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Theoretical Background

Standard Model of Cosmology

Dark Matter SM (Atoms, 7, V)

¢ “Cold” with NO (effective) e Self-interactions (hydrodynamics)
interactions (besides gravity)

® |Interactions with y (cooling,feedback)
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Theoretical Background

Motivation #1: Small scale "challenges” of CDM

m The amount of predicted small
sub-structures exceeds number of
observed MW satellites ( “Missing
satellite problem”)

number of

‘umulative

[Moore et al., 1999]
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Theoretical Background

Motivation #1: Small scale "challenges” of CDM
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(95.4% confidence) m The amount of predicted small
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T | s * 1 B observed MW satellites (“Missing
g . ",3 e S0 satellite problem™)
2 g . :

’ >} 0 m The majority of the most massive
ol ? = subhaloes of the Milky Way are too

" dense to host any of its bright satellites
(“Too big to fail")
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[Boylan-Kolchin 2011]
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Theoretical Background

Motivation #1: Small scale "challenges” of CDM

T T T m The amount of predicted small

1 sub-structures exceeds number of
Core +baryons 4 observed MW satellites (“Missing
satellite problem™)

Cusp + baryons
100

m The majority of the most massive
subhaloes of the Milky Way are too
dense to host any of its bright satellites
(“Too big to fail”)

m Observed inner density profiles of
(sub)structures not cuspy as predicted
by CDM N-body simulations

V (km s-1)

50

baryons

P R
20

[SDSS /Weinberg 2013]
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Theoretical Background

Standard Model of Cosmology (revisited)

Dark Matter )
Warm
¢ ‘Cole with NO (effective) e Self-interactions (hydrodynamics)
interactions (besides gravity)
e free streaming (— Andrea's talk) ® Interactions with y (cooling,feedback)
WDIVI/T K\_J
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Theoretical Background

Standard Model of Cosmology (revisited)

Dark Matter «<——— SM (Atoms, 7, V)

SM-
¢ “Cold” with d& (effective) e Self-interactions (hydrodynamics)
interactions (besides gravity)

e free streaming (— Andrea's talk) ® |Interactions with y (cooling,feedback)

e SIDM (- Jesus' talk)
W (eakly)l(nteracting)M(assive)P(articles)

® >
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Theoretical Background

Motivation #2: Does DM interact with SM sector?

m Here we focus on the phenomenology —
data-driven, model-independent,

thermal freeze-out (early Univ.) effective theory

indirect detection (now)
.

DM SM

direct detection

DM SM

production at colliders
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m Here we focus on the phenomenology —
data-driven, model-independent,

thermal freeze-out (early Univ.) effective theory

indirect detection (now) m Constraints on annihilation of (thermal)
> relic DM from observed abundance
(Planck) (— WIMP)
= DM SM
2
3
= DM SM

production at colliders
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Theoretical Background

Motivation #2: Does DM interact with SM sector?

m Here we focus on the phenomenology —
data-driven, model-independent,

thermal freeze-out (early Univ.) effective theory

indirect detection (now) m Constraints on annihilation of (thermal)
> relic DM from observed abundance
(Planck) (— WIMP)

m Possible “signal” from Fermi-LAT at
130 GeV [Cohen-+,2012][Weninger-,2014] / 3.5 keV
[Bulbul+,2014][Boyarski+,2014] from (stacked) X—ray
spectra, but indirect cross-section results
DM SM depend on uncertain parameters (asym.
in dark sector, DM morphology, etc.)

DM SM

direct detection

production at colliders
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Theoretical Background

Motivation #2: Does DM interact with SM sector?

m Here we focus on the phenomenology —
data-driven, model-independent,

thermal freeze-out effective theory

indirect detection m Constraints on annihilation of (thermal)
relic DM from observed abundance
(Planck) (— WIMP)

- DM SM
= m Possible “signal” from Fermi-LAT at
% 130 GeV [Cohen-+,2012][Weninger-,2014] / 3.5 keV
E [Bulbul+,2014][Boyarski+,2014] from (stacked) X—ray
:q; spectra, but indirect cross-section results
o DM SM depend on uncertain parameters (asym.
- in dark sector, DM morphology, etc.)
production at colliders m Search for missing (transverse) energy /

monojets at LHC
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Theoretical Background

Motivation #2: Does DM interact with SM sector?

m Here we focus on the phenomenology —
data-driven, model-independent,

thermal freeze-out effective theory

indirect detection m Constraints on annihilation of (thermal)
relic DM from observed abundance
(Planck) (— WIMP)

m Possible “signal” from Fermi-LAT at
130 GeV [Cohen-+,2012][Weninger-,2014] / 3.5 keV
[Bulbul+,2014][Boyarski+,2014] from (stacked) X—ray
spectra, but indirect cross-section results
DM SM depend on uncertain parameters (asym.
in dark sector, DM morphology, etc.)

DM SM

direct detection

production at colliders m Search for missing (transverse) energy /
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Theoretical Background

Motivation #2: Does DM interact with SM sector?

Snowmass Community Summer Study 2013
CFL: WIMP Dark Matter Detection
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Theoretical Background

Motivation #2: Does DM interact with SM sector?

m Direct detection experiments only

1020 T sensitive in part of (WIMP) mass range
10-25; B
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Theoretical Background

Motivation #2: Does DM interact with SM sector?

m Direct detection experiments only
sensitive in part of (WIMP) mass range

m Alternative constraints from (linear)

P
8
3 10 , cosmology pvorkin+ 2013:
g 10% = - eg. ~ 10~ 3cm?(m/GeV) (electr. dipol) ~ 4 - 10~ 3%cm?(m/GeV)
g 109 E (heavy boson exchange)
g 109 = o . .
o0 - = Rigppe— m (Possible) constraints on non-quark
2 o 0 .
S = o0 AT scattering:
3 10010ty T W e . .
10107 100 408 Jgh s oS0 WIMP-X cross-section » from annihilation/production cross-section
WIMP Mass [GeV/c?] 1 [Kopp,2011]
opp,

» " Absorbtion” features in quasar spectra in
case of resonant scattering (" Dark
shadows" ) profumo-+,2007]
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Theoretical Background

Interactions with relic radiation

e Example: (elastic) DM-photon scattering

e Euler Equations (modified):

0,=k®—H 0,+c3kd,— R 'k(6,—6,)

.o ol | 1 : . .
H),:k_q)+k_[z6),_0},)_6;51'[),_1((3),_8;,_] _Il:l[e),_BDM ]

émf:kzq’_H 0 par _S_J.L'l (6 par —HT:]

[Boehm, 2002c]
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Theoretical Background

Interactions with relic radiation: Linear Theory

vanilla CDM

106 ‘
10
k [h/Mpc]

J.A.Schewtschenko - Structure formation in the presence of DM-radiation interactions

m Solving linearized Boltzm.Eq.
— Implementation of interacting DM in
CLASS solver [Lesgourgues+,2011][Wilkinson+,arXiv:1309.7588]

m Oscillations in transfer function for
~+CDM as well as (strongly damped) for
vCDM

m Characteristic scale half-mode mass
M, defined as suppression of power by
factor of 4 — significant reduction of
primordial fluctuations

Saclay, September 16, 2014



Theoretical Background

Interactions with relic radiation: Linear Theory

m Solving linearized Boltzm.Eq.
— Implementation of interacting DM in
CLASS SO|VeI’ [Lesgourgues+,2011][Wilkinson+,arXiv:1309.7588]

m Oscillations in transfer function for
~+CDM as well as (strongly damped) for
vCDM

- m Characteristic scale half~mode mass
e gy " : M. defined as suppression of power by
K (h Mpc™) factor of 4 — significant reduction of

primordial fluctuations

P(K) (h" Mpc)®
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Theoretical Background

Interactions with relic radiation: CMB constraints

m Comparison of predicted lin.
- uisxloﬂ_ evolution in early Universe
""" s with most recent CMB data.

SPTpol 3
—e— SPTpol 2
™\ —=— SPTpal1 1

0 1000 2000 3000 4000 5000 6000

l [Wilkinson, 2013]
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Theoretical Background

Interactions with relic radiation: CMB constraints

m Comparison of predicted lin.
0135 ' . . .
evolution in early Universe
Ny with most recent CMB data.
- m Constraining models with MCMC runs:
L SILSIE .
- S Odm—y < 81X 1073 (mpyr/ GeV)em?
il 4P y) V4 & .
Odm—r < 2% 10728(mpy/GeV)em?
"@ @ @ | L @ 0 .
™ Satm at 68% CL for constant cross-section
A , , V4 ' ’ ' [Wilkinson+,2014a][Wilkinson+,2014b]
[Wilkinson2014]
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Theoretical Background

Interactions with relic radiation: CMB constraints

2 _ () 13+0.0057
Qpaih® = 0.13T500655

m Comparison of predicted lin.
evolution in early Universe
with most recent CMB data.

m Constraining models with MCMC runs:

0.114 0A1‘35 0.155 o
100 b = 74.973

Odm—y < 8x 1073 (mpy/GeV)em?
Odm—p < 2X 10_28(mDM/GeV)cm2

at 68% CL for constant cross-section

[Wilkinson+,2014a][Wilkinson+,2014b]

% 405 54

m Introducing DM interactions can ease

L ) e e tension for Hy & Qp, (?)
[Wilkinson2014]
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Theoretical Background

Interactions with relic radiation: Damping scales

free-streaming:
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Theoretical Background

Interactions with relic radiation: Damping scales

Mass scale [Mg/h]
BN
Mass scale [My/h]
EN
Mass scale [Mo/h]
2" a
3

10® 10°

Sam-v/OTh

107

A.Schewtschenko - Structure formation




Theoretical Background

Interactions with relic radiation: Damping scales

Mass scale [M,/h]
Mass scale [My/h]
Mass scale [Mo/h]

10
Sim-/Th Sam/OTh

m Region Il defined by half-mode mass — significant suppression of progenitors for
hierarchical structure formation (SF).
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Theoretical Background

Interactions with relic radiation: Damping scales

2,
X
<,
3

Mass scale [Mg/h]
3
S
[Twonl

Mass scale [My/h]
Mass scale [Mo/h]

m Region Il defined by half-mode mass — significant suppression of progenitors for
hierarchical structure formation (SF).

m Region Il defined by free-streaming/collisional damping scale — (almost) no
(hierarchical) structure formation, fragmentation possible.
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Theoretical Background

Interactions with relic radiation: Damping scales

Mass scale [Mg/h]
3,
3
S
[Twonl
Mass scale [My/h]
3
Mass scale [Mo/h]
3
3

m Region Il defined by half-mode mass — significant suppression of progenitors for
hierarchical structure formation (SF).

m Region Il defined by free-streaming/collisional damping scale — (almost) no
(hierarchical) structure formation, fragmentation possible.

m For interacting DM, Region Il reaches down to smaller mass scales.
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Global properties

Simulations: Cosmological Box

N-Body simulation using GADGET-3.

Planckl cosmology.

various 7YCDM cross-section & matching
vCDM/WDM models

ICs (z=49) with modified 2LPTic.
Full cosmological box
» 30 Mpc box at 2-10° M, mass resolution.
> > 10% MW-like galaxies (CDM).
» 100 Mpc box at 9 - 10° My mass
resolution.
» 300 Mpc box at 2 - 107 My mass
resolution.
On first glance, it is obvious that CMB
upper limits produce unrealistic results
— more realistic cross-section are a few
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Global properties

Simulations: Initial conditions / Cosmological parameters

m Is it okay to use Planckl best-fit
parameters for ICs with interacting DM?
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Global properties

Simulations: Initial conditions / Cosmological parameters
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m Is it okay to use Planckl best-fit
parameters for ICs with interacting DM?

m For realistic cross-sections, no
significant deviation from CDM anymore
— choice consistent ® /@

Saclay, September 16, 2014



Global properties

Simulations: Identifying haloes

m Halo finders: FoF/subfind and AHF

> halo defined as virialized region
(overdensity according to spherical
top-hat collapse)

» ensemble properties: median, its error
(95% Cl) and the variance in the sample
spread.

» relaxation criteria [Maccio+,2007][Neto+2007]
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Global properties

Halo mass function

15 T T T T
COM =
1L mm WDM v |
" YCDM e
0.5 .
5+ - _
R * n
(6]
o ] . ]
= 0r ° [ ] -
° ]
2051 . e, m .
= Trvvte, ",
2 A -: —
- n
3 o
-1.5 - g -
v,
2 - |
Mhm L]
25 | | | | | | | L ®
75 8 85 9 95 10 105 11 115 12
IOQ10 IV‘\wir [lﬂr1 Mo]

m Abundance of small halos suppressed (as
expected) for both yCDM and WDM.

m Spurious halos contaminate HMF on
scale below 9 - 10°h~1 M,
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Global properties

Halo mass function

m Abundance of small halos suppressed (as

1.5 I T T T
o expected) for both YCDM and WDM.
1 1
YyCDM o

m Spurious halos contaminate HMF on
ST (rtop-hat) ------

ST (Schneider2012) ———— | scale below 9 - 10°h~1 M,

ST toprhat m (Semi-)Analytical predictions

» Sheth-Tormen (ST) formalism with conf.
space top-hat matches CDM HMF

» ST formalism with conf. space top-hat &
mod. Schneider fudge factor matches
WDM HMF /tiny [Schneider+,2012]

» ST formalism with k-space top-hat gets
turn-over correct for WDM HMF, but
predicted "gap” not seen in yYCDM HMF

0.5

o

'
iy

log1o dn/dinM [h8 Mpc 3]
' S
[6)]

—_
[6)]

o

o
[$,]

m Analytical collapse models fail to predict
HMF for yCDM — Non-hierarchical
growth? Fragmentation?

9 95 10 105 11 115 12
IOQ10 IV‘\wir [lﬂr1 Mo]
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Global properties

Halo mass function

A
[ . ) yCBM ST (Schneider2012) - - - - - - 1
5]
P ‘ /" WDM ST (Schneider2012)

i po Joomom@mon-22110” 1 m Excess in structures in yCDM compared

f WDM a = 0.0122
A 9
A4 cowon(@elmpy-0f to WDM below My,
; WDMa=0026 O
/ ODu/OTH(GeV/mpy)=2*10"0
. WDM a = 0.0368
A v
* b ODM-y/OTh(GeVimpy)=10" *
OpM-/OTh(GeV/impy)=107 A

'
N S IS S O S S

0.01 0.1 1 10 100 1000
Mhalo/Mhm

m HMF is universal if normalized by My,,.

dn/dncpm

0.1
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Global properties

Halo properties: Shape

0.95

0.9
o
> 085
S : m We measured the sphericity, triaxiality &
% 0.8 m elongation for CDM, vyCDM
075 | m No significant deviations from CDM

- detected.
0.7 |- .
0.65 L s N ST raonnl T

1010 1011 1012
Mhalo [Mo/h]
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Global properties

Halo properties: Halo density profile

m DM density profiles can be fit to NFW
profile:

pe(M)
cr/reir (1 + cr/rvir)2

pNFW ( r

m Universal density profile completely
parametrized by concentration
parameter ¢
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Global properties

Halo properties: Halo density profile

1.4 T E TTTTT T T T L

. CDM —a— m DM density profiles can be fit to NFW
1gb BEs e YCDM —e— | profile:

B WOM

| i : |
12 g NFW pe(M)

P (r) = cr/roie (1 + cr/rvir)2

11 |
m Universal density profile completely

parametrized by concentration
parameter ¢
m YCDM and WDM indistinguishable:

i lower concentration for lower-mass halos

log1o CNFW

{
1
| 1
5 A
SRR ] T L K R

0.8
1010 10" 1012

Mhalo [Mo/h]
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Global properties

Halo properties: Halo density profile

m DM density profiles can be fit to NFW

. profile:
i NFW( ) _ pC(M)
P r)= )
cr/roie (L + cr/roir)
1010 10” 1012 .
M Mo/ m Universal density profile completely
1.1 . : h . .
i : : parametrized by concentration
= 09| . > 3
g osl : Te%r - parameter ¢
& o7f 40 oA 3 : o (8 ng .
3 ol 1 & orp m YCDM and WDM indistinguishable:
= 05 [ 4 E osr! .
gl I lower concentration for lower-mass halos
03f ! B L : B .
00 L 9 I B m lower concentration results from delayed
10° 10° 1070 VI 2 15 1

halo formation (as for WDM)

Odm-y/OTh
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Global properties

Halo properties: Halo spin

0.07 s
COM —=— o
yCDM —e— m Peebles definition:
0.06 - n
. Pty S IWDM e JIEIL/2
oos | BE i T T A=1 |5/2 (1)
.05 : i T | Nk
PRI . o GMi;
£004 B¢ g = vCDM and WDM indistinguishable:
e i lower spin for lower-mass halos
0.03 u

L

0.01 I Ad 1 Crvrl Gl [
1010 1011 1012

|IVllhalo [Mo/h]
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Global properties

Halo properties: Halo spin

0.07
0.08
Ei
0.05 | }
< i
i
£004 i
0.03 | .
o
0.02 £ w
0.01 !
1010 1011 1012
Mhaio [Mo/h]
1.8 — 13
16 20 T B T 7
14 ‘ tr - N
’ oo 1= : : :
glap P o e ' 3 1
< g ; . 208 | ! | b
2 | : :
Zos | ] R0y a1
06| ! ! : .
06 1 sk |
04 : 4 oaf g
02 L1 . 03 —
108 10 110 02 L L L L L
4 3 2 15 1
Odm-y/OTh

m Peebles definition:
1/2
_JEl
GM3!?
m YCDM and WDM indistinguishable:
lower spin for lower-mass halos

(1)

m Can be evidence for delayed halo
formation (TTT)

m Alternative explanation by vorticity of
late-time environment / merger history

(?)
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Global properties

Non-linear matter powerspectrum
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Small-scale " challenges” & constraints
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Small-scale " challenges” & constraints

Simulation Suite: MW-like Halos

m Milky Way-like galaxies in cosmological
box sims:
> virial mass: 0.8 — 2.7 x 1012M,
[Piffl, 2013][Boylan-Kolchan,2013]
» sufficiently isolated (no larger object

within 2 Mpc)
» > 102 MW-like galaxies in 30 Mpc/h box
(CDM)
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Small-scale " challenges” & constraints

Simulation Suite: Zooms

m N-Body simulation using GADGET-3.
m WMAPT cosmology.
m |Cs (z=127) with ic-gen [Jenkins2014]
m zoom simulations based on DOVE
simulation
» 12 LG candidates [Sawala2014]
» Up to 10* M, mass resolution (HR).
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Small-scale " challenges” & constraints

Simulation Suite: Zooms

W m N-Body simulation using GADGET-3.
m WMAPT7 cosmology.
. . m |Cs (z=127) with ic-gen [Jenkins2014]

m zoom simulations based on DOVE
simulation

- . » 12 LG candidates [Sawala2014]
x ] » Up to 10* My mass resolution (HR).

M200, [Myn]
*

=3
T
!

M200, [M,,,
(o] [Sawala,2014]
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Small-scale " challenges” & constraints

Missing satellite problem
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Small-scale " challenges” & constraints

Missing satellite problem

5 10 15 20 25 30 35
Vmax,sat [km/s]
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Small-scale " challenges” & constraints

Missing satellite problem

o L 1 1 I o L1 1 1 1 1 I
5 10 15 20 25 30 35 5 10 15 20 25 30 35

Vinax,sat [(km/s] Vinaxsat [km/s]

m Interacting CDM reduces subhaloes — MSP solved

m cross-section at CMB limit indeed ruled out as too many MW substructures are
erased
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Small-scale " challenges” & constraints

Too big to fail
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Small-scale " challenges” & constraints

Too big to fail
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Small-scale " challenges” & constraints

Structure constraints

m Most conservative bounds: YCDM has
to produce at least enough DM halos to
host visible satellite galaxies (+sky
coverage correction)
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Small-scale " challenges” & constraints

Structure constraints
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Conclusion

m IDM, in particular v(C)DM, provides a natural mass/velocity-independent
suppression of small scale structures (MSP, TBTF may indicate its WIMP nature)

m We performed first N-Body simulations for v/vCDM (with correct input
spectrum)

m 7/v(C)DM can solve/ease the problems of vanilla CDM on small scales (at least
on par with WDM!)

m Structure surveys allow to constrain cross-section independently and much tighter
than CMB and provide lowest conservative bound so far for elastic DM-photon
interaction.

m Our constraints are "in the right ballpark” for observed abundance of thermal relic
if mgm, MeV (or below).
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Future work

Model-building: Check all possible constraints against a specific, preferable model
Merger “graphs” to study origin of HMF (where do halos in gap originate from?)
Prediction of Luminosity function at high redshift using SAMs

Halo bias — do we see deviation from WDM? (as in HMF)

Halo model/Halofit — how precise are (semi-)analytical predictions

Hydrodynamic simulations with baryons — how does the presence of
baryons/feedback affect our constraints?

J.A.Schewtschenko - Structure formation in the presence of DM-radiation interactions Saclay, September 16, 2014 33/33



	Theoretical Background
	Standard Model of Cosmology
	Motivation #1: Small scale ''challenges'' of CDM
	Standard Model of Cosmology (revisited)
	Motivation #2: Does DM interact with SM sector?
	Interactions with relic radiation
	Interactions with relic radiation: Linear Theory
	Interactions with relic radiation: CMB constraints
	Interactions with relic radiation: Damping scales

	Global properties
	Simulations: Cosmological Box
	Simulations: Initial conditions / Cosmological parameters
	Simulations: Identifying haloes
	Halo mass function
	Halo properties: Shape
	Halo properties: Halo density profile
	Halo properties: Halo spin
	Non-linear matter powerspectrum

	Small-scale ''challenges'' & constraints
	Simulation Suite: MW-like Halos
	Simulation Suite: Zooms
	Missing satellite problem
	Too big to fail
	Structure constraints

	Conclusion

