Statistics of distances in planar maps

Emmanuel Guitter

maps and distances: generalities

$$
\text { (D) } D
$$

\diamond vertices (here of degree 4)

\diamond vertices
\diamond edges (with possibly loops or multiple edges)

\diamond vertices
\diamond edges
\diamond faces with a single boundary (here of degree 3)

\diamond vertices
\diamond edges
\diamond faces
\rightarrow pointed maps

\diamond vertices
\diamond edges
\diamond faces
\rightarrow rooted maps
dual (rooted) map

dual (rooted) map

dual (rooted) map

coding of a (rooted) map by a (rooted) quadrangulation

coding of a (rooted) map by a (rooted) quadrangulation

coding of a (rooted) map by a (rooted) quadrangulation

$$
00
$$

simple enumeration problems

enumerate, say planar quadrangulations with F faces

distance statistics

enumerate, say planar quadrangulations with F faces

and with 2 marked vertices

distance statistics

enumerate, say planar quadrangulations with F faces

and with 2 marked vertices

distance statistics

enumerate, say planar quadrangulations with F faces

and with 2 marked vertices at prescribed distance
\rightarrow distance profile

enumerate, say planar quadrangulations with F faces

and with 3 marked vertices
enumerate, say planar quadrangulations with F faces

and with 3 marked vertices
enumerate, say planar quadrangulations with F faces

and with 3 marked vertices at prescribed pairwise distances

number of geodesics

enumerate, say planar quadrangulations with F faces

with 2 marked vertices

number of geodesics

enumerate, say planar quadrangulations with F faces

with 2 marked vertices
with marked geodesic paths \rightarrow number of geodesic paths
$\log \frac{\langle \# \text { geods }\rangle_{d}}{\langle \# \text { points }\rangle_{d}}$

$\log \frac{\langle \# \text { geods }\rangle_{d}}{\langle \# \text { points }\rangle_{d}}$

the bijection with mobiles

from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces

from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces

from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces

from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces

from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces

©

from maps to well-labeled mobiles

starting from a pointed planar map with even-valent faces

end up with a well-labeled mobile

well-labeled mobiles

well-labeled:

well-labeled mobiles

well-labeled:

(i) positive integer labels

well-labeled mobiles

well-labeled:

(i) positive integer labels
(ii) at least one label 1

well-labeled mobiles

well-labeled:

(i) positive integer labels
(ii) at least one label 1
(iii) rules on labels

well-labeled mobiles \rightarrow maps

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled mobiles \rightarrow maps

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled mobiles \rightarrow maps

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled mobiles \rightarrow maps

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled mobiles \rightarrow maps

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled mobiles \rightarrow maps

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

other species of trees mobilaceae family

arbitrary degrees

start with a pointed planar map

arbitrary degrees

start with a pointed planar map

arbitrary degrees

start with a pointed planar map

arbitrary degrees

start with a pointed planar map
(0)

end up with a new type of mobile

eulerian maps

start with an eulerian (face bi-colored) planar map

eulerian maps

start with an eulerian (face bi-colored) planar map

eulerian maps

start with an eulerian (face bi-colored) planar map

eulerian maps

start with an eulerian (face bi-colored) planar map

end up with a new type of mobile

eulerian maps with blocked edges

start with an eulerian planar map with blocked edges

eulerian maps with blocked edges

start with an eulerian planar map with blocked edges

eulerian maps with blocked edges

start with an eulerian planar map with blocked edges

eulerian maps with blocked edges

start with an eulerian planar map with blocked edges

end up with a new type of mobile

eulerian maps with hard particles

\diamond Consider eulerian maps with at most 1 particle per face \diamond Decide to block or not edges between two occupied faces

\diamond Weight -1 per blocked edge \rightarrow selects hard-particle configurations

generating functions for quadrangulations

case of quadrangulations

Schaeffer's bijection

quadrangulations \rightarrow well-labeled trees

start with a pointed planar quadrangulation

quadrangulations \rightarrow well-labeled trees

start with a pointed planar quadrangulation

quadrangulations \rightarrow well-labeled trees

start with a pointed planar quadrangulation

quadrangulations \rightarrow well-labeled trees

start with a pointed planar quadrangulation
(0)

quadrangulations \rightarrow well-labeled trees

start with a pointed planar quadrangulation

end up with a planar well-labeled tree

well-labeled trees

well-labeled:

well-labeled trees

well-labeled:

(i) positive integer labels

well-labeled trees

well-labeled:

(i) positive integer labels
(ii) there is at least one label 1

well-labeled trees

well-labeled:

(i) positive integer labels
(ii) there is at least one label 1
(iii) labels vary by at most 1 between neighbors

well-labeled trees \rightarrow quadrangulations

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled trees \rightarrow quadrangulations

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled trees \rightarrow quadrangulations

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled trees \rightarrow quadrangulations

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled trees \rightarrow quadrangulations

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

well-labeled trees \rightarrow quadrangulations

going clockwise around the tree, each corner ℓ has a successor ℓ - 1

map-tree correspondence

pointed planar quadrangulation
well-labeled tree
(with an origin vertex)

map-tree correspondence

pointed planar quadrangulation
(with an origin vertex)
vertices at distance ℓ from the origin
well-labeled tree
vertices labeled ℓ

map-tree correspondence

pointed planar quadrangulation (with an origin vertex)
vertices at distance ℓ from the origin
edges $(\ell-1) \leftrightarrow \ell$

well-labeled tree
vertices labeled ℓ
corner labeled ℓ

map-tree correspondence

pointed planar quadrangulation
(with an origin vertex)
vertices at distance ℓ from the origin
edges $(\ell-1) \leftrightarrow \ell$
well-labeled tree
vertices labeled ℓ
corner labeled ℓ
planted at a corner labeled ℓ

map-tree correspondence

pointed planar quadrangulation
(with an origin vertex)
vertices at distance ℓ from the origin
edges $(\ell-1) \leftrightarrow \ell$
corner labeled ℓ
well-labeled tree
vertices labeled ℓ
marked edge $(\ell-1) \leftrightarrow \ell \quad$ planted at a corner labeled ℓ
rooted planar quadrangulation (with a root edge)

generating functions

well-labeled:

(i) positive integer labels
(ii) there is at least one label 1
(iii) labels vary by at most 1 between neighbors

generating functions

well-labeled:
(i) positive integer labels
(ii) there is at least one labet 1
(iii) labels vary by at most 1 between neighbors

gen. func. for trees planted at a corner with label ℓ with a weight g per edge:

- without cond. (ii) $\rightarrow R_{\ell}(g)$

generating functions

well-labeled:
(i) positive integer labels
(ii) there is at least one label 1
(iii) labels vary by at most 1 between neighbors
gen. func. for trees planted at a corner with label ℓ with a weight g per edge:

- without cond. (ii) $\rightarrow R_{\ell}(g)$
- with cond. (ii) $\quad \rightarrow G_{\ell}(g)=R_{\ell}(g)-R_{\ell-1}(g), \quad R_{0} \equiv 0$

generating functions

well-labeled:
(i) positive integer labels
(ii) there is at least one label 1
(iii) labels vary by at most 1 between neighbors
gen. func. for trees planted at a corner with label ℓ with a weight g per edge:

- without cond. (ii) $\rightarrow R_{\ell}(g)$
- with cond. (ii) $\quad \rightarrow G_{\ell}(g)=R_{\ell}(g)-R_{\ell-1}(g), \quad R_{0} \equiv 0$
$\rightarrow G_{1}=R_{1}$: gen. func. for rooted planar quadrangulations

recursion relations

$$
R_{\ell}=\frac{1}{1-g\left(R_{\ell+1}+R_{\ell}+R_{\ell-1}\right)}
$$

with $R_{0}=0$.
$R_{\ell} \xrightarrow{\ell \rightarrow \infty} R$ with $R=1 /(1-3 g R)$, namely

$$
R=\frac{1-\sqrt{1-12 g}}{6 g}
$$

R is the gen. func. of quadrangulations with an origin and a marked edge

$$
\left.R\right|_{g^{n}}=3^{n} \operatorname{cat}(n)
$$

with

$$
\begin{gathered}
\operatorname{cat}(n) \equiv \frac{1}{n+1}\binom{2 n}{n} \\
\vec{Q}(n)=\frac{2}{n+2} \times 3^{n} \operatorname{cat}(n) \\
Q^{\bullet}(n)=\frac{1}{2 n} \times 3^{n} \operatorname{cat}(n) \\
Q(n)=\frac{1}{2 n(n+2)} \times 3^{n} \operatorname{cat}(n)
\end{gathered}
$$

solution

$$
R_{\ell}=R \frac{\left(1-x^{\ell}\right)\left(1-x^{\ell+3}\right)}{\left(1-x^{\ell+1}\right)\left(1-x^{\ell+2}\right)}=R \frac{[\ell][\ell+3]}{[\ell+1][\ell+2]}
$$

where

$$
[\ell] \equiv \frac{1-x^{\ell}}{1-x}
$$

and where $x+x^{-1}+1=1 /\left(g R^{2}\right)$, namely

$$
x=\frac{1-24 g-\sqrt{1-12 g}+\sqrt{6} \sqrt{72 g^{2}+6 g+\sqrt{1-12 g}-1}}{2(6 g+\sqrt{1-12 g}-1)}
$$

statistics of the distance between two points

two-point function

a marked origin + a marked vertex at distance $m=d_{12}$ \Leftrightarrow well-labeled tree with a marked vertex with label m

two-point function

a marked origin + a marked vertex at distance $m=d_{12}$ \Leftrightarrow well-labeled tree with a marked vertex with label m

\diamond marked corner with label $m: R_{m}$

two-point function

a marked origin + a marked vertex at distance $m=d_{12}$ \Leftrightarrow well-labeled tree with a marked vertex with label m

\diamond marked vertex with label $m: L_{m}=\log R_{m}$

two-point function

a marked origin + a marked vertex at distance $m=d_{12}$ \Leftrightarrow well-labeled tree with a marked vertex with label m

\diamond marked vertex with label $m: L_{m}=\log R_{m}$
\diamond impose $\min _{v \in \text { tree }} \ell(v) \geq 1$

two-point function

a marked origin + a marked vertex at distance $m=d_{12}$ \Leftrightarrow well-labeled tree with a marked vertex with label m

\diamond marked vertex with label $m: L_{m}-L_{m-1}=\log \left(R_{m} / R_{m-1}\right)$
\diamond impose $\min _{v \in \text { tree }} \ell(v)=1$

two-point function

a marked origin + a marked vertex at distance $m=d_{12}$ \Leftrightarrow well-labeled tree with a marked vertex with label m

$$
Q_{d_{12}}(g)=\left\{\begin{array}{cc}
\log \left(\frac{\left(\left[d_{12}\right]\right)^{2}\left[d_{12}+3\right]}{\left[d_{12}-1\right]\left(\left[d_{12}+2\right]\right)^{2}}\right) & \text { for } d_{12} \geq 2 \\
\log \left(R \frac{[1][4]}{[2][3]}\right) & \text { for } d_{12}=1
\end{array}\right.
$$

\equiv generating function for doubly-pointed quadrangulations whose two marked (and distinguished) vertices are at distance d_{12} from each other

distance profile

$n=50$

distance profile

$$
n=100
$$

distance profile

$n=150$

distance profile

$n=200$

distance profile

rescaled profiles

local limit

$<\mathrm{v}_{1}>(n)$

immediate neighbors

local limit

$$
\begin{aligned}
& \left\langle\mathrm{V}_{2}\right\rangle(n) \\
& 10.8 \text {. }
\end{aligned}
$$

next-nearest neighbors

local limit

next-next-nearest neighbors
limit laws
for large maps

local limit

write

$$
\begin{gathered}
g=\frac{1}{12}\left(1-\epsilon^{2}\right) \\
R_{\ell}=\alpha_{\ell}+\beta_{\ell} \epsilon+\gamma_{\ell} \epsilon^{2}+\delta_{\ell} \epsilon^{3}+\cdots \\
\alpha_{\ell}=\frac{2 \ell(\ell+3)}{(\ell+1)(\ell+2)} \quad \beta_{\ell}=0 \quad \gamma_{\ell}=-\frac{\ell(\ell+3)\left(3 \ell^{2}+9 \ell-2\right)}{5(\ell+1)(\ell+2)} \\
\delta_{\ell}=\frac{\ell(\ell+3)\left(5 \ell^{4}+30 \ell^{3}+59 \ell^{2}+42 \ell+4\right)}{35(\ell+1)(\ell+2)}
\end{gathered}
$$

and the leading singularity (odd power in ϵ) gives

$$
\left.R_{\ell}\right|_{g^{n}} \sim \frac{12^{n}}{\sqrt{\pi} n^{5 / 2}} \frac{3}{4} \delta_{\ell}
$$

$\ln [1]:=g=\frac{1}{12}\left(1-\epsilon^{2}\right) ; R=\frac{2}{1+\epsilon} ; x=X / . \operatorname{Sol} \bar{e}\left[X+\frac{1}{X}+1==\frac{1}{G R^{2}}, X\right][[1]]:$
$R 1:=R \frac{\left(1-x^{1}\right)\left(1-x^{1+3}\right)}{\left(1-x^{1+1}\right)\left(1-x^{1+2}\right)}$:
Simplify[Series[R1, $\{\in, 0,3\}]]$
Out $[2]=\frac{21(3+1)}{2+31+1^{2}}-\frac{\left(1\left(-6+251+181^{2}+31^{3}\right)\right) \epsilon^{2}}{5\left(2+31+1^{2}\right)}+\frac{1\left(12+1301+2191^{2}+1491^{3}+451^{4}+51^{5}\right) \epsilon^{3}}{35\left(2+31+1^{2}\right)}+0[\epsilon]^{4}$
$\ln [3]:=$ Factor[CoefficientList [Hormal[x], e]]
Out $[3]=\left\{\frac{21(3+1)}{(1+1)(2+1)}, 0,-\frac{1(3+1)\left(-2+91+31^{2}\right)}{5(1+1)(2+1)}, \frac{1(3+1)\left(4+421+591^{2}+301^{3}+51^{4}\right)}{35(1+1)(2+1)}\right\}$
$\ln [4]:=\delta\left[1 _\right]:=\frac{1(3+1)\left(4+421+591^{2}+301^{3}+51^{4}\right)}{35(1+1)(2+1)} ; \operatorname{Factor}\left[\frac{3}{2}(\delta[1]-\delta[1-1])\right]$
Out $[4]=\frac{6\left(-1+21+1^{2}\right)\left(4+141+271^{2}+201^{3}+51^{4}\right)}{351(1+1)(2+1)}$

distance statistics

the average number $\left\langle e_{\ell}\right\rangle$ of edges at distance ℓ (i.e. $\ell-1 \leftrightarrow \ell$) in infinite quadrangulations is

$$
\left\langle e_{\ell}\right\rangle=\lim _{n \rightarrow \infty} \frac{\left.\left(R_{\ell}-R_{\ell-1}\right)\right|_{g^{n}}}{\left.R\right|_{g^{n}} /(2 n)}=\frac{3}{2}\left(\delta_{\ell}-\delta_{\ell-1}\right)
$$

one gets

$$
\begin{aligned}
\left\langle e_{\ell}\right\rangle=\frac{6}{35} \frac{\left(\ell^{2}+2 \ell-1\right)\left(5 \ell^{4}+20 \ell^{3}+27 \ell^{2}+\right.}{\ell(\ell+1)(\ell+2)} & \begin{array}{l}
\ell \ell+4) \\
\sim
\end{array} \frac{6}{7} \ell^{3}
\end{aligned}
$$

\rightarrow fractal dimension $d_{F}=4$
NB: $\left\langle e_{1}\right\rangle=4$ obvious from Euler's relation

$$
\begin{gathered}
\log \left(R_{\ell}\right)=\tilde{\alpha}_{\ell}+\tilde{\beta}_{\ell} \epsilon+\tilde{\gamma}_{\ell} \epsilon^{2}+\tilde{\delta}_{\ell} \epsilon^{3}+\cdots \\
\tilde{\beta}_{\ell}=0 \quad \tilde{\delta}_{\ell}=\frac{5 \ell^{4}+30 \ell^{3}+59 \ell^{2}+42 \ell+4}{70}
\end{gathered}
$$

and the leading singularity gives

$$
\left.\log \left(R_{\ell}\right)\right|_{g^{n}} \sim \frac{12^{n}}{\sqrt{\pi} n^{5 / 2}} \frac{3}{4} \tilde{\delta}_{\ell}
$$

the average number $\left\langle v_{\ell}\right\rangle$ of vertices at distance ℓ in infinite quadrangulations is given by

$$
\begin{aligned}
\left\langle v_{\ell}\right\rangle=\frac{3}{35}\left((\ell+1)\left(5 \ell^{2}+10 \ell+2\right)\right. & \left.+\delta_{\ell, 1}\right) \\
& \stackrel{i \rightarrow \infty}{\sim} \frac{3}{7} \ell^{3}
\end{aligned}
$$

first values:

$$
\begin{array}{lll}
\left\langle e_{1}\right\rangle=4 & \left\langle e_{2}\right\rangle=19 & \left\langle e_{3}\right\rangle=\frac{1234}{25} \\
\left\langle v_{1}\right\rangle=3 & \left\langle v_{2}\right\rangle=\frac{54}{5} & \left\langle v_{3}\right\rangle=\frac{132}{5}
\end{array}
$$

scaling limit

take ℓ large as $\ell=u \epsilon^{-1 / 2}$ with u finite \rightarrow scaling function \mathcal{F} :

$$
R_{\ell}=2(1-\epsilon \mathcal{F}(u))+\mathcal{O}\left(\epsilon^{3 / 2}\right)
$$

whose small u behavior can be read off the local limit

$$
\begin{gathered}
\alpha_{\ell}=2-\frac{4}{u^{2}} \epsilon+\mathcal{O}\left(\epsilon^{3 / 2}\right), \gamma_{\ell} \epsilon^{2}=-\frac{3 u^{2}}{5} \epsilon+\mathcal{O}\left(\epsilon^{3 / 2}\right), \delta_{\ell} \epsilon^{3}=\frac{u^{4}}{7} \epsilon+\mathcal{O}\left(\epsilon^{3 / 2}\right) \\
R_{\ell}=2-\epsilon\left(\frac{4}{u^{2}}+\frac{3 u^{2}}{5}-\frac{u^{4}}{7}+\mathcal{O}\left(u^{5}\right)\right)+\mathcal{O}\left(\epsilon^{3 / 2}\right)
\end{gathered}
$$

from the exact solution, one finds

$$
\mathcal{F}(u)=1+\frac{3}{\sinh ^{2}(\sqrt{3 / 2} u)}
$$

scaling limit (fixed n)

by a change of variables $g \rightarrow V \equiv g R$, we have

$$
R_{\ell} \left\lvert\, g^{n}=\oint \frac{d g}{2 i \pi g^{n+1}} R_{\ell}(g)=\oint \frac{d V(1-6 V)}{2 i \pi(V(1-3 V))^{n+1}} R_{\ell}(g)\right.
$$

for large n and in the scaling limit

$$
\ell=r n^{1 / 4}
$$

do a saddle point calculation

$$
V=\frac{1}{6}\left(1+\mathrm{i} \frac{\xi}{\sqrt{n}}\right), \quad g=\frac{1}{12}\left(1+\frac{\xi^{2}}{n}\right)
$$

use previous formulas with

$$
\begin{gathered}
\epsilon=\frac{-\mathrm{i} \xi}{\sqrt{n}} \quad u=r \sqrt{-\mathrm{i} \xi} \\
R_{\ell}=2\left(1+\frac{\mathrm{i} \xi}{\sqrt{n}} \mathcal{F}(r \sqrt{-\mathrm{i} \xi})\right) \quad \text { where } \mathcal{F}(u)=1+\frac{3}{\sinh ^{2}(\sqrt{3 / 2} u)}
\end{gathered}
$$

hence the large n limit

$$
\left.R_{\ell}\right|_{g^{n}} \sim 2 \frac{12^{n}}{\pi n^{3 / 2}} \int_{-\infty}^{\infty} d \xi \xi^{2} e^{-\xi^{2}}(\mathcal{F}(r \sqrt{-\mathrm{i} \xi}))
$$

probability $\Phi(r)$ for a point (vertex or edge) to be at geodesic distance less than r :

$$
\Phi(r)=\frac{4}{\sqrt{\pi}} \int_{0}^{\infty} d \xi \xi^{2} e^{-\xi^{2}}\left\{1-6 \frac{1-\cosh (r \sqrt{3 \xi}) \cos (r \sqrt{3 \xi})}{(\cosh (r \sqrt{3 \xi})-\cos (r \sqrt{3 \xi}))^{2}}\right\}
$$

probability density $\rho(r)$ for a point (vertex or edge) to be at geodesic distance r

$$
\rho(r)=\frac{d \Phi(r)}{d r}
$$

$\Phi(r)$

$\rho(r)$

$$
\rho(r) \stackrel{r \rightarrow 0}{\sim} \frac{3}{7} r^{3}, \quad \rho(r) \stackrel{r \rightarrow \infty}{\sim} \exp \left(-\frac{3}{4} 3^{2 / 3} r^{4 / 3}\right)
$$

in agreement with $\left\langle v_{\ell}\right\rangle$ and Fisher's law $\delta=\frac{4}{3}=\frac{1}{1-\nu}$ with $\nu=\frac{1}{4}=\frac{1}{d_{F}}$
statistics of geodesics

quadrang. with a marked geodesic

$$
U_{2}(g)=g+10 g^{2}+\ldots
$$

collection of geodesics

local limit

$$
\begin{gathered}
Z_{\ell}=A_{\ell}-C_{\ell} \epsilon^{2}+\frac{2}{3} D_{\ell} \epsilon^{3}+\cdots \\
A_{\ell}=2^{\ell} \frac{l+3}{3(\ell+1)}, \quad D_{\ell}=2^{\ell} \frac{\ell(\ell+2)(\ell+3)(\ell+4)\left(3 \ell^{2}+12 \ell+13\right)}{420(\ell+1)} \\
U_{\ell}=a_{\ell}-c_{\ell} \epsilon^{2}+\frac{2}{3} d_{\ell} \epsilon^{3}+\cdots \\
a_{\ell}=A_{\ell}-\sum_{j=1}^{\ell-1} a_{j} A_{\ell-j}, \quad d_{\ell}=D_{\ell}-\sum_{j=1}^{\ell-1}\left(a_{j} D_{\ell-j}+d_{j} A_{\ell-j}\right)
\end{gathered}
$$

introduce $\hat{A}(t)=\sum_{\ell \geq 1} A_{\ell} t^{\ell}, \ldots$

$$
\hat{a}(t)=\frac{\hat{A}(t)}{1+\hat{A}(t)}, \quad \hat{d}(t)=\frac{\hat{D}(t)}{(1+\hat{A}(t))^{2}}
$$

\rightarrow exact expression for $\hat{d}(t)$

$$
\begin{aligned}
\hat{d}(t)= & 4 t+\frac{80}{3} t^{2}+132 t^{3}+\cdots \\
& \langle\text { geods }\rangle_{1}=d_{1}=4 \\
& \langle\text { geods }\rangle_{2}=d_{2}=\frac{80}{3} \\
& \langle\text { geods }\rangle_{3}=d_{3}=132
\end{aligned}
$$

large ℓ behavior of d_{ℓ} ?

$$
\begin{aligned}
& A_{\ell} \sim \frac{2^{\ell}}{3}\left(1+\frac{2}{\ell}\right) \rightarrow \hat{A}(t) \sim \frac{1}{3(1-2 t)}-\frac{2}{3} \log (1-2 t) \\
& D_{\ell} \sim \frac{2^{\ell} \ell^{5}}{140} \rightarrow \hat{D}(t) \sim \frac{6}{7(1-2 t)^{6}} \\
& \hat{a}(t) \sim 1-3(1-2 t)-6(1-2 t)^{2} \log (1-2 t) \rightarrow a_{\ell} \sim \frac{2^{\ell} 12}{\ell^{3}} \\
& \hat{d}(t) \sim \frac{54}{7(1-2 t)^{4}} \rightarrow d_{\ell} \sim \frac{2^{\ell} 9 \ell^{3}}{7} \\
& d_{\ell} \\
& \sim\left(3 \times 2^{\ell}\right) \times \frac{3}{7} \ell^{3}
\end{aligned}
$$

collection of geodesics

$$
\begin{gathered}
U_{\ell}^{(k)}=a_{\ell}^{(k)}-c_{\ell}^{(k)} \epsilon^{2}+\frac{2}{3} d_{\ell}^{(k)} \epsilon^{3}+\cdots \\
d_{\ell}^{(k)}=k \times\left(3 \times 2^{\ell}\right)^{k} \times \frac{3}{7} \ell^{3} \\
\tilde{U}_{\ell}^{(k)}=\tilde{a}_{\ell}^{(k)}-\tilde{c}_{\ell}^{(k)} \epsilon^{2}+\frac{2}{3} \tilde{d}_{\ell}^{(k)} \epsilon^{3}+\cdots \\
\tilde{d}_{\ell}^{(k)}=k\left(a_{\ell}\right)^{k-1} d_{\ell} \\
\tilde{d}_{\ell}^{(k)}=k \times\left(3 \times 2^{\ell}\right)^{k} \times 4^{k-1} \frac{3}{7} \ell^{6-3 k}
\end{gathered}
$$

number of vertices at distance ℓ reached by k avoiding geods $=4^{k-1} \frac{3}{7} \ell^{6-3 k}$

scaling limit (exponents)

the average number of pairs of points linked by k avoiding geods and at rescaled distance in the range $[r, r+d r]$ behaves as

$$
n \times\left(n^{1 / 4}\right)^{6-3 k} n^{1 / 4} d r \times \rho^{(k)}(r)
$$

with

$$
\begin{gathered}
\rho^{(k)}(r)^{r \rightarrow 0}{ }_{\sim}^{\sim} r^{6-3 k} \\
\Rightarrow n^{(11-3 k) / 4}
\end{gathered}
$$

$k=1: \quad n^{2}$
$k=2: \quad n^{5 / 4}$
$k=3: n^{1 / 2}$

scaling limit (scaling functions)

$$
\begin{aligned}
& g=\frac{1}{12}\left(1-\epsilon^{2}\right), \quad \ell=u \epsilon^{-1 / 2} \\
& R_{\ell} \sim 2(1-\epsilon \mathcal{F}(u)), \quad \frac{Z_{\ell}}{2^{\ell}} \sim \frac{1}{3}+\epsilon^{1 / 2} \mathcal{H}(u), \quad \frac{U_{\ell}}{2^{\ell}} \sim \epsilon^{3 / 2} \mathcal{L}(u) \\
& \quad \mathcal{F}(u)=-3 \frac{d}{d u} \mathcal{H}(u), \quad \mathcal{L}(u)=9 \frac{d^{2}}{d u^{2}} \mathcal{H}(u)=-3 \frac{d}{d u} \mathcal{F}(u)
\end{aligned}
$$

scaling limit $\ell=r n^{1 / 4}$

$$
\begin{aligned}
\left.U_{\ell}\right|_{g^{n}} & \sim \frac{12^{n}}{2 \sqrt{\pi} n^{5 / 2}}\left(3 \cdot 2^{\ell}\right) n \rho(r) \frac{1}{n^{1 / 4}} \\
\left.U_{\ell}^{(k)}\right|_{g^{n}} & \sim \frac{12^{n}}{2 \sqrt{\pi} n^{5 / 2}} k\left(3 \cdot 2^{\ell}\right)^{k} n \rho(r) \frac{1}{n^{1 / 4}}
\end{aligned}
$$

\rightarrow no new scaling function

$$
\begin{gathered}
\frac{\tilde{U}_{\ell}^{(2)}}{2^{2 \ell}}=\left(\frac{U_{\ell}}{2^{\ell}}\right)^{2} \sim \epsilon^{3}(\mathcal{L}(u))^{2} \\
n \tilde{U}_{\ell}^{(2)}{\mid g^{n}}^{\sim} \frac{12^{n}}{2 \sqrt{\pi} n^{5 / 2}} 2\left(3 \cdot 2^{\ell}\right)^{2} n^{5 / 4} \rho^{(2)}(r) \frac{1}{n^{1 / 4}}
\end{gathered}
$$

with the new scaling function

$$
\rho^{(2)}(r)=\frac{1}{9 \sqrt{\pi}} \int_{-\infty}^{\infty} d \xi \xi^{4} e^{-\xi^{2}}(\mathcal{L}(r \sqrt{-\mathrm{i} \xi}))^{2}
$$

$$
\rho^{(2)}(r)
$$

$$
\begin{gathered}
\frac{\tilde{U}_{\ell}^{(3)}}{2^{3 \ell}}=\left(\frac{U_{\ell}}{2^{\ell}}\right)^{3} \sim \epsilon^{9 / 2}(\mathcal{L}(u))^{3} \\
n \tilde{U}_{\ell}^{(3)}{\mid g^{n}}^{\sim} \frac{12^{n}}{2 \sqrt{\pi} n^{5 / 2}} 3\left(3 \cdot 2^{\ell}\right)^{3} n^{1 / 2} \rho^{(3)}(r) \frac{1}{n^{1 / 4}}
\end{gathered}
$$

with the new scaling function

$$
\rho^{(3)}(r)=\frac{2}{81 \sqrt{\pi}} \int_{-\infty}^{\infty} d \xi \frac{\xi^{5}}{\mathrm{i}} e^{-\xi^{2}} \sqrt{-\mathrm{i} \xi}(\mathcal{L}(r \sqrt{-\mathrm{i} \xi}))^{3}
$$

$$
\rho^{(3)}(r)
$$

$$
\rho^{(3)}(r)
$$

three-point statistics

Miermont's bijection

start with a multiply-pointed planar quadrangulation with p marked vertices (=sources) distinguished as v_{1}, \cdots, v_{p} and satisfying $d\left(v_{i}, v_{j}\right) \geq 2$

Miermont's bijection

natural labeling: $\ell(v) \equiv \min _{j=1, \ldots . p} d\left(v, v_{j}\right)$

one can favor/penalize some of the sources by attaching to each source v_{i} a delay $\tau_{i}=$ integer

this defines a "delayed distance" from v to the source v_{j} :

$$
\ell_{j}(v) \equiv d\left(v, v_{j}\right)+\tau_{j}
$$

a vertex v now receives the label:

$$
\ell(v) \equiv \min _{j=1, \ldots p} \ell_{j}(v)=\min _{j=1, \ldots p}\left(d\left(v, v_{j}\right)+\tau_{j}\right)
$$

which is the "distance" to the closest source, where the distance from v_{j} incorporates a penalty τ_{j}
we choose delays so that:

$$
\diamond\left|\tau_{i}-\tau_{j}\right|<d\left(v_{i}, v_{j}\right) \forall i \neq j \quad \text { (cond. 1) }
$$

\rightarrow ensures that $\ell\left(v_{i}\right)=\tau_{i}$

$$
\diamond \tau_{i}-\tau_{j}=d\left(v_{i}, v_{j}\right) \bmod 2 \quad \text { (cond. 2) }
$$

\rightarrow ensures that the parity of $\ell_{j}(v)$ is independent of j so that again $\left|\ell(v)-\ell\left(v^{\prime}\right)\right|=1$ for v and v^{\prime} neighbors

faces \rightarrow edges

faces \rightarrow edges

same rules as in Schaeffer's bijection

end up with a planar well-labeled map with p faces

well-labeled maps

well-labeled maps

\diamond labels vary by at most 1 between neighbors
$\left|\ell(v)-\ell\left(v^{\prime}\right)\right| \leq 1$ if v and v^{\prime} are neighbors on the map

well-labeled maps

\diamond labels vary by at most 1 between neighbors
$\left|\ell(v)-\ell\left(v^{\prime}\right)\right| \leq 1$ if v and v^{\prime} are neighbors on the map
$\diamond \min _{v \text { incident to } F_{i}} \ell(v)=1+\tau_{i}$
bijection: for fixed given delays
p-pointed quadrangulations
with marked vertices satisfying
$\diamond d\left(v_{i}, v_{j}\right)>\left|\tau_{i}-\tau_{j}\right| \forall i \neq j$
$\diamond d\left(v_{i}, v_{j}\right)=\tau_{i}-\tau_{j} \bmod 2$
well-labeled maps with p faces
with labels satisfying
$\diamond\left|\ell(v)-\ell\left(v^{\prime}\right)\right| \leq 1$ if v and v^{\prime} are neighbors
$\diamond \min _{v \text { incident to } F_{i}} \ell(v)=1+\tau_{i}$
this coding keeps track of some of the distances:
if v is incident to F_{i}, then the minimum of $\ell_{j}=d\left(v, v_{j}\right)+\tau_{j}$ is reached for $j=i$ and therefore:

$$
d\left(v, v_{i}\right)=\ell(v)-\tau_{i}
$$

planar maps are classified according to their backbone

all vertices have degree $\geq 3 \Rightarrow$ finite number of backbones

case of 3 marked vertices

planar maps with 3 (distinguished) faces
\rightarrow seven possible backbones

map $=$ backbone + attached trees

distance parametrization

for 3 points, we can use the following parametrization:

$$
\begin{aligned}
& d_{12} \equiv d\left(v_{1}, v_{2}\right)=s+t \\
& d_{23} \equiv d\left(v_{2}, v_{3}\right)=t+u \\
& d_{31} \equiv d\left(v_{3}, v_{1}\right)=u+s
\end{aligned}
$$

with s, t, u integers, $s, t, u \geq 0$ and at most one may vanish

choice of delays

idea: relate the delays to the distances, namely choose:

$$
\tau_{1}=-s, \quad \tau_{2}=-t, \quad \tau_{3}=-u
$$

$\diamond \tau_{1}-\tau_{2}=-s+t=s+t \bmod 2=d\left(v_{1}, v_{2}\right) \bmod 2$
$\diamond\left|\tau_{1}-\tau_{2}\right|=\left|d_{23}-d_{31}\right| \leq d_{12}$ (triangular inequalities) and equality only if the 3 vertices are "aligned": for instance $d_{23}-d_{31}=d_{12}$ only if v_{1} lies on a geodesic path between v_{2} and v_{3} (i.e. $s=0$)

- assume that the 3 vertices are not aligned $\Leftrightarrow s, t, u>0$
- treat later the case of aligned vertices (includes the case when two vertices are immediate neighbors)
new constraint on labels:
\diamond vertex on the boundary between two faces

length $=\ell(v)-\tau_{1}+\ell(v)-\tau_{2}=2 \ell(v)+(s+t) \geq s+t=d_{12}$
$\Rightarrow \ell(v) \geq 0$ for vertices on boundaries of the well-labeled map

$$
\begin{aligned}
s+t=d_{12} & =\ell(v)-\tau_{1}+\ell\left(v^{\prime}\right)-\tau_{2}+d\left(v, v^{\prime}\right) \\
& =\ell(v)+\ell\left(v^{\prime}\right)+d\left(v, v^{\prime}\right)+s+t
\end{aligned}
$$

$\Rightarrow \ell(v)+\ell\left(v^{\prime}\right)+d\left(v, v^{\prime}\right)=0$
$\Rightarrow v=v^{\prime}$ and $\ell(v)=0$
F_{1} and F_{2} must have a common boundary (+ permutations) \exists label 0 on each boundary
rules out backbones of type:

the only possible backbones are those of type

and those of type

in practice, the latter can be viewed as degenerate cases of the former when one of the boundaries reduces to a single vertex.

rules on labels

bijection:
triply-pointed quadrangulations
with marked vertices at prescribed pairwise distances $d_{12}=s+t, d_{23}=t+u$ and $d_{31}=u+s$ with $s, t, u>0$

$$
\Uparrow
$$

well-labeled maps with 3 faces
with a backbone

or its degenerate versions

bijection:
triply-pointed quadrangulations
with marked vertices at prescribed pairwise distances $d_{12}=s+t, d_{23}=t+u$ and $d_{31}=u+s$

$$
\Uparrow
$$

well-labeled maps with 3 faces
with a backbone

or its degenerate versions
or its degenerate versions

aligned case

if v_{3} lies between v_{1} and $v_{2} \quad\left(d_{31}=s, d_{23}=t, d_{12}=s+t\right)$ apply Miermont's construction on v_{1} and v_{2} only, with delays $\tau_{1}=-s$ and $\tau_{2}=-t$

enumeration of well-labeled maps

reminder: the generating function for well-labeled trees planted at a label ℓ and with the condition:

$$
\min _{v \in \text { tree }} \ell(v) \geq 1
$$

is given by

$$
R_{\ell}=R \frac{[\ell][\ell+3]}{[\ell+1][\ell+2]} \quad \text { where }[\ell] \equiv \frac{1-x^{\ell}}{1-x}
$$

reminder: the generating function for well-labeled trees planted at a label ℓ and with the condition:

$$
\min _{v \in \text { tree }} \ell(v) \geq 1
$$

is given by

$$
R_{\ell}=R \frac{[\ell][\ell+3]}{[\ell+1][\ell+2]} \quad \text { where }[\ell] \equiv \frac{1-x^{\ell}}{1-x}
$$

if we wish instead: $\min _{v \in \text { tree }} \ell(v) \geq 1-s$
this generating function is nothing but: $R_{\ell+s}$
as obtained by a simple shift by s of all labels
consider the generating function $F_{s, t, u}(g)$

consider the generating function $F_{s, t, u}(g)$
first 0

$$
X_{s, t} \quad X_{t, u} \quad X_{u, s}
$$

consider the generating function $F_{s, t, u}(g)$

$$
Y_{s, t, u}
$$

$$
X_{S, t}
$$

$$
X_{t, u}
$$

$$
X_{u, s}
$$

$$
Y_{s, t, u}
$$

$$
F_{s, t, u}(g)=X_{s, t} X_{t, u} X_{u, s}\left(Y_{s, t, u}\right)^{2}
$$

$Y_{s, t, u}$

$X_{S, t}$

$X_{t, u}$

$X_{u, s}$
$Y_{s, t, u}$

$$
X_{s, t}=\sum_{\substack{\text { motzkin paths of length } m \\ \mathcal{M}=\left(0=\ell_{0}, \ell_{1}, \ldots, \ell_{m}=0\right)}} \prod_{\substack{k=0}} g R_{\ell_{k}+s} R_{\ell_{k}+t}
$$

recursion relation:

$$
X_{s, t}=1+g R_{s} R_{t} X_{s, t}\left(1+g R_{s+1} R_{t+1} X_{s+1, t+1}\right)
$$

recursion relation:

$$
X_{s, t}=1+g R_{s} R_{t} X_{s, t}\left(1+g R_{s+1} R_{t+1} X_{s+1, t+1}\right)
$$

solution:

$$
X_{s, t}=\frac{[3][s+1][t+1][s+t+3]}{[1][s+3][t+3][s+t+1]}
$$

recursion relation:

$$
X_{s, t}=1+g R_{s} R_{t} X_{s, t}\left(1+g R_{s+1} R_{t+1} X_{s+1, t+1}\right)
$$

solution:

$$
X_{s, t}=\frac{[3][s+1][t+1][s+t+3]}{[1][s+3][t+3][s+t+1]}
$$

similarly, recursion relation for $Y_{s, t, u}$:
$Y_{s, t, u}=1+g^{3} R_{s} R_{t} R_{u} R_{s+1} R_{t+1} R_{u+1}$

$$
\times X_{s+1, t+1} X_{t+1, u+1} X_{u+1, s+1} Y_{s+1, t+1, u+1}
$$

recursion relation:

$$
X_{s, t}=1+g R_{s} R_{t} X_{s, t}\left(1+g R_{s+1} R_{t+1} X_{s+1, t+1}\right)
$$

solution:

$$
X_{s, t}=\frac{[3][s+1][t+1][s+t+3]}{[1][s+3][t+3][s+t+1]}
$$

similarly, recursion relation for $Y_{s, t, u}$:
$Y_{s, t, u}=1+g^{3} R_{s} R_{t} R_{u} R_{s+1} R_{t+1} R_{u+1}$

$$
\times X_{s+1, t+1} X_{t+1, u+1} X_{u+1, s+1} Y_{s+1, t+1, u+1}
$$

solution:

$$
Y_{s, t, u}=\frac{[s+3][t+3][u+3][s+t+u+3]}{[3][s+t+3][t+u+3][u+s+3]}
$$

$$
X_{s, t} Z_{s} Z_{t}=Z_{s+t}
$$

namely

$$
X_{s, t}=\frac{Z_{s+t}}{Z_{s} Z_{t}}
$$

with

$$
Z_{i}=\frac{[1][i+3]}{[3][i+1]}
$$

so that

$$
X_{s, t}=\frac{[3][s+1][t+1][s+t+3]}{[1][s+3][t+3][s+t+1]}
$$

three-point function

$$
\begin{aligned}
& F_{s, t, u}(g)=X_{s, t} X_{t, u} X_{u, s}\left(Y_{s, t, u}\right)^{2} \\
& =\frac{[3]([s+1][t+1][u+1][s+t+u+3])^{2}}{[1]^{3}[s+t+1][s+t+3][t+u+1][t+u+3][u+s+1][u+s+3]}
\end{aligned}
$$

and the three-point function for quadrangulations reads

$$
Q_{d_{12}, d_{23}, d_{31}}(g)=\Delta_{s} \Delta_{t} \Delta_{u} F_{s, t, u}(g)
$$

with $\Delta_{s} f(s) \equiv f(s)-f(s-1)$, and
$s=\left(d_{12}-d_{23}+d_{31}\right) / 2$
$t=\left(d_{12}+d_{23}-d_{31}\right) / 2$
$u=\left(-d_{12}+d_{23}+d_{31}\right) / 2$

scaling limit

$$
g=\frac{1}{12}\left(1-\epsilon^{2}\right), \quad \ell=L \epsilon^{-1 / 2} \quad \text { with } \epsilon \rightarrow 0
$$

replace in any well-balanced combination of [.]'s:

$$
\begin{aligned}
& {[\ell] }=\frac{1-x^{\ell}}{1-x} \rightarrow \sinh (\alpha L), \quad \alpha=\sqrt{\frac{3}{2}} \\
& s=S \epsilon^{-1 / 2}, t=T \epsilon^{-1 / 2}, u=U \epsilon^{-1 / 2} \\
& X_{s, t} \rightarrow 3, \quad Y_{s, t, u} \rightarrow \epsilon^{-1 / 2} \mathcal{Y}(S, T, U ; \sqrt{3 / 2})
\end{aligned}
$$

with

$$
\mathcal{Y}(S, T, U ; \alpha) \equiv \frac{1}{3 \alpha} \frac{\sinh \alpha S \sinh \alpha T \sinh \alpha U \sinh \alpha(S+T+U)}{\sinh \alpha(S+T) \sinh \alpha(T+U) \sinh \alpha(U+S)}
$$

$$
F_{s, t, u}(g) \sim \epsilon^{-1} \mathcal{F}(S, T, U ; \sqrt{3 / 2})
$$

with $\mathcal{F}(S, T, U ; \alpha)=$

$$
\begin{gathered}
\frac{3}{\alpha^{2}}\left(\frac{\sinh (\alpha(S+T+U)) \sinh (\alpha S) \sinh (\alpha T) \sinh (\alpha U)}{\sinh (\alpha(S+T)) \sinh (\alpha(T+U)) \sinh (\alpha(U+S))}\right)^{2} \\
Q_{d_{12}, d_{23}, d_{31}}(g) \sim \epsilon^{1 / 2} \mathcal{Q}\left(D_{12}, D_{23}, D_{31} ; \sqrt{3 / 2}\right)
\end{gathered}
$$

with

$$
\mathcal{Q}\left(D_{12}, D_{23}, D_{31} ; \alpha\right)=\frac{1}{2} \partial_{S} \partial_{T} \partial_{U} \mathcal{F}(S, T, U ; \alpha)
$$

$$
S=\left(D_{12}-D_{23}+D_{31}\right) / 2
$$

$$
T=\left(D_{12}+D_{23}-D_{31}\right) / 2
$$

$$
U=\left(-D_{12}+D_{23}+D_{31}\right) / 2
$$

three-point function

$$
\begin{gathered}
d_{12}=D_{12} n^{1 / 4}
\end{gathered} d_{23}=D_{23} n^{1 / 4} \quad d_{31}=D_{31} n^{1 / 4}
$$

we get the probability density
$\rho\left(D_{12}, D_{23}, D_{31}\right)=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} d \xi \frac{\xi}{\mathrm{i}} e^{-\xi^{2}} \mathcal{Q}\left(D_{12}, D_{23}, D_{31} ; \sqrt{3 / 2} \sqrt{-\mathrm{i} \xi}\right)$
$\rho\left(D_{12}, D_{23}, D_{31}\right) d D_{12} d D_{23} d D_{31}$ is the probability that the three marked vertices be at rescaled pairwise distances in the ranges $\left[D_{12}, D_{12}+d D_{12}\right],\left[D_{23}, D_{23}+d D_{23}\right]$, [$\left.D_{31}, D_{31}+d D_{31}\right]$, in the ensemble of triply-pointed quadrangulations of fixed large size n

conditional probability density

fix one of the distances, say D_{12}, and consider the conditional probability density

$$
\rho\left(D_{23}, D_{31} \mid D_{12}\right) \equiv \frac{\rho\left(D_{12}, D_{23}, D_{31}\right)}{\rho\left(D_{12}\right)}
$$

$\rho\left(D_{23}, D_{31} \mid D_{12}\right) d D_{23} d D_{31}$ is the probability that the third marked vertex be at rescaled distances in the ranges $\left[D_{23}, D_{23}+d D_{23}\right]$ and $\left[D_{31}, D_{31}+d D_{31}\right]$ from the first two marked vertices in the ensemble of triply-pointed quadrangulations of fixed large size n, given that the distance between the first two marked vertices is D_{12}

$D_{12}=0.8$

$D_{12}=1.5$

$D_{12}=3.0$

limit of small D_{12}

$$
\rho\left(D_{23}, D_{31} \mid D_{12}\right) \sim \frac{1}{D_{12}} \times \rho(D) \times \psi(\omega)
$$

where $D=\left(D_{23}+D_{31}\right) / 2, \omega=\left(D_{31}-D_{23}\right) / D_{12}$, and

$$
\psi(\omega) \equiv \frac{21}{64}\left(1-\omega^{2}\right)^{2}\left(3-\omega^{2}\right)
$$

limit of large D_{12}

$$
\rho\left(D_{23}, D_{31} \mid D_{12}\right) \sim \frac{1}{2 D_{12}} \times\left(9 D_{12}\right)^{1 / 3} \varphi(\nu)
$$

where $\nu=\left(9 D_{12}\right)^{1 / 3}\left(D_{23}+D_{31}-D_{12}\right) / 2$, and

$$
\varphi(\nu) \equiv \frac{4}{3} \sinh (\nu / 2)^{2}\left(11 e^{-2 \nu}-8 e^{-3 \nu}\right)
$$

other applications

phenomenon of confluence of geodesics (Le Gall)
v_{3}

other applications

phenomenon of confluence of geodesics (Le Gall)

what is the law for the length δ of the common part ?
geodesics triangle

v_{1}
geodesics triangle

v_{1}
joint law for the 6 lengths and 2 areas ?

$$
X_{s^{\prime \prime}, t^{\prime \prime}} X_{t^{\prime \prime}, u^{\prime \prime}} X_{u^{\prime \prime}, s^{\prime \prime}} Y_{s^{\prime}, t^{\prime}, u^{\prime}} Y_{s^{\prime \prime}, t^{\prime \prime}, u^{\prime \prime}}
$$

law for the length δ of the common part

law for the length δ of the common part
$\rho(\delta)$

δ
law for the length Δ_{12} of the open part from v_{1} to v_{2}

v_{1}
law for the length Δ_{12} of the open part from v_{1} to v_{2}

joint law for the lengths δ_{1} and δ_{2} given D_{12}

v_{1}
joint law for the lengths δ_{1} and δ_{2} given D_{12}

joint law for the lengths δ_{1} and δ_{2} given D_{12}

joint law for the lengths δ_{1} and δ_{2} given D_{12}

$\Delta_{s^{\prime}} \Delta_{t^{\prime}} \Delta_{u^{\prime}} Y_{s^{\prime}, t^{\prime}, u^{\prime}} \rightarrow$ triangle with geodesic boundaries of side lengths $s^{\prime}+t^{\prime}, t^{\prime}+u^{\prime}, u^{\prime}+s^{\prime}$

$\partial_{S^{\prime}} \partial_{T^{\prime}} \partial_{U^{\prime}} \mathcal{Y}\left(S^{\prime}, T^{\prime}, U^{\prime}\right) \rightarrow$ triangle with geodesic boundaries of side lengths $S^{\prime}+T^{\prime}, T^{\prime}+U^{\prime}, U^{\prime}+S^{\prime}$

another triangle with geodesic boundaries of different side lengths

make the side lengths of the two triangles identical (here $S^{\prime \prime}>S^{\prime}, T^{\prime \prime}>U^{\prime}$ and $U^{\prime \prime}>U^{\prime}$)

\rightarrow one contribution to the three-point function

a word on branching processes

a branching process

a random map is the "superposition" of

a branching process

a random map is the "superposition" of

- a random planar tree

a branching process

a random map is the "superposition" of

- a random planar tree
- integer labels on the tree

a branching process

a random map is the "superposition" of

- a random planar tree
- integer labels on the tree
- boundary condition (positive labels)

a branching process

a random map is the "superposition" of

- a random planar tree \rightarrow genealogical tree
- integer labels on the tree
- boundary condition (positive labels)
a parent individual gives rise to k children with probability $p(k)=(1-p) p^{k}, \quad$ (average number of children $\frac{p}{1-p}$)

a branching process

a random map is the "superposition" of

- a random planar tree \rightarrow genealogical tree
- integer labels on the tree \rightarrow diffusion process in 1D
- boundary condition (positive labels)
a parent individual gives rise to k children with probability $p(k)=(1-p) p^{k}, \quad$ (average number of children $\frac{p}{1-p}$)
the child of a parent at position ℓ lives at position $\ell, \ell \pm 1$

a branching process

a random map is the "superposition" of

- a random planar tree \rightarrow genealogical tree
- integer labels on the tree \rightarrow diffusion process in 1D
- boundary condition (positive labels) \rightarrow walls, forbidden zone
a parent individual gives rise to k children with probability $p(k)=(1-p) p^{k}, \quad$ (average number of children $\frac{p}{1-p}$)
the child of a parent at position ℓ lives at position $\ell, \ell \pm 1$
what is the probability $\mathcal{P}_{\ell}(p)$ for the population whose germ is at position ℓ to reach position 0 ?
$\mathcal{P}_{\ell}(p)=1-(1-p) R_{\ell}(g)$ with $g=\frac{p(1-p)}{3}$

$$
\mathcal{P}_{\ell}(p)=1-\frac{1-|2 p-1|}{2 p} \frac{\left(1-x^{\ell}\right)\left(1-x^{\ell+3}\right)}{\left(1-x^{\ell+1}\right)\left(1-x^{\ell+2}\right)}
$$

with $x=\frac{1+2|1-2 p|-\sqrt{3|1-2 p|} \sqrt{2+|1-2 p|}}{1-|1-2 p|}$
$\mathcal{P}_{\ell}(p) \stackrel{\ell \rightarrow \infty}{\sim} S(p)$: survival probability

$$
S(p)=1-\frac{1-|2 p-1|}{2 p}=\left\{\begin{array}{cl}
0 & p \leq \frac{1}{2} \\
\frac{2 p-1}{p} & p \geq \frac{1}{2}
\end{array}\right.
$$

scaling behavior around $p=\frac{1}{2}$:

$$
\mathcal{P}_{\ell}(p) \sim|2 p-1|\left(\frac{3}{\sinh ^{2}\left(\sqrt{3 / 2} \ell|2 p-1|^{1 / 2}\right)}+1\right)+(2 p-1)
$$

THE END

