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HYDRODYNAMICS

• Ideally, we would simulate every subatomic particle in the 
Universe	


• We cannot, so we make statistical approximations that we call 
density, pressure, viscosity, and turbulence	


• Fundamental things that gas (baryonic fluid) does:	


• shocks when it collides	


• mixes when 2 phases are moving parallel to one another 
(shear)



EXPLOSION

Sedov-Taylor Blastwave: Instant injection of thermal 
energy.  Shock front expands at known rate

hot

cool

Springel	

(2010)



GAS MIXES

Kelvin-Helmholz Test:  2 gas densities flow in 
opposite directions.  Initial perturbations given 

perpendicular to initial flow

high	

density

low	

density

Springel	

(2010)



GAS MIXES

Rayleigh-Taylor Test:  High density medium starts on top of low 
density medium and they mix (oil+vinegar)

high	

density

low 	

density

Springel	

(2010)



HYDRODYNAMIC 
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drodynamical simulations), a uniform background is used to
represent this radiation field. This background evolves with
redshift according to the cosmic star formation and quasar
luminosity histories (Haardt & Madau 2012).

Rees (1986) and Efstathiou (1992) showed that pho-
toionisation can prevent gas from cooling into low mass
halos. Wiersma et al. (2009) presented more detailed re-
sults that measured the effect of a uniform photoionisa-
tion background on individual ion species. Gnat & Ferland
(2012) extended this analysis to include a variety of ra-
diation fields that could vary due to proximity to galax-
ies. Oppenheimer & Schaye (2013a,b) explored the problem
with a full chemical network including all the ionisation
states of 30 elements in typical parcels of gas in the inter-
galactic medium (IGM) and found that the time it takes for
gas to reach ionisation equilibrium can lead to significant
changes in the state of gas in the IGM.

Cantalupo (2010) explored analytically the effect of lo-
cal sources of radiation on the cooling of halo gas including
the soft X-ray emission produced by star formation events,
a component that is absent within typical stellar popula-
tion synthesis models such as Starburst99 (Leitherer et al.
1999) (SB99) that only considers the blackbody radiation
from young massive stars. Such low energy photons do not
affect the cooling rate of high metallicity gas. However, mas-
sive stars are also strong X-ray sources due to their stellar
winds, supernova remnants and binary interactions. When
the high energy radiation from these sources is included in
gas cooling models, their radiation can ionise the metals and
can decrease the cooling rate of high metallicity gas consid-
erably. Gnedin & Hollon (2012) created a general model for
cooling in the presence of a radiation field near a galaxy
(including both stars and AGNs). They showed that for a
sufficiently general variation in the spectral shape and inten-
sity of the incident radiation field, the cooling and heating
functions can be approximated based only the photoioniza-
tion rates of a few important coolants.

In this paper, we follow the lead of Cantalupo (2010)
and Gnedin & Hollon (2012) in an attempt to self consis-
tently include local ionisation sources, in addition to the
uniform background of Haardt & Madau (2012), in cosmo-
logical simulations of galaxy formation.

One of the great challenges for including the effect of
photoionisation in simulations is the need to trace the radi-
ation as it propagates through the simulated volume. The
radiation field at any given point is dependent on the bright-
ness and distance to the source as well as the frequency de-
pendent optical depth of the material between the source
and sink. This makes the problem more expensive than the
O(N2) direct calculation of gravity.

Various solutions have been implemented for this com-
plex computational problem. Gnedin (2008) used the lo-
cal Sobolev approximation that calculates the column den-
sity from the density of a resolution element divided by
the size of that element. Altay et al. (2008) (sphray) and
Pawlik & Schaye (2008) (Traphic) both implemented so-
phisticated ray-tracing schemes in smoothed particle hydro-
dynamics (SPH) simulations. Altay & Theuns (2013) pre-
sented a recent update to SPHray. Petkova & Springel
(2011) traced radiation through AREPO, a code that solves
hydrodynamics on a moving mesh. For a review of how the
different schemes perform in a variety of common test cases,

see Iliev et al. (2009). The codes all show that reionisation
of the Universe happens in a non-uniform manner. While
such radiative transfer schemes are useful tools for studying
reionisation, these methods are so computationally demand-
ing that it is impossible to evolve a cosmological simulation
of galaxy formation much past z = 4.

Such models have been used in galaxies simulated to
z = 0 in post-process. Fumagalli et al. (2011) solved radia-
tive transfer on a high resolution grid to find that local ra-
diation ionises low column gas, but has little effect on the
statistics of Lyman limit and Damped Lyman alpha systems.
Rahmati et al. (2013) used traphic post-process and found
similar results. However, these studies do not yet explore the
impact of the radiation field on the galaxy evolution.

Since it is as yet unclear what the effect of including
local ionisation sources on galaxy evolution, we have decided
to take a simple approach to the calculation of the radiative
transfer, where possible. Our aim is to find a compromise
between simulating a galaxy in a cosmological context from
high redshift down to z = 0 and the precision of an on-the-
fly radiative transfer calculation.

In a companion paper, Woods et al. (in prep) will
present the details of the radiative transfer methods, which
is here summarized in section 4.2. This paper describes how
we calculate the cooling rates using that radiative trans-
fer method and presents a preliminary simulation based on
them. The paper is organized as follows: §2 presents the
details of the cooling calculation. §3 describes the photoion-
isation sources we explicitly consider in our calculation. §4
outlines the approximations used in our radiative transfer
approach while §5 describes the construction of the cooling
table. Finally, in section §6 and §7 we present the results of
our implementation of the local photoionisation feedback on
a test gas particle and on a fully cosmological simulation of
galaxy formation. Our conclusions are presented in §8.

2 GAS COOLING

A number of processes determine the internal heating (H)
and cooling (Λ) rates in the hydrodynamic energy equation:

Dϵ
Dt

= −
P
ρ
∇⃗.u⃗−

1
ρ
∇⃗.F⃗ +

1
ρ
Ψ+

H− Λ
ρ

(1)

where ϵ represents the specific internal energy of a parcel
of gas, P u⃗ represents the adiabatic work done on that gas,
F⃗ represents the flux of heat that is conducted out of the
parcel, and Ψ represents the viscous dissipation rate.

Both the heating and cooling rates are a function of the
density, ni, of each ion species present in the gas parcel, as
well as the parcel’s temperature, T , and incident radiation
field, Jν :

H − Λ
ρ

= f(ni, T, Jν) (2)

The density of each ion species is subject to a number
of creation and destruction processes, which in turn also
depend on nj , T and Jν :

ni = f(nj , T, Jν), j ̸= i. (3)

The densities of the ion species can be obtained using
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IDEAL SOLVER FOR 	

GALAXY FORMATION

• High resolution (dynamic range)	


• Accurate	


• What will you follow?	


• volume	


• mass



DETERMINING DENSITY, 
PRESSURE, DIV(V)

• When do you push versus get hot?	


• Grid: Mass stored in each cell, advected from cell to cell	


• SPH:  Must find neighboring particles and determine what 

volume they fill
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CALCULATING 
HYDRODYNAMICS ON GRID 

ρ

shock

Riemann problem

⇥�⌫ * ✓�⌃↵⌅ ��⇧"⌥�⇣ ��

��✏ ✓⇤ ⌃⇧ ⌥⌃✓✓ ✏ ⇤ ��+⌃⌦⌃✓⌅�⌥⌃✓ ��✏ ✓⇤ ⇠A��⇤⌧� /�� ! ⇧3 ⌅� ⌥���✓ ◆�⌅ ⌅�⌃⌅
A��⇤ ⌥⌃⌦ ⌃⌥⌥�↵⌦⌅ ⇣�⇧ �⇤ ✓���⌅ ✏�

 ⌦ �⇧✏ ⇧ ⌅� �⇥⌅⌃�⌦ ��✏ ✓ �⇧ ✏�⌥⌅��⌦⇤ ��⌅� ⌃ ��⌘� ⇧ ✓ ! ✓ �⇣ ⌥���✓ ◆�⌅ ⌅� 
⇣↵✓✓ �⇧�⌥ ⇤⇤ �⇣ ⌘⌃✓⌃◆ ⇣�⇧�⌃⌅��⌦ �⌃⇤ ⌅� ⇥ ⇤��↵✓⌃⌅ ✏� �↵⇤ ⌦↵� ⇧�⌥⌃✓ ⌥�✏ ⇤ ⌃⇧ 
⌦  ✏ ✏ ⌅�⌃⌅ ⌅⇧ ⌃⌅ ⌘⇧⌃!�⌅ ⌃⌦✏ ⌅� ��⇤�⌥⇤ �⇣ ⇥⌃⇧�⌦⇤ ⇤��↵✓⌅⌃⌦ �↵⇤✓� A↵⌥� ⌃ ⌥�✏ 
�↵⇤⌅ ⇥ ⌃⇥✓ ⌅� �⌦⌅ ⌘⇧⌃⌅ ⌅� <��⇤⇤�⌦  ;↵⌃⌅��⌦

�2⇣ = 4�G� ⇠4�5⌧

⌃⌦✏ ⌅� �✏⇧�✏⌦⌃��⌥  ;↵⌃⌅��⌦⇤1

✏�
✏t

+ �� · v = 0 ⇠4�4⌧

✏v
✏t

+
�P

�
= 0 ⇠4�G⌧

✏u
✏t

+ P� · v = 0 ⇠4�N⌧

� ⇤ ⌃⇧ ⌅� ⌥�⌦⌅�⌦↵�⌅  ;↵⌃⌅��⌦3 ⌅� ?↵✓ ⇧  ;↵⌃⌅��⌦ ⌃⌦✏ ⌅� 7⇧⇤⌅ ✓⌃� �⇣ ⌅� ⇧��+
✏⌦⌃��⌥⇤� ��⇤ �� ⌦ ⇤ ⌅ �⇣ ✏�0 ⇧ ⌦⌅�⌃✓  ;↵⌃⌅��⌦⇤ �⌃⇤ ⌅� ⇥ ⌥✓�⇤ ✏ ⇥ ⌃ �⇧�⇥✓ �
⇤� ⌥�7⌥  ;↵⌃⌅��⌦ �⇣ ⇤⌅⌃⌅ P (�, u) ���⌥� ⇧ ✓⌃⌅ ⇤ ⌅� �⇧ ⇤⇤↵⇧ P ⌅� ⌅� ✏ ⌦⇤�⌅ �
⌃⌦✏ ⌅� �⌦⌅ ⇧⌦⌃✓  ⌦ ⇧⌘ � ⇧ ↵⌦�⌅ �⌃⇤⇤ u ⇠⇢�✓⌃⌘  ⌅ ⌃✓� 4>>L⌧�

4�G ?↵✓ ⇧�⌃⌦ � ⌅��✏⇤

� ?↵✓ ⇧�⌃⌦ �⇧ ⌘⇧�✏ � ⌅��✏ ✏�⇤⌥⇧ ⌅�" ⇤ ⇤�⌃⌥ �⌦⌅� ⇤⌅⌃⌅��⌦⌃⇧ !�✓↵�  ✓ � ⌦⌅⇤�
8�⇧  ! ⇧ ��⇤�⌥⌃✓ ;↵⌃⌦⌅�⌅ ⌅�⌃⌅ �⇤  !�✓! ✏ �⌅⇤ !⌃✓↵ �⇤ ⌃⇤⇤�⌘⌦ ✏ ⌅�  ⌃⌥� ⇤�⌦⌘✓ 
!�✓↵�  ✓ � ⌦⌅� � ⇧ ⇣�⇧ ⌅�  ;↵⌃⌅��⌦⇤ �⇣ ��⌅��⌦ ⌃⇧ ⇤�✓! ✏ ⌃⌅ ⇤�⌃⌅�⌃✓✓ 7◆ ✏
��⇤�⌅��⌦⇤� �⌃⌅ � ⌃⌦⇤3 ⌅�⌃⌅ ⌅� �⌃⇧⌅�⌃✓ ⇠?↵✓ ⇧�⌃⌦⌧ ⌅�� ✏ ⇧�!⌃⌅�! ⌫/⌫t �⇤ �⌦⌅ +
⌘⇧⌃⌅ ✏ �⌦⇤⌅ ⌃✏ �⇣ ⌅� ⌅�⌅⌃✓ ⌅�� ✏ ⇧�!⌃⌅�! �  ⌦ ⌅��⇤ ⌃��⇧�⌃⌥� ⌅� E�� �⇣ ��⇤�⌥⌃✓
;↵⌃⌦⌅�⌅� ⇤ ✓�� �⌃⇤⇤3 ��� ⌦⌅↵� �⇧ ⌅� ⇧�⌃✓  ⌦ ⇧⌘ ⌅�⇧�↵⌘� ⌃ ⌘�! ⌦ !�✓↵�  ✓ +
� ⌦⌅ �⇤ ��✏ ✓✓ ✏� A�⌦⌥ ⌅� ⇤ ;↵⌃⌦⌅�⌅� ⇤ ⌃⇧ ✏�⇤⌥⇧ ⌅�" ✏ �⌦⌅� ⌅� �⌦✏�!�✏↵⌃✓ !�✓+
↵�  ✓ � ⌦⌅⇤ ✏�⇤⌥�⌦⌅�⌦↵�⌅� ⇤ �⌥⌥↵⇧ ⌃⌅ ⌅� ⌥ ✓✓ �⌦⌅ ⇧⇣⌃⌥ ⇤� ?↵✓ ⇧�⌃⌦ ⌥�✏ ⇤ ⇤�✓! 
⇣�⇧ ⌅� E↵◆ ⌅�⇧�↵⌘� ⌅� ⇧ ⇤� ⌥⌅�! �⌦⌅ ⇧⇣⌃⌥ ⇤ ⇥ ⇤�✓!�⌦⌘ ⌅� T� �⌃⌦⌦ �⇧�⇥✓ �
⇠⇣�⇧ ⌃ ⇧ ⌥ ⌦⌅ ⇧ !� �3 ⇤  ⇢�✓⌃⌘  ⌅ ⌃✓� 4>>L⌧� � T� �⌃⌦⌦ �⇧�⇥✓ � �⇤ ⌅� �⇧�⇥+
✓ � �⇣ ⌅�  !�✓↵⌅��⌦ �⇣ ✏�⇤⌥�⌦⌅�⌦↵�⌅� ⇤ ⌃⌦✏ �⌃⇤ � ✓✓ �⌦��⌦ ⇤�✓↵⌅��⌦⇤ ⇠�⌃⇧⌅V ⌃⌦✏
�]✓✓ ⇧ 4>>G⌧� A�⌦⌥ ?↵✓ ⇧�⌃⌦ � ⌅��✏⇤ ⇧ ✓  ◆�✓�⌥�⌅✓ �⌦ ⇤�✓↵⌅��⌦⇤ �⇣ ⌅� T� �⌃⌦⌦



SPH HYDRODYNAMIC 
CALCULATION
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approximation to the real underlying function. Unfortunately, for the irregular yet somewhat
ordered particle configurations encountered in real applications, a formal error analysis is not
straightforward. It is clear, however, that at the very least one should have h ≥ d , which translates
to a minimum of ∼33 neighbors in three dimensions.

Importantly, we see that the estimate for Fs (r) is defined everywhere (not only at the underlying
points) and is differentiable thanks to the differentiability of the kernel, albeit with a considerably
higher interpolation error for the derivative. Moreover, if we set F (r) = ρ(r), we obtain

ρs (r) ≃
∑

j

m j W (r − r j , h), (4)

yielding a density estimate based just on the particle coordinates and their masses. In general,
the smoothing length can be made variable in space, h = h(r, t), to account for variations in the
sampling density. This adaptivity is one of the key advantages of SPH and is essentially always
used in practice. There are two options to introduce the variability of h into Equation 4. One is
by adopting W [r − r j , h(r)] as kernel, which corresponds to the scatter approach (Hernquist &
Katz 1989). It has the advantage that the volume integral of the smoothed field recovers the total
mass,

∫
ρs (r)dr =

∑
i mi . However, the so-called gather approach, where we use W [r − r j , h(ri )]

as kernel in Equation 4, requires only knowledge of the smoothing length hi for estimating the
density of particle i, which leads to computationally convenient expressions when the variation
of the smoothing length is consistently included in the SPH equations of motion. Because the
density is only needed at the coordinates of the particles and the total mass is conserved anyway
(because it is tied to the particles), it is not important that the volume integral of the gather form
of ρs (r) exactly equals the total mass.

In the following, we drop the subscript s for indicating the smoothed field, and adopt as the
SPH estimate of the density of particle i the expression

ρi =
N∑

j=1

m j W (ri − r j , hi ). (5)

It is clear now why kernels with a finite support are preferred. They allow the summation to be
restricted to the Nngb neighbors that lie within the spherical region of radius 2h around the target
point ri, corresponding to a computational cost of order O(N ngb N ) for the full density estimate.
Normally this number Nngb of neighbors within the support of the kernel is approximately (or
exactly) kept constant by choosing the hi appropriately. Nngb, hence, represents an important
parameter of the SPH method and needs to be made large enough to provide sufficient sampling
of the kernel volumes. Kernels like the Gaussian, however, would require a summation over all
particles N for every target particle, resulting in an O(N 2) scaling of the computational cost.

If SPH were really a Monte-Carlo method, the accuracy expected from the interpolation errors
of the density estimate would be rather problematic. But the errors are much smaller because the
particles do not sample the fluid in a Poissonian fashion. Instead, their distances tend to equilibrate
due to the pressure forces, which makes the interpolation errors much smaller. Yet, they remain
a significant source of error in SPH and are ultimately the primary origin of the noise inherent in
SPH results.

Even though we have based most of the above discussion on the density, the general kernel
interpolation technique can also be applied to other fields and to the construction of differential
operators. For example, we may write down a smoothed velocity field and take its derivative to
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estimate the local velocity divergence, yielding the following:

(∇ · v)i =
∑

j

m j

ρ j
v j · ∇i W (ri − r j , h). (6)

However, an alternative estimate can be obtained by considering the identity ρ∇ ·v = ∇(ρv)−v·∇ρ

and computing kernel estimates for the two terms on the right-hand side independently. Their
difference then yields

(∇ · v)i = 1
ρi

∑

j

m j (v j − vi ) · ∇i W (ri − r j , h). (7)

This pair-wise formulation turns out to be more accurate in practice. In particular, it has the
advantage of always providing a vanishing velocity divergence if all particle velocities are equal.

2.2. Variational Derivation
The Euler equations for inviscid gas dynamics in Lagrangian (comoving) form are given by

dρ

dt
+ ρ∇ · v = 0, (8)

dv
dt

+ ∇ P
ρ

= 0, (9)

du
dt

+ P∇ · v = 0, (10)

where d/dt = ∂/∂t +v ·∇ is the convective derivative. This system of partial differential equations
expresses conservation of mass, momentum, and energy. Eckart (1960) has shown that the Euler
equations for an inviscid ideal gas follow from the Lagrangian

L =
∫

ρ

(
v2

2
− u

)
dV . (11)

This opens up an interesting route for obtaining discretized equations of motion for gas dynamics.
Instead of working with the continuum equations directly and trying to heuristically work out
a set of accurate difference formulas, one can discretize the Lagrangian and then derive SPH
equations of motion by applying the variational principles of classical mechanics, an approach
first proposed by Gingold & Monaghan (1982). Using a Lagrangian also immediately guarantees
certain conservation laws and retains the geometric structure imposed by Hamiltonian dynamics
on phase space.

We here follow this elegant idea, which was first worked out by Springel & Hernquist (2002),
with a consistent accounting of variable smoothing lengths. We start by discretizing the Lagrangian
in terms of fluid particles of mass mi, yielding

LSPH =
∑

i

(
1
2

mi v2
i − mi ui

)
, (12)

where it has been assumed that the thermal energy per unit mass of a particle can be expressed
through an entropic function Ai of the particle, which simply labels its specific thermodynamic
entropy. The pressure of the particles is

Pi = Aiρ
γ
i = (γ − 1)ρi ui , (13)
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SOLVING THE EQUATIONS
• Grid:  Solve the equations one by one for flux across cell 

boundaries	


• Discontinuities between cells resolved with Riemann shock 
equations	


• SPH:  Continuity and Force equation can be combined into 
one equation (Springel 2010 ARA&A)



PROBLEMS WITH METHODS

• Grid:  	


• No “Galilean invariance”⇒moving changes solution	


• Grid imprints itself on solution



GRID PROBLEM22 Hopkins et al.

Figure 7. Keplerian disk as Fig. 6, at time t = 600 (not a typo)! The inner
(r ⇠ 0.5) disk has executed > 250 orbits, at this time, without decaying or
disrupting.

Our PSPH method uses an improved artificial viscosity switch
proposed by Cullen & Dehnen (2010); this uses a least-squares
matrix-base gradient estimator (similar to our MFM and MFV
methods), which is zeroth-order accurate. This dramatically im-
proves the results, allowing semi-stable evolution to ⇠ 5� 10 or-
bits; however, we still see the viscous instability appear. The arti-
ficial viscosities are still excessively large in shear flows, and the
method still has zeroth and first-order errors in the hydrodynamic
forces together with first-order errors in the velocity gradient esti-
mator.22

Moreover, as noted in Hu et al. (2014), all SPH artificial vis-
cosity methods also produce excessively high numerical viscosi-
ties and disk breakup if the disk has modest internal turbulence
(enough to set a scale height h/R & 0.1), because then the artifi-
cial viscosity is “triggered” in the turbulent compressions, but can-
not be “removed” instantly.23 Once any artificial viscosity appears,

the both the “standard” SPH artificial viscosity and the time-dependent vis-
cosity method of Morris & Monaghan (1997), with or without the Balsara
(1989) switch (e.g. methods in PHANTOM, GASOLINE, GADGET-2, and
many other codes), undergo catastrophic fragmentation within . 2� 3 or-
bits.
22 Cullen & Dehnen (2010), in their similar test problem (Fig. 8 therein),
find that their method works well to ⇠ 5 orbits, which we confirm, but we
should note several differences between the test problem there and here.
They use an effectively higher resolution and a carefully chosen initial par-
ticle distribution following Cartwright et al. (2009) which minimizes the ar-
tificial viscosity noise, both of which delay breakup. They also set the min-
imum artificial viscosity in their method to zero, which gives good results
on this test but we find leads to significant particle disorder and potentially
catastrophic particle-interpenetration (where particles “move through” each
other) in poorly-resolved shocks (very common in real problems). We find
that the numerical parameters required for stable evolution in all other test
problems shown here lead to somewhat faster breakup than the “ideal” pa-
rameters for this test problem alone.
23 The standard prescription for “damping” artificial viscosity in PSPH,
in a supersonic disk, operates more slowly than the local dynamical time,
hence the viscous instability can grow.

Figure 8. Keplerian disk as Fig. 6, but in 3D, with the thin disk rotated out
of the x� y plane by an angle = ⇡/20. We show the gas density in a slice
through the x� z (y = 0) plane (we show �2.3 < x < 2.3, �1.15 < z <
1.15). The Lagrangian particle-based methods (TSPH, PSPH, MFM, MFV)
are invariant to such rotations, so we focus on the stationary-grid case. Top:
The disk has constant height h = 0.1 and is in equilibrium; it should be
preserved at all times. Middle: Stationary-grid result at time t = 10 (1.6
orbits at r = 1), at lower resolution (64⇥64⇥32). Bottom: Same, at higher
resolution (256⇥ 256⇥ 128). There is a strong grid-alignment effect (see
§ 5.2.4) whereby the disk is forced into alignment with the grid axes. This
leads to more rapid angular momentum loss than in the exactly-aligned case
in Fig. 6. It also produces an unphysical warp which becomes a “break” or
“tear” in the disk as the alignment occurs first locally (i.e. the disk aligns at
different heights) then globally.

the viscous instability grows rapidly. Hu et al. (2014) suppress this
with an additional, stronger switch that leads to instantaneous post-
shock viscosity decay. We have experimented with this, and find
it helps here but does not eliminate the viscous instability, and it
leads to significantly larger particle noise in all the shock problems
we consider below. Of course, we can evolve this problem perfectly
with SPH if we simply disable artificial viscosity entirely, but then
the method is disastrously unstable in real problems!

In grid methods, the numerical viscosity is much lower. How-
ever, as shown in § 5.2.2, advection errors in non-moving grids
are serious. We find (as have many others before) that these very
quickly diffuse the disk, spreading the mass around and seriously
distorting the shape of the disk before completely destroying its
structure within ⇠ 2 orbits. The inner parts lose angular momen-
tum until they form a hot, hydrostatic center, and the outer parts

c� 0000 RAS, MNRAS 000, 000–000



PROBLEMS WITH METHODS
• Grid:  	


• No “Galilean invariance”⇒moving changes solution	


• Grid imprints itself on solution	


• SPH:	


• Does not resolve shocks	


• Does not mix without encouragement: blob problem
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PROBLEMS WITH METHODS
• Grid:  	


• No “Galilean invariance”⇒moving changes solution	


• Grid imprints itself on solution	


• SPH:	


• Does not resolve shocks	


• Does not mix without encouragement: blob problem	


• Moving Mesh: 	


• Inaccuracies from solving equations on irregular cells



DIVIDING THE VOLUME
6 Hopkins et al.

Figure 1. Illustration of key conceptual differences between some of the methods here. For an irregularly distributed set of sampling/grid points or “particles”
(black circles) with locations xi, we require a way to partition the volume to solve the equations of hydrodynamics between them. Left: The meshless finite-mass
(MFM) and meshless finite-volume (MFV) methods here. The volume partition is given by the weighted kernel at each point (Eq. 6); here the red/green/blue
color channels represent the fraction of the volume at each point associated with the corresponding particle ( i(x)). Here we apply the same kernel function and
typical kernel “width” as in the text. Note that this returns a Voronoi tesselation with the boundaries “smoothed.” Despite the kernel function being spherical,
the domains associated with each particle are not, and the entire volume is represented. The fluid equations are then solved by integrating over the domain of
each particle. Center: The unstructured/moving-mesh partition. Now the boundaries are strict step functions at the faces given by the tesselation. Note that
this is (exactly) the limit of our MFM/MFV method for an infinitely sharply-peaked kernel function; technically the moving-mesh method is a special case of
the MFV method. The volume integrals are then reduced to surface integrals across the faces. Right: The SPH partition. In SPH the contribution to volume
integrals behaves as the kernel, centered on each particle location; the whole volume is “counted” only when the kernel size is infinitely large compared to
the inter-particle spacing (number of neighbors is infinite). The equations of motion are evaluated at the particle locations xi, using the weighted-average
volumetric quantities from the volume partition.

momentum, and locality of the hydrodynamic operations, the func-
tion W (x�xi, h(x)) must be continuous, have compact support (i.e.
have W = 0 for sufficiently large |x�xi|� h(x)), and be symmet-
ric (i.e. depend only on the absolute value of the coordinate differ-
ences |x� xi|, |y� yi|, etc.). Because of the normalization by !(x),
the absolute normalization of W is irrelevant; so without loss of
generality we take it (for convenience) to be normalized such that
1 =

R
W (x�x0, h(x))d⌫x0.

An example of this is shown in Fig. 1, with (for compari-
son), the volume partitions used in moving-mesh and SPH meth-
ods. We construct a two-dimensional periodic box of side-length
unity with three randomly placed particles, and use a cubic spline
kernel for W with smoothing length h set to the equivalent of what
would contain ⇡ 32 neighbors in 3D. We confirm that the entire
volume is indeed partitioned correctly, like a Voronoi tesselation
with the “edges” between particles smoothed (avoiding discontinu-
ities in the “remapping” as particles move). In the limit where W is
sufficiently sharply-peaked, we can see from Eq. 6 that we should
recover exactly a Voronoi tesselation, because 100% of the weight
( (x)) will be associated with the nearest particle. In fact, techni-
cally speaking, Voronoi-based moving-mesh methods are a special
case of the method here, where the function W is taken to the limit
of a delta function and the volume quadrature is evaluated exactly.

We now insert this definition of the volume partition into
Eq. 5, and Taylor-expand all terms to second order accuracy in
the smoothing length h(x) (e.g. f (x) = fi(xi)+h(xi)r f (x = xi) ·
(x � xi)/h(xi) +O(h(xi)

2); the algebra is somewhat tedious but
straightforward). Note that 1 =

P
i  i(x), and since the kernel has

compact support, |x� xi| ⇠ O(h(xi)) where W 6= 0. If we apply
this to the integral of an arbitrary function (and assume the kernel

function is continuous, symmetric, and compact) we obtain
Z

f (x)d⌫x =
X

i

Z
f (x) i(x)d⌫x (8)

=
X

i

fi(xi)

Z
 i d⌫x+O(hi(xi)

2) (9)

⌘
X

i

fi Vi +O(h2
i ) (10)

where Vi =
R
 i(x)d⌫ x is the “effective volume” of particle i (i.e.

the integral of its volume partition over all of space). Applying
the same to Eq. 5, evaluating the spatial integral, and dropping the
O(h2) terms, we obtain

0 =

Z
dt

X

i

(Vi Ui �̇i +Vi Fi · (r�)x=xi +Vi Si�i) (11)

where Fi · (r�)x=xi refers to the product of the matrix F with the
gradient of � evaluated at xi.

To go further, and remain consistent, we require a second-
order accurate discrete gradient estimator. Here, we can use locally-
centered least-squares matrix gradient operators, which have been
described in many previous numerical studies (Dilts 1999; Oñate
et al. 1996; Kuhnert 2003; Maron & Howes 2003; Maron et al.
2012; Tiwari & Kuhnert 2003; Liu et al. 2005; Luo et al. 2008;
Lanson & Vila 2008a,b). Essentially, for any arbitrary configura-
tion of points, we can use the weighted moments to defined a least-
squares best-fit to the Taylor expansion of any fluid quantity at a
central point i, which amounts to a simple (small) matrix calcula-
tion; the matrix can trivially be designed to give an arbitrarily high-
order consistent result, meaning this method will, by construction,
exactly reproduce polynomial functions across the particles up to
the desired order, independent of the spatial configuration of the

c� 0000 RAS, MNRAS 000, 000–000
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Figure 1. Illustration of key conceptual differences between some of the methods here. For an irregularly distributed set of sampling/grid points or “particles”
(black circles) with locations xi, we require a way to partition the volume to solve the equations of hydrodynamics between them. Left: The meshless finite-mass
(MFM) and meshless finite-volume (MFV) methods here. The volume partition is given by the weighted kernel at each point (Eq. 6); here the red/green/blue
color channels represent the fraction of the volume at each point associated with the corresponding particle ( i(x)). Here we apply the same kernel function and
typical kernel “width” as in the text. Note that this returns a Voronoi tesselation with the boundaries “smoothed.” Despite the kernel function being spherical,
the domains associated with each particle are not, and the entire volume is represented. The fluid equations are then solved by integrating over the domain of
each particle. Center: The unstructured/moving-mesh partition. Now the boundaries are strict step functions at the faces given by the tesselation. Note that
this is (exactly) the limit of our MFM/MFV method for an infinitely sharply-peaked kernel function; technically the moving-mesh method is a special case of
the MFV method. The volume integrals are then reduced to surface integrals across the faces. Right: The SPH partition. In SPH the contribution to volume
integrals behaves as the kernel, centered on each particle location; the whole volume is “counted” only when the kernel size is infinitely large compared to
the inter-particle spacing (number of neighbors is infinite). The equations of motion are evaluated at the particle locations xi, using the weighted-average
volumetric quantities from the volume partition.

momentum, and locality of the hydrodynamic operations, the func-
tion W (x�xi, h(x)) must be continuous, have compact support (i.e.
have W = 0 for sufficiently large |x�xi|� h(x)), and be symmet-
ric (i.e. depend only on the absolute value of the coordinate differ-
ences |x� xi|, |y� yi|, etc.). Because of the normalization by !(x),
the absolute normalization of W is irrelevant; so without loss of
generality we take it (for convenience) to be normalized such that
1 =

R
W (x�x0, h(x))d⌫x0.

An example of this is shown in Fig. 1, with (for compari-
son), the volume partitions used in moving-mesh and SPH meth-
ods. We construct a two-dimensional periodic box of side-length
unity with three randomly placed particles, and use a cubic spline
kernel for W with smoothing length h set to the equivalent of what
would contain ⇡ 32 neighbors in 3D. We confirm that the entire
volume is indeed partitioned correctly, like a Voronoi tesselation
with the “edges” between particles smoothed (avoiding discontinu-
ities in the “remapping” as particles move). In the limit where W is
sufficiently sharply-peaked, we can see from Eq. 6 that we should
recover exactly a Voronoi tesselation, because 100% of the weight
( (x)) will be associated with the nearest particle. In fact, techni-
cally speaking, Voronoi-based moving-mesh methods are a special
case of the method here, where the function W is taken to the limit
of a delta function and the volume quadrature is evaluated exactly.

We now insert this definition of the volume partition into
Eq. 5, and Taylor-expand all terms to second order accuracy in
the smoothing length h(x) (e.g. f (x) = fi(xi)+h(xi)r f (x = xi) ·
(x � xi)/h(xi) +O(h(xi)

2); the algebra is somewhat tedious but
straightforward). Note that 1 =

P
i  i(x), and since the kernel has

compact support, |x� xi| ⇠ O(h(xi)) where W 6= 0. If we apply
this to the integral of an arbitrary function (and assume the kernel

function is continuous, symmetric, and compact) we obtain
Z

f (x)d⌫x =
X

i

Z
f (x) i(x)d⌫x (8)

=
X

i

fi(xi)

Z
 i d⌫x+O(hi(xi)

2) (9)

⌘
X

i

fi Vi +O(h2
i ) (10)

where Vi =
R
 i(x)d⌫ x is the “effective volume” of particle i (i.e.

the integral of its volume partition over all of space). Applying
the same to Eq. 5, evaluating the spatial integral, and dropping the
O(h2) terms, we obtain

0 =

Z
dt

X

i

(Vi Ui �̇i +Vi Fi · (r�)x=xi +Vi Si�i) (11)

where Fi · (r�)x=xi refers to the product of the matrix F with the
gradient of � evaluated at xi.

To go further, and remain consistent, we require a second-
order accurate discrete gradient estimator. Here, we can use locally-
centered least-squares matrix gradient operators, which have been
described in many previous numerical studies (Dilts 1999; Oñate
et al. 1996; Kuhnert 2003; Maron & Howes 2003; Maron et al.
2012; Tiwari & Kuhnert 2003; Liu et al. 2005; Luo et al. 2008;
Lanson & Vila 2008a,b). Essentially, for any arbitrary configura-
tion of points, we can use the weighted moments to defined a least-
squares best-fit to the Taylor expansion of any fluid quantity at a
central point i, which amounts to a simple (small) matrix calcula-
tion; the matrix can trivially be designed to give an arbitrarily high-
order consistent result, meaning this method will, by construction,
exactly reproduce polynomial functions across the particles up to
the desired order, independent of the spatial configuration of the
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Figure 1. Illustration of key conceptual differences between some of the methods here. For an irregularly distributed set of sampling/grid points or “particles”
(black circles) with locations xi, we require a way to partition the volume to solve the equations of hydrodynamics between them. Left: The meshless finite-mass
(MFM) and meshless finite-volume (MFV) methods here. The volume partition is given by the weighted kernel at each point (Eq. 6); here the red/green/blue
color channels represent the fraction of the volume at each point associated with the corresponding particle ( i(x)). Here we apply the same kernel function and
typical kernel “width” as in the text. Note that this returns a Voronoi tesselation with the boundaries “smoothed.” Despite the kernel function being spherical,
the domains associated with each particle are not, and the entire volume is represented. The fluid equations are then solved by integrating over the domain of
each particle. Center: The unstructured/moving-mesh partition. Now the boundaries are strict step functions at the faces given by the tesselation. Note that
this is (exactly) the limit of our MFM/MFV method for an infinitely sharply-peaked kernel function; technically the moving-mesh method is a special case of
the MFV method. The volume integrals are then reduced to surface integrals across the faces. Right: The SPH partition. In SPH the contribution to volume
integrals behaves as the kernel, centered on each particle location; the whole volume is “counted” only when the kernel size is infinitely large compared to
the inter-particle spacing (number of neighbors is infinite). The equations of motion are evaluated at the particle locations xi, using the weighted-average
volumetric quantities from the volume partition.

momentum, and locality of the hydrodynamic operations, the func-
tion W (x�xi, h(x)) must be continuous, have compact support (i.e.
have W = 0 for sufficiently large |x�xi|� h(x)), and be symmet-
ric (i.e. depend only on the absolute value of the coordinate differ-
ences |x� xi|, |y� yi|, etc.). Because of the normalization by !(x),
the absolute normalization of W is irrelevant; so without loss of
generality we take it (for convenience) to be normalized such that
1 =

R
W (x�x0, h(x))d⌫x0.

An example of this is shown in Fig. 1, with (for compari-
son), the volume partitions used in moving-mesh and SPH meth-
ods. We construct a two-dimensional periodic box of side-length
unity with three randomly placed particles, and use a cubic spline
kernel for W with smoothing length h set to the equivalent of what
would contain ⇡ 32 neighbors in 3D. We confirm that the entire
volume is indeed partitioned correctly, like a Voronoi tesselation
with the “edges” between particles smoothed (avoiding discontinu-
ities in the “remapping” as particles move). In the limit where W is
sufficiently sharply-peaked, we can see from Eq. 6 that we should
recover exactly a Voronoi tesselation, because 100% of the weight
( (x)) will be associated with the nearest particle. In fact, techni-
cally speaking, Voronoi-based moving-mesh methods are a special
case of the method here, where the function W is taken to the limit
of a delta function and the volume quadrature is evaluated exactly.

We now insert this definition of the volume partition into
Eq. 5, and Taylor-expand all terms to second order accuracy in
the smoothing length h(x) (e.g. f (x) = fi(xi)+h(xi)r f (x = xi) ·
(x � xi)/h(xi) +O(h(xi)

2); the algebra is somewhat tedious but
straightforward). Note that 1 =

P
i  i(x), and since the kernel has

compact support, |x� xi| ⇠ O(h(xi)) where W 6= 0. If we apply
this to the integral of an arbitrary function (and assume the kernel

function is continuous, symmetric, and compact) we obtain
Z

f (x)d⌫x =
X

i

Z
f (x) i(x)d⌫x (8)

=
X

i

fi(xi)

Z
 i d⌫x+O(hi(xi)

2) (9)

⌘
X

i

fi Vi +O(h2
i ) (10)

where Vi =
R
 i(x)d⌫ x is the “effective volume” of particle i (i.e.

the integral of its volume partition over all of space). Applying
the same to Eq. 5, evaluating the spatial integral, and dropping the
O(h2) terms, we obtain

0 =

Z
dt

X

i

(Vi Ui �̇i +Vi Fi · (r�)x=xi +Vi Si�i) (11)

where Fi · (r�)x=xi refers to the product of the matrix F with the
gradient of � evaluated at xi.

To go further, and remain consistent, we require a second-
order accurate discrete gradient estimator. Here, we can use locally-
centered least-squares matrix gradient operators, which have been
described in many previous numerical studies (Dilts 1999; Oñate
et al. 1996; Kuhnert 2003; Maron & Howes 2003; Maron et al.
2012; Tiwari & Kuhnert 2003; Liu et al. 2005; Luo et al. 2008;
Lanson & Vila 2008a,b). Essentially, for any arbitrary configura-
tion of points, we can use the weighted moments to defined a least-
squares best-fit to the Taylor expansion of any fluid quantity at a
central point i, which amounts to a simple (small) matrix calcula-
tion; the matrix can trivially be designed to give an arbitrarily high-
order consistent result, meaning this method will, by construction,
exactly reproduce polynomial functions across the particles up to
the desired order, independent of the spatial configuration of the

c� 0000 RAS, MNRAS 000, 000–000

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO_files/gizmo.pdf

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO_files/gizmo.pdf


GALAXY FORMATION 	

INGREDIENTS	


• Hydrodynamics	


• Radiative gas cooling 

• Star Formation	


• Stellar Feedback



GAS COOLING CURVE
low	


Temp

optically thin approximation: calculating radiative transfer is expensive!



GALAXY FORMATION 	

INGREDIENTS	


• Hydrodynamics	


• Radiative gas cooling	


• Star Formation 

• Stellar Feedback



GAS-STAR FORMATION 
SURFACE DENSITY 

RELATIONSHIP

HI Molecular Gas Star Formation
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STAR FORMATION IN 
SIMULATION

★ ★

★★

~2%



STARS FORM FROM  
COOL, DENSE GAS

Tmax = 15000 K; nmin = 10 cm-3 (resolved density)	

Inherit kinematics and chemistry from parent gas

H O T  H A L O

D I S K  G A S

50x105 M☉
(310 pc)3

nth= 10 cm-3

nth=

highest	

resolved	

density



HOW DOES THAT WORK?

• Not well:  Massive cooling instabilities lead to many unstable clumps



HOW EFFICIENT IS STAR 
FORMATION IN OBSERVED 

GALAXIES?



CONNECTING SIMULATIONS  
TO OBSERVATIONS



MASS FUNCTION
Warren+ (2006)

Dark Matter 
Halos

19
74
Ap
J.
..
18
7.
.4
25
P

power	

law

exponential+



!

SLOAN DIGITAL SKY SURVEY



STELLAR MASS FUNCTION
luminosity translated to stellar mass	


Different shape from halo mass function!

Driver+ (2009)



MASS VS LIGHT

Warren+ (2006)

Dark Matter 
Halos

Baldry+ (2012)

Stellar Mass	

Function

Abundance matching	

How do we test? Clustering

Put brightest galaxy into most massive DM halo



CLUSTERING



CORRELATION FUNCTION

Zehavi+ (2005) Bright 	

galaxies

Faint



ABUNDANCE MATCHING
Clustering matches well!

Halos

Particles
Conroy+  
(2006)



ABUNDANCE MATCHING

• Star formation is low 
efficiency at all masses 
(10-20% of baryons at peak: 
MW mass)	


• Efficiency drops to low and 
high masses

Guo+ (2010)

Star Formation 
Efficiency



ABUNDANCE MATCHING 
COMPARED TO OTHER 

OBSERVATIONS

Behroozi+ (2010)

weak lensing

strong lensing
satellite dynamics



LOOKING BACK THROUGH 
TIME

z = 0-10



ABUNDANCE MATCHING 
EVOLUTION

Observed Luminosity Function evolution

Behroozi+ (2013)



ABUNDANCE MATCHING 
EVOLUTION

star formation histories are mass dependent:	

little galaxies form stars late

Moster+ (2013)

stellar	

accretion

star	

formation

High Mass Low Mass

Big BangToday



DARK MATTER ACCRETION
is not mass dependent in standard cosmology

Miller+ 	

(2006)



TAKE AWAY

•In real galaxies, star formation is inefficient 

•When stars forms depends on halo mass 

•Star formation history does not follow dark 
matter accretion history



HOW TO LIMIT STAR 
FORMATION?

• You’ve got gas cooling into galaxy disk	


• Two ways to stop it:	


• Stop gas from cooling so quickly	


• Blast gas away after it forms stars



OBSERVED 
OUTFLOWS

M82: the poster child 
for outflows



OBSERVED OUTFLOWS

4 Rubin et al.

TABLE 1
Summary of Observed Fields

Field R. A. Declination Exposure Time Number of Spectra Date
J2000 J2000 Blue Red

GOODS-N 12:36:24.21 +62:11:46.0 5 × 1800 + 1560 sec 2 × 1800 + 4 × 1680 sec 12 2008 May 30
GOODS-N 12:37:03.82 +62:16:23.1 4 × 1800 sec 4 × 1750 sec 15 2008 May 31
EGS 14:17:16.75 +52:29:03.6 6 × 1800 sec 3 × 1750 + 3 × 1450 sec 13 2008 May 30
EGS 14:20:47.03 +53:08:18.0 3 × 1800 + 2 × 1500 sec 3 × 1750 + 2 × 1450 sec 12 2008 May 31
EGS 14:19:29.13 +52:50:00.8 5 × 1840 + 1789 sec 5 × 1800 + 1792 sec 13 2009 Apr 03
GOODS-S 03:32:32.67 -27:45:24.5 6 × 1800 sec 6 × 1800 sec 16 2008 Oct 02
GOODS-S 03:32:29.97 -27:43:54.5 5 × 1800 + 2 × 1250 sec 5 × 1800 + 2 × 1200 sec 5 2008 Oct 03
GOODS-S 03:32:31.25 -27:49:58.2 4 × 1800 + 4 × 1500 sec 4 × 1800 + 4 × 1500 sec 9 2008 Nov 27
GOODS-S 03:32:33.54 -27:53:14.3 8 × 1800 sec 8 × 1800 sec 10 2008 Nov 28

rate u-band and optical photometry from the CFHTLS6,
near-IR photometry from Bundy et al. (2006), 4 bands
of IRAC imaging from Barmby et al. (2008), and MIPS
24µm imaging from MIPS GTO and FIDEL surveys.
In addition, we use NUV fluxes from the source cata-
log of the GALEX public data release GR6 in each of
our fields. Further details on the photometry we use
throughout this paper are given in Appendix B.

3. REDSHIFTS

One of the main goals of our analysis is to determine
the speed of cool gas relative to its host galaxy’s disk or
star-forming regions; therefore, accurate redshift mea-
surements are of primary importance. A full descrip-
tion of our method of redshift determination is given
in Appendix A, but here we summarize the most per-
tinent details. Redshift values are derived using an IDL
code adapted from the publicly available programs de-
veloped for the SDSS. This code calculates the best-fit
lag between observed spectra and a linear combination of
SDSS galaxy eigenspectra. We prefer redshift measure-
ments based on stellar absorption, as stellar continuum
emission better traces the systemic velocity of the asso-
ciated ensemble of dark matter and stars than nebular
emission from H II regions (e.g., Rodrigues et al. 2012).
Therefore, where possible (i.e., where the stellar contin-
uum S/N is sufficient), we mask nebular emission lines
in the data prior to redshift fitting.
From a comparison between our redshifts and those

measured by the TKRS and AEGIS surveys (see Fig-
ure A1c), we estimate that our measurements have an
rms uncertainty of 28 km s−1. This is consistent with
the redshift offsets found for galaxies which were ob-
served more than once during our LRIS survey (which
have a mean offset of 19 km s−1 and a maximum off-
set of 32 km s−1). The redshift distribution of the por-
tion of the sample for which cool gas kinematic measure-
ments are possible is shown in black in Figure 1a. The
median redshift of this sample is 0.619, and the mini-
mum and maximum redshifts are 0.310 and 1.384. The
redshift distribution of the portion of the sample whose
spectra have insufficient S/N for constraints on cool gas
kinematics is shown in gray; this distribution is shifted
to lower redshifts because of increasing atmospheric ex-
tinction, declining instrument sensitivity, and declining
galaxy continuum emission blueward of 3500 Å.

6 www.cfht.hawaii.edu/Science/CFHTLS-DATA/
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Fig. 1.— (a) Redshift distribution of the portion of the sample
having spectra with sufficient S/N to constrain cool gas kinemat-
ics (black). The redshift distribution of the portion of the sample
with insufficient S/N for cool gas kinematical constraints is shown
in gray. The latter galaxies are systematically at lower redshifts
than those with sufficient S/N, such that the Mg II and Fe II tran-
sitions are shifted to the blue extreme of our spectral coverage. (b)
Distribution of mean spectral S/N measured at rest wavelengths
2770 Å < λrest < 2780 Å and 2810 Å < λrest < 2820 Å for galax-
ies with no detected inflow or winds (black), winds (blue), inflows
(red), no detected absorption (magenta), and for galaxies whose
spectra have insufficient S/N to characterize cool gas kinematics
(gray). See Section 5.2 for further discussion of these categoriza-
tions.

4. HOST GALAXY PROPERTIES

4.1. Inclination and Morphology

We estimate the inclination (i) of our galaxies by sim-
ply assuming that i depends on the ratio of a galaxy’s
semi-minor (b) and semi-major (a) axes as cos i = b/a.
Such an assumption holds exactly for circular, infinitely
thin disks, and generally yields an inclination within
∼ 10◦ of the ‘true’ inclination for more realistic galax-
ies with smooth, triaxial structures (A. van der Wel, in
preparation). We measure this axis ratio in the reddest
available HST/ACS passband (i814 for galaxies in the
EGS and z850 for the remainder of the sample) in order to
trace the spatial distribution of the entire stellar popula-
tion as closely as possible. To measure galaxy major and
minor axes, we first obtain a segmentation map for each
object created by SExtractor (Bertin & Arnouts 1996).
For galaxies in the EGS, we use segmentation maps gen-
erated from the sum of the V606 and i814 images provided
by J. Lotz and described in Lotz et al. (2006). For galax-
ies in GOODS, we create SExtractor segmentation maps
from the z850-band images with the detection threshold
set to 0.6σ and a minimum detection area of 16 pixels.
We visually inspect the segmentation map for each ob-

They are observed frequently



GALAXY FORMATION 	
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HOW DO WE MODEL 
STELLAR FEEDBACK?

• Ideally, stellar feedback 
should do 3 things	


• Limit star formation	


• drive outflows	


• Provide turbulent 
pressure support in 
the disk

One of our	

particles

100 pc

105 M☉



• Problems	


• Dense gas cools fast          
(tcool < tdyn)	


• Small amount of hot gas 
has a large dynamical 
impact	


• How do you drive 
observed outflows?

One of our	

particles

100 pc

105 M☉

HOW DO WE MODEL 
STELLAR FEEDBACK?

Kinetic or  Thermal Feedback



THERMAL ADIABATIC FEEDBACK
Artificially delay cooling while SNII explode	


Thermal pressure causes outflows

Cooling	

disabledStar 	


forms



THERMAL FEEDBACK IN 
PHASE DIAGRAM

all SN energy packed into 1 particle at 1 time	

(Dalla Vecchia & Schaye 2012)

C O O L I N G   
O F F

C O O L I N G  
O N

D A L L A V E C C H I A 
&  S C H AY E  ( 2 0 1 2 )

All SN energy	

from 1 star 	


particle	

input at the 	

same time



PUTTING HYDRODYNAMICS INTO 
COSMOLOGICAL SIMULATIONS

• Input Physics	


• Hydrodynamics, star formation, supernova 
feedback, other stellar feedback	


• Run zoom simulations of Milky Way like galaxies



5 0  M P C



5 0  M P C



1 0 6 D M  
PA R T I C L E S  

I N  R V I R



A M I L L I O N  
1 0 5 M ☉  

G A S  
PA R T I C L E S  

I N  R V I R

Z O O M  I N I T I A L  C O N D I T I O N S



CHANGA
• Publicly available gravity + smoothed 

particle hydrodynamics solver	


• Optically thin radiative gas cooling 
(Shen+ 2010)	


• Star formation (Stinson+ 2006)	


• Stellar feedback (Dalla Vecchia & Schaye 
2012, Stinson+ 2013)



Gas



OVERCOOLING
MUGS Stinson et al (2010)

Too many stars form primarily in the center



FROM MUGS TO 
MAGICC*

Increase SN feedback

Kroupa + (1993)	

10% Mass SN

Chabrier (2003) 	

20% Mass SN

ESN = 0.4x1051 ergs / SN ESN = 1051 ergs / SN

* Making Galaxies in a Cosmological Context



TURN UP FEEDBACK
100% Supernova Efficiency (1051 erg)



see also Guo, Qi+ (2011)	

Behroozi+ (2012)



TURN UP FEEDBACK
100% Supernova Efficiency (1051 erg)



SUPERNOVA FEEDBACK
A hole

Supernovae



ETA CARINAE
< 3 Myr old, but stars already tearing gas apart



from Agertz+ 	

(2012)



EARLY STELLAR FEEDBACK
A solution

Supernovae

Early Stellar	

Feedback







S TA R  F O R M AT I O N  H I S T O R Y



S TA R  F O R M AT I O N  H I S T O R Y



S TA R  F O R M AT I O N  H I S T O R Y



S TA R  F O R M AT I O N  H I S T O R Y



THE MAGICC GALAXY
Match M★-Mhalo and see what happens

50 kpc

Movies at 	

www.mpia.de/	


~stinson/magicc

Stinson+ (2012b)

http://www.mpia.de


GALAXY FORMATION WITH 
HYDRODYNAMICS

• We are able to form realistic MW-like galaxies:	


• The right stellar mass	


• star formation history (different from DM 
accretion)



TOMORROW

• A wider selection of galaxy masses	


• A look at how the baryons affect dark matter



SN + ESF: MaGICC Strong SN only

Low SN FB:  MUGS


