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CRITICAL PHENOMENA IN TWO DIMENSIONS

Scale and conformally invariant models

Percolation, Ising model, self-avoiding walk. . .

CFT, SLE, combinatorics. . .

FROM DISCRETE MODELS TO CONTINUUM LIMIT

In CFT, from lattice algebras to Virasoro algebra

Exact solutions from Yang-Baxter integrability

In SLE, from discrete holomorphicity to proof of conformal
invariance
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DENSE LOOPS AND THE Q-STATE POTTS MODEL

Weight n =
√

Q per loop

Conformally invariant for −2 < n ≤ 2
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DILUTE LOOPS AND THE O(n) VECTOR MODEL

Weight n ∈] − 2, 2] per loop and x per monomer

Conformally invariant for x = xc = 1√
2+

√
2−n
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THE Q-STATE POTTS MODEL

Defined on graph G = (V , E)

Spins σi = 1, 2, . . . , Q on each vertex i ∈ V
Nearest-neighbour coupling Je for edge e = (ij) ∈ E

ZG(Q, J) =
∑

{σi}

∏

e∈E

exp
[
Jeδ(σi , σj)

]

FORTUIN-KASTELEYN’S random cluster REPRESENTATION

We have eJδ(σi ,σj ) = 1 + veδ(σi , σj) with ve = eJe − 1
Expand, and let ve terms define edge subset A ⊆ E

ZG(Q, v) =
∑

A⊆E

QC(A)
∏

e∈A

ve

Here C(A) = # connected components (clusters) in A
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IF G IS PLANAR, REPRESENTATION AS loop model

N loops live on medial lattice M
Vertices of M are edge mid-points of G

Use Euler relation C = (N + |V | − |E |)/2

ZG(Q, v) = Q|V |/2
∑

A⊆E

QN/2
∏

e∈A

ve√
Q

Selfdual for ve ≡ v =
√

Q

In fact conformally invariant

Just weight n =
√

Q per loop
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CONFORMAL BOUNDARY LOOP MODEL

Example for dense loops

Modified weight for loops touching one or more boundaries
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ANNULAR GEOMETRY

n, n1, n2, n12 for loop touching no/1st/2nd/both boundaries

Can also distinguish homotopy

Conformally invariant for any real value of these weights
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TEMPERLEY-LIEB (TL) ALGEBRA

No distinguished boundaries

Generators ei = . . .

i i+1

. . .
︸ ︷︷ ︸

N

Relations:

i i+1

= n
i i+1

and

i i+1

=
i i+1

Algebraically: e2
i = nei and eiei±1ei = ei
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ONE-BOUNDARY TEMPERLEY-LIEB (1BTL) ALGEBRA

Extra generator b1 = . . .
︸ ︷︷ ︸

N

Relations: b2
1 = b1 and e1b1e1 = n1e1

TWO-BOUNDARY TEMPERLEY-LIEB (2BTL) ALGEBRA

Introduce similarly b2 acting on right boundary

Weight n12 imposed by taking a quotient
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RELATION TO SIX-VERTEX AND HEIGHT MODELS

Orient each loop; distribute n = 2 cos γ over orientations

=

= +

+++

+eiγ +e−iγ

Summing over loop splittings gives six-vertex model

Dual height model leads to a (deformed) free bosonic field
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FROM SCALE INVARIANCE TO CONFORMAL INVARIANCE

Critical phenomena are scale invariant

Leads to the renormalisation group approach

For short-ranged interactions, take space-dependent scale
factor

Angle preserving transformation

Linked to analytic maps in 2D (Cauchy-Riemann)

Gives infinite number of generators (from Laurent series)
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VIRASORO ALGEBRA

Generators Ln (and also L̄n) satisfy

LnLm − LmLn = (n − m)Ln+m +
c
12

n(n2 − 1)δn+m,0

Central charge c enters also correlation functions,
finite-size corrections. . .

REPRESENTATION THEORY

Physical operators (magnetisation, energy. . . ) are
primaries φ

Definition: Ln φ = 0 for n > 0 (highest weight)

L0 is the dilatation operator

L0 φ = h φ, where h is a critical exponent
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CHARACTERS

{Ln} acting on φ generates a representation V(c, h)

Inner product defined by L†
n = L−n

The character of V(c, h):

χ(c,h)(q) = Tr qL0−c/24 =
qh−c/24

P(q)

where 1
P(q) ≡ ∏∞

n=1
1

1−qn is the generating function of
integer partitions. V(c, h) is not always irreducible.

q = exp(2πiL/N) for a system of size L × N
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MINIMAL MODELS

Definition: finite number of primaries, no negative norms

Only possible for m ≥ 2, 1 ≤ r < m, 1 ≤ s ≤ m, all
integers, in:

c = 1 − 6
m(m + 1)

hr ,s =
[(m + 1)r − ms]2 − 1

4m(m + 1)

CFT OF DENSE LOOPS

Loop weight n = 2 cos γ. Gives above CFT when γ = π
m+1 ,

and m > 0 (not necessarily integer).
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BOUNDARY CONFORMAL FIELD THEORY

Define theory in upper half plane
Using analytic continuation in lower half plane, one has
now a single Virasoro algebra {Ln}
Related to bulk CFT by modular transform of the annulus
We have q = exp(−πL/N) and q̃ = exp(−2πN/L)

q → q̃

L0 − c
24

L0 + L̄0 − c
12

Modular
transform

|B1〉

|B2〉

B1 B2
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RENORMALISATION GROUP FLOWS IN BULK CFT. . .

Example: Ising model on triangular lattice
H = −J1

∑

〈ij〉 Si Sj + J2
∑

〈ijk〉 SiSjSk

Flow from tricritical to critical point (universality. . . )

Zamolodchikov: c decreases along RG flows

. . . AND IN BOUNDARY CFT

Example: Conformally invariant boundary conditions of
Ising model: free or fixed (+ + + + . . . or −−−− . . .)

Subtle: Brascamp-Kunz bc’s (+ − + − . . .) flow to free

Define g-factor gB = 〈B|0〉 of the boundary condition B
Makes sense both in discrete model and in CFT

Affleck-Ludwig: g decreases along boundary RG flows
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COULOMB GAS METHOD

Free field limit of heights (dual to oriented loops)
New ingredient: non-conservation of arrows at boundary

Result: dominant critical exponent for any sector
Sector labeled by number of non-contractible loops and
whether these can/cannot touch the boudaries

COMBINATORIAL ANALYSIS OF MARKOV TRACE

Goal is to give correct weight to non-contractible loops

Result: non-trivial amplitude/multiplicity for each sector
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EXAMPLE FOR DENSE LOOPS [Bauer-Saleur 1989]

Z =
∑

ℓ≥0

Uℓ

(n
2

)

Kℓ(q)

Kℓ(q) =
q−c/24

P(q)

(

qh1,1+ℓ − qh
−1,1+ℓ

)

Uℓ(x) is ℓ’th order Chebyshev polynomial of 2nd kind

ℓ is interpreted as the number of non-contractible loops

We have extended this to the 1BTL and 2BTL cases. . .

. . . and also to the model of dilute loops
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PARTITION FUNCTION FOR DENSE 1BTL MODEL

n = 2 cos γ

n1 =
sin(r + 1)γ

sin rγ

Z =
q−c/24

P(q)




∑

j≥0

sin(r + 2j)γ
sin rγ

qhr ,r+2j +
∑

j≥1

sin(−r + 2j)γ
sin−rγ

qh
−r ,−r+2j





1st/2nd term: nearest non-contractible loop does/does not
touch the boundary

PARTITION FUNCTION FOR DENSE 2BTL MODEL

Obtained from lengthy computation of modular transforms
Similar structure, now with 4 sectors and a tricky term
involving n12
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BOUNDARY CHROMATIC POLYNOMIAL

Graph colouring with Q = n2 (resp. Q1 = nn1) colours at
bulk (resp. boundary) vertices

Number of colourings = chromatic polynomial = special
case of ZPotts(Q, Q1) = Z1BTL(n, n1)

Phase diagram inferred from accumulation points of Z = 0

BERAHA-KAHANE-WEISS THEOREM

Isolated zeros when amplitude of dominant term vanishes

Curves of zeros when two leading exponents coincide

As Q ↑ 4, ground state has ℓ ↑ ∞
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NUMERICAL CHECK FOR Q1 = Q − 2

Annulus of width L = 2 spins
Chromatic zeros of square and triangular lattices in
complex Q plane

1 2 3 4

-2

-1

0

1

2
Square lattice
Triangular lattice
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DILUTE MODEL WITH SURFACE ANISOTROPY

Different weights for boundary monomers of n1-type and
(n − n1)-type loops
New integrable points when the former (latter) stand at a
special (ordinary) surface transition
B

ou
nd

ar
y
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Anisotropy

Isotropic coupling

SpOrd

yn−n

yn1

ASn1

ASn−n1

Ordinary trans.

Ordinary trans.

Extraordinary transition

Extraordinary transition
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PHASE DIAGRAM

Consistent with exactly computed boundary entropies
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COMBINATORIAL AND PROBABILISTIC APPLICATIONS

Probability of having ≥ 1 Ising cluster crossing the

annulus: Pc(τ) = η(iτ)η(iτ/12)2

η(iτ/2)2η(iτ/6)
for K = Kc, with τ = N/L

√
3/4 crossings per unit length for τ ≫ 1

K > Kc :

K = Kc :

K < Kc :
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CRITICAL PERCOLATION

Exact boundary entropy g(n = 1, n1) in finite size, in terms
of refined ASM (alternating sign matrices)
Probabilities for number of clusters wrapping annulus,
refined according to whether they touch no/one/both rims

For instance in a square geometry:

j
∑

α,β Pαβ
j Pbb

j Pub
j = Pbu

j Puu
j

0 0.636454001888

1 0.361591025956 0.277067148156 0.041313949815 0.0018959781702

2 0.001954814340 0.001895978170 0.000029339472 0.0000001572261

3 0.000000157814 0.000000157226 0.000000000294 0.0000000000002
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