Entropie et localisation des fonctions propres
Stéphane Nonnenmacher
IPhT
Lundi 09/03/2009, 11:00
Salle Claude Itzykson, Bât. 774, Orme des Merisiers
Un aspect du ``chaos quantique'' concerne la localisation spatiale des fonctions propres de syst\`emes quantiques classiquement chaotiques. Je prendrai comme exemple principal le laplacien sur une vari\'et\'e de courbure n\'egative. On sait depuis longtemps que ``presque tous'' les modes propres deviennent \'equidistribu\'es sur la vari\'et\'e, dans la limite de haute fr\'equence, et on conjecture que cela est vrai pour tous ces modes (des exemples de modes non-\'equidistribu\'es existent pour des syst\`emes-jouets \`a temps discret). \par En utilisant un indicateur ``dynamique'' de localisation, l'entropie de Kolmogorov-Sinai, nous montrons que les modes de haute fr\'equence sont ``au plus \`a moiti\'e localis\'es''. Ce r\'esultat invalide la possibilit\'e de modes propres localis\'es le long d'une orbite p\'eriodique instable, qui avait \'et\'e sugg\'er\'ee par des \'etudes num\'eriques. \\ (travail commun avec Nalini Anantharaman).
Contact : Loic BERVAS

 

Retour en haut