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maps and distances: generalities
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⋄ vertices (here of degree 4)
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⋄ vertices
⋄ edges (with possibly loops or multiple edges)
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⋄ vertices
⋄ edges
⋄ faces with a single boundary (here of degree 3)
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⋄ vertices
⋄ edges
⋄ faces

→ pointed maps
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⋄ vertices
⋄ edges
⋄ faces

→ rooted maps
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dual (rooted) map
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dual (rooted) map
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dual (rooted) map
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coding of a (rooted) map by a (rooted) quadrangulation
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coding of a (rooted) map by a (rooted) quadrangulation
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coding of a (rooted) map by a (rooted) quadrangulation
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simple enumeration problems

enumerate, say planar quadrangulations with F faces
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distance statistics

enumerate, say planar quadrangulations with F faces
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distance statistics

enumerate, say planar quadrangulations with F faces
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distance statistics

enumerate, say planar quadrangulations with F faces

d 2
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and with 2 marked vertices at prescribed distance
→ distance profile
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enumerate, say planar quadrangulations with F faces

v3

1v

v2

and with 3 marked vertices
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enumerate, say planar quadrangulations with F faces

v 3
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enumerate, say planar quadrangulations with F faces

v

3d
vv2 3
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31d1d 2
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and with 3 marked vertices at prescribed pairwise distances
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number of geodesics

enumerate, say planar quadrangulations with F faces
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with 2 marked vertices

IHP 2009 – p. 13/126



number of geodesics

enumerate, say planar quadrangulations with F faces

1

v
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2

with 2 marked vertices
with marked geodesic paths → number of geodesic paths
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the bijection with mobiles
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from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces
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from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces
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from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces
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from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces
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from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces
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from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces
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end up with a well-labeled mobile
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well-labeled mobiles
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well-labeled mobiles
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well-labeled:

(i) positive integer labels
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well-labeled mobiles
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well-labeled:

(i) positive integer labels

(ii) at least one label 1
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well-labeled mobiles
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well-labeled:

(i) positive integer labels
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well-labeled mobiles→ maps

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled mobiles→ maps

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled mobiles→ maps

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled mobiles→ maps

going clockwise around the tree, each corner ℓ has a
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well-labeled mobiles→ maps

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled mobiles→ maps

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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other species of trees

mobilaceae family
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arbitrary degrees

start with a pointed planar map
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arbitrary degrees

start with a pointed planar map
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arbitrary degrees

start with a pointed planar map
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arbitrary degrees

start with a pointed planar map
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eulerian maps

start with an eulerian (face bi-colored) planar map
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eulerian maps

start with an eulerian (face bi-colored) planar map
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eulerian maps

start with an eulerian (face bi-colored) planar map
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eulerian maps

start with an eulerian (face bi-colored) planar map
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eulerian maps with blocked edges

start with an eulerian planar map with blocked edges
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eulerian maps with blocked edges

start with an eulerian planar map with blocked edges
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eulerian maps with blocked edges

start with an eulerian planar map with blocked edges
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eulerian maps with blocked edges

start with an eulerian planar map with blocked edges
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eulerian maps with hard particles

⋄ Consider eulerian maps with at most 1 particle per face
⋄ Decide to block or not edges between two occupied faces

origin

⋄ Weight −1 per blocked edge → selects hard-particle
configurations
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generating functions

for quadrangulations
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case of quadrangulations
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quadrangulations→ well-labeled trees

start with a pointed planar quadrangulation
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quadrangulations→ well-labeled trees

start with a pointed planar quadrangulation
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quadrangulations→ well-labeled trees

start with a pointed planar quadrangulation
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quadrangulations→ well-labeled trees

start with a pointed planar quadrangulation
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quadrangulations→ well-labeled trees

start with a pointed planar quadrangulation
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well-labeled trees
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well-labeled trees
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(i) positive integer labels

IHP 2009 – p. 30/126



well-labeled trees
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well-labeled:

(i) positive integer labels

(ii) there is at least one label 1
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well-labeled trees
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(i) positive integer labels

(ii) there is at least one label 1

(iii) labels vary by at most 1
between neighbors
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well-labeled trees→ quadrangulations

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled trees→ quadrangulations

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled trees→ quadrangulations

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled trees→ quadrangulations

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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well-labeled trees→ quadrangulations

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1

1

2 1

2

11

2

3

4

2

2

0

IHP 2009 – p. 31/126



well-labeled trees→ quadrangulations

going clockwise around the tree, each corner ℓ has a
successor ℓ− 1
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map-tree correspondence

pointed planar quadrangulation well-labeled tree
(with an origin vertex)
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map-tree correspondence

pointed planar quadrangulation well-labeled tree
(with an origin vertex)

vertices at distance ℓ vertices labeled ℓ
from the origin
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map-tree correspondence

pointed planar quadrangulation well-labeled tree
(with an origin vertex)

vertices at distance ℓ vertices labeled ℓ
from the origin

edges (ℓ− 1) ↔ ℓ corner labeled ℓ
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map-tree correspondence

pointed planar quadrangulation well-labeled tree
(with an origin vertex)

vertices at distance ℓ vertices labeled ℓ
from the origin

edges (ℓ− 1) ↔ ℓ corner labeled ℓ

marked edge (ℓ− 1) ↔ ℓ planted at a corner labeled ℓ
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map-tree correspondence

pointed planar quadrangulation well-labeled tree
(with an origin vertex)

vertices at distance ℓ vertices labeled ℓ
from the origin

edges (ℓ− 1) ↔ ℓ corner labeled ℓ

marked edge (ℓ− 1) ↔ ℓ planted at a corner labeled ℓ

rooted planar quadrangulation well-labeled tree planted
(with a root edge) at a corner labeled 1
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generating functions
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well-labeled:

(i) positive integer labels

(ii) there is at least one label 1

(iii) labels vary by at most 1
between neighbors
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generating functions
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well-labeled:

(i) positive integer labels

(ii) there is at least one label 1

(iii) labels vary by at most 1
between neighbors

gen. func. for trees planted at a corner with label ℓ with a
weight g per edge:

• without cond. (ii) → Rℓ(g)
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generating functions
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well-labeled:

(i) positive integer labels

(ii) there is at least one label 1

(iii) labels vary by at most 1
between neighbors

gen. func. for trees planted at a corner with label ℓ with a
weight g per edge:

• without cond. (ii) → Rℓ(g)

• with cond. (ii) → Gℓ(g) = Rℓ(g) − Rℓ−1(g), R0 ≡ 0
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generating functions
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1
well-labeled:

(i) positive integer labels

(ii) there is at least one label 1

(iii) labels vary by at most 1
between neighbors

gen. func. for trees planted at a corner with label ℓ with a
weight g per edge:

• without cond. (ii) → Rℓ(g)

• with cond. (ii) → Gℓ(g) = Rℓ(g) − Rℓ−1(g), R0 ≡ 0

→ G1 = R1: gen. func. for rooted planar quadrangulations
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recursion relations

Rℓ =
1

1 − g(Rℓ+1 +Rℓ + Rℓ−1)

ℓ
ℓ−1

+1+1

ℓ

ℓ
ℓ

with R0 = 0.

Rℓ
ℓ→∞→ R with R = 1/(1 − 3 g R), namely

R =
1 −√

1 − 12 g

6g

R is the gen. func. of quadrangulations with an origin and a
marked edge
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R|gn = 3n cat(n)

with

cat(n) ≡ 1

n+ 1

(

2n

n

)

~Q(n) =
2

n+ 2
× 3n cat(n)

Q•(n) =
1

2n
× 3n cat(n)

Q(n) =
1

2n(n+ 2)
× 3n cat(n)
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solution

Rℓ = R
(1 − xℓ)(1 − xℓ+3)

(1 − xℓ+1)(1 − xℓ+2)
= R

[ℓ][ℓ+ 3]

[ℓ+ 1][ℓ+ 2]

where

[ℓ] ≡ 1 − xℓ

1 − x

and where x+ x−1 + 1 = 1/(g R2), namely

x =
1 − 24g −√

1 − 12g +
√

6
√

72g2 + 6g +
√

1 − 12g − 1

2(6g +
√

1 − 12g − 1)
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statistics of the distance

between two points
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two-point function

a marked origin + a marked vertex at distance m = d12

⇔ well-labeled tree with a marked vertex with label m
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two-point function

a marked origin + a marked vertex at distance m = d12

⇔ well-labeled tree with a marked vertex with label m

m

⋄ marked corner with label m: Rm
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two-point function

a marked origin + a marked vertex at distance m = d12

⇔ well-labeled tree with a marked vertex with label m

m

⋄ marked vertex with label m: Lm = logRm
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two-point function

a marked origin + a marked vertex at distance m = d12

⇔ well-labeled tree with a marked vertex with label m

m

⋄ marked vertex with label m: Lm = logRm

⋄ impose min
v∈ tree

ℓ(v) ≥ 1
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two-point function

a marked origin + a marked vertex at distance m = d12

⇔ well-labeled tree with a marked vertex with label m

m

⋄ marked vertex with label m: Lm − Lm−1 = log(Rm/Rm−1)
⋄ impose min

v∈ tree
ℓ(v) = 1
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two-point function

a marked origin + a marked vertex at distance m = d12

⇔ well-labeled tree with a marked vertex with label m

Qd12
(g) =























log

(

([d12])
2[d12 + 3]

[d12 − 1]([d12 + 2])2

)

for d12 ≥ 2

log

(

R
[1][4]

[2][3]

)

for d12 = 1

≡ generating function for doubly-pointed quadrangulations
whose two marked (and distinguished) vertices are at
distance d12 from each other
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distance profile
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local limit

0.00250.0050.0075 0.01 0.01250.0150.0175

2.8

2.85

2.9

2.95

1/
<    >(   )nv1

n3

immediate neighbors

IHP 2009 – p. 40/126



local limit
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local limit
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limit laws

for large maps
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local limit

write

g =
1

12
(1 − ǫ2)

Rℓ = αℓ + βℓ ǫ+ γℓ ǫ
2 + δℓǫ

3 + · · ·

αℓ =
2ℓ(ℓ+ 3)

(ℓ+ 1)(ℓ+ 2)
βℓ = 0 γℓ = −ℓ(ℓ+ 3)(3ℓ2 + 9ℓ− 2)

5(ℓ+ 1)(ℓ+ 2)

δℓ =
ℓ(ℓ+ 3)(5ℓ4 + 30ℓ3 + 59ℓ2 + 42ℓ+ 4)

35(ℓ+ 1)(ℓ+ 2)

and the leading singularity (odd power in ǫ) gives

Rℓ|gn ∼ 12n

√
πn5/2

3

4
δℓ
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distance statistics

the average number 〈eℓ〉 of edges at distance ℓ (i.e.
ℓ− 1 ↔ ℓ) in infinite quadrangulations is

〈eℓ〉 = lim
n→∞

(Rℓ − Rℓ−1)|gn

R|gn/(2n)
=

3

2
(δℓ − δℓ−1)

one gets

〈eℓ〉 =
6

35

(ℓ2 + 2ℓ− 1)(5ℓ4 + 20ℓ3 + 27ℓ2 + 14ℓ+ 4)

ℓ(ℓ+ 1)(ℓ+ 2)

ℓ→∞∼ 6

7
ℓ3

→ fractal dimension dF = 4
NB: 〈e1〉 = 4 obvious from Euler’s relation
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log(Rℓ) = α̃ℓ + β̃ℓ ǫ+ γ̃ℓ ǫ
2 + δ̃ℓǫ

3 + · · ·

β̃ℓ = 0 δ̃ℓ =
5ℓ4 + 30ℓ3 + 59ℓ2 + 42ℓ+ 4

70

and the leading singularity gives

log(Rℓ)|gn ∼ 12n

√
πn5/2

3

4
δ̃ℓ
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the average number 〈vℓ〉 of vertices at distance ℓ in infinite
quadrangulations is given by

〈vℓ〉 =
3

35

(

(ℓ+ 1)(5ℓ2 + 10ℓ+ 2) + δℓ,1
)

i→∞∼ 3

7
ℓ3

first values:

〈e1〉 = 4 〈e2〉 = 19 〈e3〉 =
1234

25

〈v1〉 = 3 〈v2〉 =
54

5
〈v3〉 =

132

5
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scaling limit

take ℓ large as ℓ = u ǫ−1/2 with u finite → scaling function F :

Rℓ = 2(1 − ǫ F(u)) + O(ǫ3/2)

whose small u behavior can be read off the local limit

αℓ = 2− 4

u2
ǫ+O(ǫ3/2), γℓǫ

2 = −3u2

5
ǫ+O(ǫ3/2), δℓǫ

3 =
u4

7
ǫ+O(ǫ3/2)

Rℓ = 2 − ǫ

(

4

u2
+

3u2

5
− u4

7
+ O(u5)

)

+ O(ǫ3/2)

from the exact solution, one finds

F(u) = 1 +
3

sinh2
(

√

3/2u
)
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scaling limit (fixed n)

by a change of variables g → V ≡ gR, we have

Rℓ|gn =

∮

dg

2iπgn+1
Rℓ(g) =

∮

dV (1 − 6V )

2iπ(V (1 − 3V ))n+1
Rℓ(g)

for large n and in the scaling limit

ℓ = rn1/4

do a saddle point calculation

V =
1

6

(

1 + i
ξ√
n

)

, g =
1

12

(

1 +
ξ2

n

)
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use previous formulas with

ǫ =
−i ξ√
n

u = r
√

−i ξ

Rℓ = 2

(

1 +
iξ√
n
F(r

√

−iξ)

)

where F(u) = 1+
3

sinh2(
√

3/2 u)

hence the large n limit

Rℓ|gn ∼ 2
12n

πn3/2

∫ ∞

−∞
dξξ2e−ξ2

(

F
(

r
√

−iξ
))
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probability Φ(r) for a point (vertex or edge) to be at
geodesic distance less than r:

Φ(r) =
4√
π

∫ ∞

0
dξξ2e−ξ2

{

1 − 6
1 − cosh(r

√
3ξ) cos(r

√
3ξ)

(

cosh(r
√

3ξ) − cos(r
√

3ξ)
)2

}

probability density ρ(r) for a point (vertex or edge) to be at
geodesic distance r

ρ(r) =
dΦ(r)

d r
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0.2

0.4

0.6
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1

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

r

ρ(  )

r

Φ(  )r r

ρ(r)
r→0∼ 3

7
r3, ρ(r)

r→∞∼ exp

(

−3

4
32/3r4/3

)

in agreement with 〈vℓ〉 and Fisher’s law δ = 4
3 = 1

1−ν with

ν = 1
4 = 1

dF
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statistics of geodesics
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quadrang. with a marked geodesic

3
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1

2

1 11 1
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0

j+ 1j+

1 1

j j

1

1

ℓ
ℓ
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3

0

1 1

0

1 1
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33

1

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ
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ℓ

ℓℓ
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=
1

−1

−jZ
U =

Uj

ℓ

ℓ

ℓ

ℓℓ
Z = ΣZ −

j=

0

i

1 1 11

i

j

0
11

i

0
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U2(g) = g + 10g2 + . . .

21

0

2

2

0

11
1

2

0

11
2

2

0

11

2
2

0

11

3

2

0

11
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2

0

11

2

2

0

11
2

2

0

11
1

2

0

11 1

2

0

111
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collection of geodesics

00 0

ℓ ℓℓ
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local limit

Zℓ = Aℓ − Cℓ ǫ
2 +

2

3
Dℓǫ

3 + · · ·

Aℓ = 2ℓ l + 3

3(ℓ+ 1)
, Dℓ = 2ℓ ℓ(ℓ+ 2)(ℓ+ 3)(ℓ+ 4)(3ℓ2 + 12ℓ+ 13)

420(ℓ+ 1)

Uℓ = aℓ − cℓ ǫ
2 +

2

3
dℓǫ

3 + · · ·

aℓ = Aℓ −
ℓ−1
∑

j=1

ajAℓ−j , dℓ = Dℓ −
ℓ−1
∑

j=1

(ajDℓ−j + djAℓ−j)

introduce Â(t) =
∑

ℓ≥1Aℓt
ℓ, · · ·

â(t) =
Â(t)

1 + Â(t)
, d̂(t) =

D̂(t)

(1 + Â(t))2
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→ exact expression for d̂(t)

d̂(t) = 4t+
80

3
t2 + 132t3 + · · ·

〈geods〉1 = d1 = 4

〈geods〉2 = d2 =
80

3
〈geods〉3 = d3 = 132
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large ℓ behavior of dℓ ?

Aℓ ∼
2ℓ

3
(1 +

2

ℓ
) → Â(t) ∼ 1

3(1 − 2t)
− 2

3
log(1 − 2t)

Dℓ ∼
2ℓℓ5

140
→ D̂(t) ∼ 6

7(1 − 2t)6

â(t) ∼ 1−3(1 − 2t)−6(1 − 2t)2 log(1 − 2t) → aℓ ∼
2ℓ 12

ℓ3

d̂(t) ∼ 54

7(1 − 2t)4
→ dℓ ∼

2ℓ 9ℓ3

7

dℓ ∼ (3 × 2ℓ) × 3

7
ℓ3

IHP 2009 – p. 63/126



collection of geodesics

U
(k)
ℓ = a

(k)
ℓ − c

(k)
ℓ ǫ2 +

2

3
d
(k)
ℓ ǫ3 + · · ·

d
(k)
ℓ = k × (3 × 2ℓ)k × 3

7
ℓ3

Ũ
(k)
ℓ = ã

(k)
ℓ − c̃

(k)
ℓ ǫ2 +

2

3
d̃
(k)
ℓ ǫ3 + · · ·

d̃
(k)
ℓ = k (aℓ)

k−1dℓ

d̃
(k)
ℓ = k × (3 × 2ℓ)k × 4k−13

7
ℓ6−3k

number of vertices at distance ℓ reached by k avoiding

geods = 4k−13

7
ℓ6−3k
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scaling limit (exponents)

the average number of pairs of points linked by k avoiding
geods and at rescaled distance in the range [r, r + dr]
behaves as

n× (n1/4)6−3kn1/4dr × ρ(k)(r)

with
ρ(k)(r)

r→0∼ r6−3k

⇒ n(11−3k)/4

k = 1 : n2

k = 2 : n5/4

k = 3 : n1/2
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scaling limit (scaling functions)

g = 1
12(1 − ǫ2), ℓ = u ǫ−1/2

Rℓ ∼ 2(1 − ǫ F(u)),
Zℓ

2ℓ
∼ 1

3
+ ǫ1/2 H(u),

Uℓ

2ℓ
∼ ǫ3/2 L(u)

F(u) = −3
d

du
H(u), L(u) = 9

d2

du2
H(u) = −3

d

du
F(u)

scaling limit ℓ = r n1/4

Uℓ|gn ∼ 12n

2
√
πn5/2

(3 · 2ℓ) n ρ(r)
1

n1/4

U
(k)
ℓ |gn ∼ 12n

2
√
πn5/2

k(3 · 2ℓ)k n ρ(r)
1

n1/4

→ no new scaling function
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Ũ
(2)
ℓ

22ℓ
=

(

Uℓ

2ℓ

)2

∼ ǫ3 (L(u))2

nŨ
(2)
ℓ |gn ∼ 12n

2
√
πn5/2

2(3 · 2ℓ)2 n5/4 ρ(2)(r)
1

n1/4

with the new scaling function

ρ(2)(r) =
1

9
√
π

∫ ∞

−∞
dξ ξ4e−ξ2(L(r

√

−iξ)
)2
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ρ(2)(r)

(2)

0.5 1 1.5 2 2.5

0.25

0.5

0.75

1

1.25

1.5

1.75

ρ  (  )
12/7

r

r
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Ũ
(3)
ℓ

23ℓ
=

(

Uℓ

2ℓ

)3

∼ ǫ9/2 (L(u))3

nŨ
(3)
ℓ |gn ∼ 12n

2
√
πn5/2

3(3 · 2ℓ)3 n1/2 ρ(3)(r)
1

n1/4

with the new scaling function

ρ(3)(r) =
2

81
√
π

∫ ∞

−∞
dξ
ξ5

i
e−ξ2√−iξ

(

L(r
√

−iξ)
)3
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ρ(3)(r)

(3)

0.5 1 1.5 2 2.5 3
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r

~48/(     )r7
rρ  (  ) 3
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ρ(3)(r)

3 (3)

0.5 1 1.5 2 2.5 3

2

4

6

8

ρ  (  )r

r

48/7

r
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three-point statistics
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Miermont’s bijection

start with a multiply-pointed planar quadrangulation
with p marked vertices (=sources) distinguished as
v1, · · · , vp and satisfying d(vi, vj) ≥ 2

v

v

3

1

2v
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Miermont’s bijection

natural labeling: ℓ(v) ≡ min
j=1,...p

d(v, vj)

v

v

3

1

2v

IHP 2009 – p. 73/126



one can favor/penalize some of the sources by attaching to
each source vi a delay τi =integer

2

1

3

v

v

v

=0

τ2=1

3

1

τ

τ

=2
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this defines a “delayed distance" from v to the source vj:

ℓj(v) ≡ d(v, vj) + τj

a vertex v now receives the label:

ℓ(v) ≡ min
j=1,...p

ℓj(v) = min
j=1,...p

(d(v, vj) + τj)

which is the “distance" to the closest source, where the
distance from vj incorporates a penalty τj
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we choose delays so that:

⋄ |τi − τj| < d(vi, vj) ∀i 6= j (cond. 1)

→ ensures that ℓ(vi) = τi

⋄ τi − τj = d(vi, vj) mod 2 (cond. 2)

→ ensures that the parity of ℓj(v) is independent of j so that
again |ℓ(v) − ℓ(v′)| = 1 for v and v′ neighbors
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1=0

τ3=2

τ2=1

τ

2

4 1

0

31

2

3

2

4

3

2
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faces→ edges

ℓ

ℓ ℓ ℓℓ

ℓ

ℓℓ

+1+1 +1

+2

+1
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faces→ edges

ℓ

ℓ ℓ

ℓℓ

ℓ

ℓℓ+1

+2

+1 +1 +1

same rules as in Schaeffer’s bijection
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2
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1F

F F3
2

2

4 1

31

2

3

2

0

4

3

2

end up with a planar well-labeled map with p faces
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well-labeled maps

1F

F F3
2

2

4 1

31

2

3

2

0

4

3

2

well-labeled:
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well-labeled maps

1F

F F3
2

2

4 1

31

2

3

2

0

4

3

2

well-labeled:

⋄ labels vary by at most 1 between neighbors

|ℓ(v) − ℓ(v′)| ≤ 1 if v and v′ are neighbors on the map
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well-labeled maps

1F

F F3
2

2

4 1

31

2

3

2

0

4

3

2

well-labeled:

⋄ labels vary by at most 1 between neighbors

|ℓ(v) − ℓ(v′)| ≤ 1 if v and v′ are neighbors on the map

⋄ min
v incident to Fi

ℓ(v) = 1 + τi
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bijection: for fixed given delays

p-pointed quadrangulations

with marked vertices satisfying
⋄ d(vi, vj) > |τi − τj | ∀ i 6= j
⋄ d(vi, vj) = τi − τj mod 2

m

well-labeled maps with p faces

with labels satisfying
⋄ |ℓ(v) − ℓ(v′)| ≤ 1 if v and v′ are neighbors
⋄ min

v incident to Fi

ℓ(v) = 1 + τi
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this coding keeps track of some of the distances:

if v is incident to Fi, then the minimum of ℓj = d(v, vj) + τj is
reached for j = i and therefore:

d(v, vi) = ℓ(v) − τi

Fi
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planar maps are classified according to their backbone

F

2

1

F

F

3
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planar maps are classified according to their backbone

F

2

1

F

F
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planar maps are classified according to their backbone

F

2

1

F

F

3
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planar maps are classified according to their backbone

F

1

F

F

3

2
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planar maps are classified according to their backbone

F

1

F

F

3

2

IHP 2009 – p. 83/126



planar maps are classified according to their backbone

F

F

3

2

1

F

all vertices have degree ≥ 3 ⇒ finite number of backbones
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case of 3 marked vertices

planar maps with 3 (distinguished) faces

→ seven possible backbones

1

F

F

1F

F2 3F F2 3F
1 2 FF 3

F13F 1F 2F

1
2F F3 3F

2F 3F
F1 2FF
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map = backbone + attached trees

F

1

2 3

F

F
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distance parametrization

for 3 points, we can use the following parametrization:

d12 ≡ d(v1, v2) = s+ t

d23 ≡ d(v2, v3) = t+ u

d31 ≡ d(v3, v1) = u+ s

v
12

d
23d 31

s t

u

1 2

3

v

v

d

with s, t, u integers, s, t, u ≥ 0 and at most one may vanish
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choice of delays

idea: relate the delays to the distances, namely choose:

τ1 = −s , τ2 = −t , τ3 = −u

⋄ τ1 − τ2 = −s+ t = s+ t mod 2 = d(v1, v2) mod 2

⋄ |τ1 − τ2| = |d23 − d31| ≤ d12 (triangular inequalities)
and equality only if the 3 vertices are “aligned":
for instance d23 − d31 = d12 only if v1 lies on a geodesic path
between v2 and v3 (i.e. s = 0)

• assume that the 3 vertices are not aligned ⇔ s, t, u > 0
• treat later the case of aligned vertices (includes the case
when two vertices are immediate neighbors)
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new constraint on labels:
⋄ vertex on the boundary between two faces

geodesicgeodesic

F

1v

2

v

v
1F

2

length = ℓ(v) − τ1 + ℓ(v) − τ2 = 2ℓ(v) + (s+ t) ≥ s+ t = d12

⇒ ℓ(v) ≥ 0 for vertices on boundaries of the well-labeled
map
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F

2

1

v

geodesicv

v

2
v’

F
1

s+ t = d12 = ℓ(v) − τ1 + ℓ(v′) − τ2 + d(v, v′)
= ℓ(v) + ℓ(v′) + d(v, v′) + s+ t

⇒ ℓ(v) + ℓ(v′) + d(v, v′) = 0
⇒ v = v′ and ℓ(v) = 0

F1 and F2 must have a common boundary (+ permutations)
∃ label 0 on each boundary
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rules out backbones of type:

the only possible backbones are those of type 2

1

3

and those of type
3

2
1

3
2

3 1 1 2

in practice, the latter can be viewed as degenerate cases of
the former when one of the boundaries reduces to a single
vertex.
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rules on labels

3

F1

2F F

min ℓ(v) = 0

min ℓ(v) = 1 − s

min ℓ(v) = 1 − t min ℓ(v) = 1 − u

min ℓ(v) = 0

min ℓ(v) = 0
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bijection:
triply-pointed quadrangulations

with marked vertices at prescribed pairwise distances
d12 = s+ t, d23 = t+ u and d31 = u+ s with s, t, u > 0

m
well-labeled maps with 3 faces

with a backbone 2

1

3

or its degenerate versions

3
2

1
3

2
3 1 1 2
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bijection:
triply-pointed quadrangulations

with marked vertices at prescribed pairwise distances
d12 = s+ t, d23 = t+ u and d31 = u+ s

m
well-labeled maps with 3 faces

with a backbone 2

1

3

or its degenerate versions

3
2

1
3

2
3 1 1 2

or its degenerate versions
3

2 3 1
1 2
3 1 2
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aligned case

if v3 lies between v1 and v2 (d31 = s, d23 = t, d12 = s+ t)
apply Miermont’s construction on v1 and v2 only, with delays
τ1 = −s and τ2 = −t

2

3
v

1F

F

min ℓ(v) = 1 − s

ℓ(v) = 0
min ℓ(v) = 1 − t

min ℓ(v) = 0
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enumeration of well-labeled maps

3

F1

2F F

min ℓ(v) = 0

min ℓ(v) = 1 − s

min ℓ(v) = 1 − t min ℓ(v) = 1 − u

min ℓ(v) = 0

min ℓ(v) = 0
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reminder: the generating function for well-labeled trees
planted at a label ℓ and with the condition:

min
v∈ tree

ℓ(v) ≥ 1

is given by

Rℓ = R
[ℓ][ℓ+ 3]

[ℓ+ 1][ℓ+ 2]
where [ℓ] ≡ 1 − xℓ

1 − x
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reminder: the generating function for well-labeled trees
planted at a label ℓ and with the condition:

min
v∈ tree

ℓ(v) ≥ 1

is given by

Rℓ = R
[ℓ][ℓ+ 3]

[ℓ+ 1][ℓ+ 2]
where [ℓ] ≡ 1 − xℓ

1 − x

if we wish instead: min
v∈ tree

ℓ(v) ≥ 1 − s

this generating function is nothing but: Rℓ+s

as obtained by a simple shift by s of all labels
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consider the generating function Fs,t,u(g)

3

F1

2F F

min ℓ(v) = 0

min ℓ(v) = 0

min ℓ(v) = 0

min ℓ(v) ≥ 1 − umin ℓ(v) ≥ 1 − t

min ℓ(v) ≥ 1 − s
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consider the generating function Fs,t,u(g)

3

ℓ

F1

2F F

min ℓ(v) = 0

min ℓ(v) = 0

min ℓ(v) = 0

ℓ
R

+tR

+s

ℓ
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consider the generating function Fs,t,u(g)

0

0
first 0

0

0

0

3

F1

2F F
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consider the generating function Fs,t,u(g)

00

0

first 0 0
0

0
0

0

0 0

0
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consider the generating function Fs,t,u(g)

0

first 0 0
0

00

Xs,t Xt,u Xu,s
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consider the generating function Fs,t,u(g)

Xs,t Xt,u Xu,s

Ys,t,u

Ys,t,u
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Fs,t,u(g) = Xs,tXt,uXu,s(Ys,t,u)2

Xs,t Xt,u Xu,s

Ys,t,u

Ys,t,u
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ℓ

ℓ

ℓ

ℓ

ℓ

ℓℓ

ℓℓℓ

ℓ

=0
=0

=0

0=

+t+s

0
g  RR

m

0 1 2

0

1

2

m

Xs,t =
∑

m≥0

∑

motzkin paths of length m

M=(0=ℓ0,ℓ1,...,ℓm=0)

m−1
∏

k=0

g Rℓk+sRℓk+t
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recursion relation:

Xs,t = 1 + gRsRtXs,t (1 + gRs+1Rt+1Xs+1,t+1)
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recursion relation:

Xs,t = 1 + gRsRtXs,t (1 + gRs+1Rt+1Xs+1,t+1)

solution:

Xs,t =
[3][s+ 1][t+ 1][s+ t+ 3]

[1][s+ 3][t+ 3][s+ t+ 1]
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recursion relation:

Xs,t = 1 + gRsRtXs,t (1 + gRs+1Rt+1Xs+1,t+1)

solution:

Xs,t =
[3][s+ 1][t+ 1][s+ t+ 3]

[1][s+ 3][t+ 3][s+ t+ 1]

similarly, recursion relation for Ys,t,u:
Ys,t,u = 1 + g3RsRtRuRs+1Rt+1Ru+1

×Xs+1,t+1Xt+1,u+1Xu+1,s+1Ys+1,t+1,u+1
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recursion relation:

Xs,t = 1 + gRsRtXs,t (1 + gRs+1Rt+1Xs+1,t+1)

solution:

Xs,t =
[3][s+ 1][t+ 1][s+ t+ 3]

[1][s+ 3][t+ 3][s+ t+ 1]

similarly, recursion relation for Ys,t,u:
Ys,t,u = 1 + g3RsRtRuRs+1Rt+1Ru+1

×Xs+1,t+1Xt+1,u+1Xu+1,s+1Ys+1,t+1,u+1

solution:

Ys,t,u =
[s+ 3][t+ 3][u+ 3][s+ t+ u+ 3]

[3][s+ t+ 3][t+ u+ 3][u+ s+ 3]
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boundary
geodesic
boundary

geodesic
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simply pointed

i−

2i−

2

3

0

1

2

i−

i

1

1 1
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min ℓ(v) = 1

Schaeffer
well−labeled
(spine) tree

1

2

i

i−1
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i

m=1
Π i=ZmR

min ℓ(v) = 1

i−

1

i

1

2
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i=s+t

doubly pointed

−t

1−s1−s

−t

2

0

2−s

1−t
1

0

−s

−s
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faces
map with 2
well−labeled

Miermont

min ℓ(v) = 1 − t

min ℓ(v) = 1 − s

−s

2

0

−t1

−s

0

1
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tss,tXΠ
1m=

s
Rm = Z ZΠ

1m=

t
Rm

min ℓ(v) = 1 − t

min ℓ(v) = 1 − s −s

1−s

1

0

2

0

−t
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Xs,tZsZt = Zs+t

namely

Xs,t =
Zs+t

ZsZt

with

Zi =
[1][i+ 3]

[3][i+ 1]

so that

Xs,t =
[3][s+ 1][t+ 1][s+ t+ 3]

[1][s+ 3][t+ 3][s+ t+ 1]
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three-point function

Fs,t,u(g) = Xs,tXt,uXu,s(Ys,t,u)2

=
[3] ([s+ 1][t+ 1][u+ 1][s+ t+ u+ 3])2

[1]3[s+ t+ 1][s+ t+ 3][t+ u+ 1][t+ u+ 3][u+ s+ 1][u+ s+ 3]

and the three-point function for quadrangulations reads

Qd12,d23,d31
(g) = ∆s∆t∆uFs,t,u(g)

with ∆s f(s) ≡ f(s) − f(s− 1), and
s = (d12 − d23 + d31)/2
t = (d12 + d23 − d31)/2
u = (−d12 + d23 + d31)/2
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scaling limit

g =
1

12
(1 − ǫ2) , ℓ = Lǫ−1/2 with ǫ→ 0

replace in any well-balanced combination of [·]’s:

[ℓ] =
1 − xℓ

1 − x
→ sinh(αL) , α =

√

3

2

s = Sǫ−1/2, t = Tǫ−1/2, u = Uǫ−1/2

Xs,t → 3 , Ys,t,u → ǫ−1/2 Y(S, T, U ;
√

3/2)

with

Y(S, T, U ;α) ≡ 1

3α

sinhαS sinhαT sinhαU sinhα(S + T + U)

sinhα(S + T ) sinhα(T + U) sinhα(U + S)
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Fs,t,u(g) ∼ ǫ−1F(S, T, U ;
√

3/2)

with F(S, T, U ;α) =

3

α2

(

sinh(α(S + T + U)) sinh(αS) sinh(αT ) sinh(αU)

sinh(α(S + T )) sinh(α(T + U)) sinh(α(U + S))

)2

Qd12,d23,d31
(g) ∼ ǫ1/2Q(D12, D23, D31;

√

3/2)

with

Q(D12, D23, D31;α) =
1

2
∂S∂T∂UF(S, T, U ;α)

S = (D12 −D23 +D31)/2
T = (D12 +D23 −D31)/2
U = (−D12 +D23 +D31)/2
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three-point function

d12 = D12n
1/4 d23 = D23n

1/4 d31 = D31n
1/4

s = Sn1/4 t = Tn1/4 u = Un1/4

we get the probability density

ρ(D12, D23, D31) =
2√
π

∫ ∞

−∞
dξ
ξ

i
e−ξ2Q(D12, D23, D31;

√

3/2
√

−iξ)

ρ(D12, D23, D31)dD12dD23dD31 is the probability that the
three marked vertices be at rescaled pairwise distances in
the ranges [D12, D12 + dD12], [D23, D23 + dD23],
[D31, D31 + dD31], in the ensemble of triply-pointed
quadrangulations of fixed large size n
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conditional probability density

fix one of the distances, say D12, and consider the
conditional probability density

ρ(D23, D31|D12) ≡
ρ(D12, D23, D31)

ρ(D12)

ρ(D23, D31|D12)dD23dD31 is the probability that the third
marked vertex be at rescaled distances in the ranges
[D23, D23 + dD23] and [D31, D31 + dD31] from the first two
marked vertices in the ensemble of triply-pointed
quadrangulations of fixed large size n, given that the
distance between the first two marked vertices is D12
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D12 = 0.8
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D12 = 1.5
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D12 = 3.0
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limit of small D12
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4

23
ω

D

D23 D31 12D
D23 D31 12D

ρ(    ,     |     ) D
ρ(    ,     |     )

31

D

ρ(D23, D31|D12) ∼
1

D12
× ρ(D) × ψ(ω)

where D = (D23 +D31)/2, ω = (D31 −D23)/D12, and

ψ(ω) ≡ 21

64
(1 − ω2)2(3 − ω2)
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v 2v

3v

D 31

D 23

D12

θ ω ~cos

~ D

1

θ
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limit of large D12
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S

D

ν

23
D

ρ(D23, D31|D12) ∼
1

2D12
× (9D12)

1/3ϕ(ν)

where ν = (9D12)
1/3(D23 +D31 −D12)/2, and

ϕ(ν) ≡ 4

3
sinh(ν/2)2

(

11e−2ν − 8e−3ν
)
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other applications

phenomenon of confluence of geodesics (Le Gall)

3v

δ
common part

1v 2v
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other applications

phenomenon of confluence of geodesics (Le Gall)

3v

δ
common part

1v 2v

what is the law for the length δ of the common part ?
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geodesics triangle

v

vv

1

23
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geodesics triangle

v

vv

1

23

joint law for the 6 lengths and 2 areas ?
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YXs’’,t’’ X t’’,u’’ X u’’,s’’ Ys’,t’,u’ s’’,t’’,u’’

min=1− s’

min=1− s’’

min=1− u’’

min=1− u’

min=1− t’’

min=1− t’

0

0

0

involves
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|

v

3v

1v

common part of
length| t’’−t’

2
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|

v

3v

2v

common part of
length |t’’−t’

1
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law for the length δ of the common part

3v

δ
common part

1v 2v
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law for the length δ of the common part
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law for the length ∆12 of the open part from v1 to v2
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law for the length ∆12 of the open part from v1 to v2
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joint law for the lengths δ1 and δ2 given D12
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joint law for the lengths δ1 and δ2 given D12
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joint law for the lengths δ1 and δ2 given D12
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joint law for the lengths δ1 and δ2 given D12
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s’
∆

u’t’

u’
t’

u’ s’

t’

+

+ +s’

s’,t’,u’Y∆∆

∆s′∆t′∆u′Ys′,t′,u′ → triangle with geodesic boundaries of
side lengths s′ + t′, t′ + u′, u′ + s′
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Y
T’

U’ S’

T’

+

+ +S’

S’ T’ U’
(S’,T’,U’)

U
’

∂S′∂T ′∂U ′Y(S′, T ′, U ′) → triangle with geodesic boundaries
of side lengths S′ + T ′, T ′ + U ′, U ′ + S′
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U’’

+ U’’S’’

(S’’,T’’,U’’)Y
S’’ T’’

T’’+
U’’S

’’

+ T’
’

another triangle with geodesic boundaries of different side
lengths
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v 3v

2v

Y

S’

T’’−T’

U’’−U’S’’−S’

(S’’,T’’,U’’)

1

+

+ +S’
T’ T’

U
’

U’
make the side lengths of the two triangles identical (here
S′′ > S′, T ′′ > U ′ and U ′′ > U ′)
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3v

2v

Y
v

+

+ +S’

(S’,T’,U’)
U

’
T’

U’

1

+

+ +S’
T’ T’

U
’

U’S’

T’’−T’

U’’−U’S’’−S’

(S’’,T’’,U’’)Y+

S’

T’

glue the triangles
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v
1v

1v 3v

2v

U’

v

3

T

+

+ +

S

+
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T’

+
+ +S’U
’

T’

2

+

+ +S’
T’ T’

U
’

U’S’
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U’’−U’S’’−S’

(S’’,T’’,U’’)Y(S’,T’,U’)Y

(S,T,U)Y(S,T,U)Y

U

T

U S

→ one contribution to the three-point function
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a word on branching processes
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a branching process

a random map is the “superposition" of
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a branching process

a random map is the “superposition" of

• a random planar tree
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a branching process

a random map is the “superposition" of

• a random planar tree

• integer labels on the tree
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a branching process

a random map is the “superposition" of

• a random planar tree

• integer labels on the tree

• boundary condition (positive labels)
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a branching process

a random map is the “superposition" of

• a random planar tree → genealogical tree

• integer labels on the tree

• boundary condition (positive labels)

a parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)
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a branching process

a random map is the “superposition" of

• a random planar tree → genealogical tree

• integer labels on the tree → diffusion process in 1D

• boundary condition (positive labels)

a parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)

the child of a parent at position ℓ lives at position ℓ, ℓ± 1
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a branching process

a random map is the “superposition" of

• a random planar tree → genealogical tree

• integer labels on the tree → diffusion process in 1D

• boundary condition (positive labels) → walls, forbidden zone

a parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)

the child of a parent at position ℓ lives at position ℓ, ℓ± 1

what is the probability Pℓ(p) for the population whose germ
is at position ℓ to reach position 0 ?
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Pℓ(p) = 1 − (1 − p)Rℓ(g) with g = p(1−p)
3

Pℓ(p) = 1 − 1 − |2p− 1|
2p

(1 − xℓ)(1 − xℓ+3)

(1 − xℓ+1)(1 − xℓ+2)

with x =
1+2|1−2p|−

√
3|1−2p|

√
2+|1−2p|

1−|1−2p|

Pℓ(p)
ℓ→∞∼ S(p): survival probability

0 ℓ
position

ge
ne

ra
tio

n
S(p) = 1 − 1 − |2p− 1|

2p
=

{

0 p ≤ 1
2

2p−1
p p ≥ 1

2
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(p)p

scaling behavior around p = 1
2 :

Pℓ(p) ∼ |2p− 1|
(

3

sinh2(
√

3/2 ℓ |2p− 1|1/2)
+ 1

)

+ (2p− 1)
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THE END
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