Partitions d'entiers, statistiques quantiques et lois d'extremes
Alain Comtet
LPTMS, Orsay
Lundi 26/03/2007, 14:15
Salle Claude Itzykson, Bât. 774, Orme des Merisiers
Les partitions d'entiers sont en correspondance avec les etats quantiques
d'un systeme a N corps.En utilisant cette correspondance on peut calculer
l'asymptotique du nombre de partitions dans differents cas particuliers :
nombre de partitions avec ou sans restrictions ou avec un nombre fini de
termes. Ces asymptotiques font apparaitre des lois limites (lois
d'extremes) qui generalisent un resultat classique d'Erdos-Lehner.
Nous montrerons egalement comment les statistiques d'exclusion, qui
apparaissent dans certains modeles microscopiques en interaction tels que
le modele de Calogero ou le modele des anyons, peuvent etre decrites dans
ce contexte. Nous evoquerons le lien avec d'autres objets combinatoires
tels que les arbres.
Travaux en collaboration avec P. Leboeuf, S. Majumdar et S. Ouvry.