left(\frac{\text{kg}}{\text{m}^3}\right)}$$

Coherence condition: $qL < \pi$



For CAST phase I conditions (vacuum), coherence is lost for m_a > 0.02 eV

With the presence of a **buffer gas** it can be **restored** for a narrow mass range:

$$qL < \pi \Rightarrow \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

e.g. for 50 mbar $\Delta m_a \simeq 10^{-3} \text{ eV}$

IAXO costs

Item	Cost (MCHF)	Subtotals (MCHF)
Magnet		31.3
Eight coils based assembled toroid	28	
Magnet services	3.3	
Ontine		16.0
Optics		16.0
Prototype Optic: Design, Fabrication, Calibration, Analysis	1.0	
IAXO telescopes (8 + 1 spare)	8.0	
Calibration	2.0	
Integration and alignment	5.0	
Detectors		5.8
Shielding & mechanics	2.1	
Readouts, DAQ electronics & computing	0.8	
Calibration systems	1.5	
Gas & vacuum	1.4	
Dome, base, services building and integration		3.7
Sum		56.8

Table 5: Estimated costs of the IAXO setup: magnet, optics and detectors. It does not include laboratory engineering, as well as maintenance & operation and physics exploitation of the experiment.