The critical Ising model on isoradial graphs : an approach via dimers

Cédric Boutillier (UPMC Paris)
joint work with Béatrice de Tilière (Neuchâtel)

September 7, 2009

The Ising model

■ G graph. ex: rectangular box of \mathbb{Z}^{2}

- spin configuration $\sigma: G \rightarrow\{-1,+1\}$

■ energy: $H(\sigma)=-\sum_{e=(v, w)} J_{e} \sigma_{v} \sigma_{w}$

- probability of a spin configuration:

$$
P(\sigma)=\frac{1}{Z} \exp (-H(\sigma))
$$

Questions: $Z=$?, $\left\langle\sigma_{v} \sigma_{w}\right\rangle=$?

The Ising model

Several techniques to study/solve the Ising model

- Random cluster model (percolation)
- Transfer matrix
- Free fermion interpretation

Fisher: correspondence with dimers models

Dimer models

- a dimer configuration or a perfect matching \mathcal{C} of a graph \mathcal{G} is a subset of edges such that every vertex is incident with exactly one edge of \mathcal{C}.
■ weight $w: E(\mathcal{G}) \rightarrow \mathbb{R}_{+}^{*}$
- probability:

$$
P(\mathcal{C})=\frac{1}{\mathcal{Z}} \prod_{e \in \mathcal{C}} w_{e}
$$

Dimer models

$$
P(\mathcal{C})=\frac{1}{\mathcal{Z}} \prod_{e \in \mathcal{C}} w_{e}
$$

Adjacency matrix:

$$
K_{u, v}= \begin{cases}w_{e} & \text { if } e: u \rightarrow v \\ -w_{e} & \text { if } e: v \rightarrow u\end{cases}
$$

Theorem (Kasteleyn)
if \mathcal{G} is planar, there exists an orientation such that

$$
\begin{gathered}
\mathcal{Z}=\operatorname{Pf} K=\sqrt{\operatorname{det} K}, \\
P\left[\left(v_{1}, v_{2}\right), \ldots,\left(v_{2 k-1}, v_{2 k}\right) \in \mathcal{C}\right]=\left(\prod_{i=1}^{k} K_{v_{2 i-1}, v_{2 i}}\right) \operatorname{Pf}\left(K_{v_{i}, v_{j}}^{-1}\right) .
\end{gathered}
$$

K called Kasteleyn matrix

Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a decorated graph G_{D}.

Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a decorated graph G_{D}.

Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a decorated graph G_{D}.

presence of a "long" edge in the dimer configuration \Leftrightarrow lack of this piece of Ising contour

Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a decorated graph G_{D}.

presence of a "long" edge in the dimer configuration \Leftrightarrow lack of this piece of Ising contour

Works for any graph embedded in a surface without boundary.

Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a decorated graph G_{D}.

presence of a "long" edge in the dimer configuration \Leftrightarrow lack of this piece of Ising contour

Works for any graph embedded in a surface without boundary.

Transfer matrix T

- $2^{n} \times 2^{n}$ matrix: columns and rows indexed by spin config. on a row.

Transfer matrix T

- $2^{n} \times 2^{n}$ matrix: columns and rows indexed by spin config. on a row.

- combination of local operators building the graph edge by edge

Transfer matrix T

- $2^{n} \times 2^{n}$ matrix: columns and rows indexed by spin config. on a row.

- combination of local operators building the graph edge by edge

Transfer matrix T

■ $2^{n} \times 2^{n}$ matrix: columns and rows indexed by spin config. on a row.

- combination of local operators building the graph edge by edge
■ for periodic boundary conditions:

$$
Z=\operatorname{tr} T^{n} \simeq \lambda_{\max }^{n}
$$

■ If parameters J are different on each row:

$$
Z=\operatorname{tr} T_{1} \cdots T_{n} \simeq ? ?
$$

Transfer matrix T

If parameters J are different on each row:

$$
Z=\operatorname{tr} T_{1} \cdots T_{n} \simeq ? ?
$$

miracle: if the Boltzmann weights satisfy the star-triangle relation

$$
Z \simeq \lambda_{\max }^{(1)} \cdots \lambda_{\max }^{(n)}
$$

Parametrization of the star-triangle relation

Isoradial graphs: convenient representation

$$
\text { edge } \leftrightarrow \text { rhombus }
$$

1-parameter family of interaction constants $J(\theta)$:

$$
\sinh (2 J(\theta))=\frac{\operatorname{sn}\left(\left.\frac{2 K(k)}{\pi} \theta \right\rvert\, k\right)}{\operatorname{cn}\left(\left.\frac{2 K(k)}{\pi} \theta \right\rvert\, k\right)}, \quad k^{2} \in \mathbb{R} \quad \text { (Baxter) }
$$

Parametrization of the star-triangle relation

Isoradial graphs: convenient representation

$$
\text { edge } \leftrightarrow \text { rhombus }
$$

1-parameter family of interaction constants $J(\theta)$:

$$
\sinh (2 J(\theta))=\frac{\operatorname{sn}\left(\left.\frac{2 K(k)}{\pi} \theta \right\rvert\, k\right)}{\operatorname{cn}\left(\left.\frac{2 K(k)}{\pi} \theta \right\rvert\, k\right)}, \quad k^{2} \in \mathbb{R} \quad \text { (Baxter) }
$$

"self-duality" (Kramer-Wannier) :

$$
k=0, \quad J(\theta)=\frac{1}{2} \log \left(\frac{1+\sin \theta}{\cos \theta}\right)
$$

critical inverse temperature for square $\left(\theta=\frac{\pi}{4}\right)$, honeycomb ($\theta=\frac{\pi}{3}$), triangular $\left(\theta=\frac{\pi}{6}\right)$ lattices.

Parametrization of the star-triangle relation

Isoradial graphs: convenient representation

$$
\text { edge } \leftrightarrow \text { rhombus }
$$

1-parameter family of interaction constants $J(\theta)$:

$$
\sinh (2 J(\theta))=\frac{\operatorname{sn}\left(\left.\frac{2 K(k)}{\pi} \theta \right\rvert\, k\right)}{\operatorname{cn}\left(\left.\frac{2 K(k)}{\pi} \theta \right\rvert\, k\right)}, \quad k^{2} \in \mathbb{R} \quad \text { (Baxter) }
$$

"self-duality" (Kramer-Wannier) :

$$
k=0, \quad J(\theta)=\frac{1}{2} \log \left(\frac{1+\sin \theta}{\cos \theta}\right)
$$

critical inverse temperature for square $\left(\theta=\frac{\pi}{4}\right)$, honeycomb ($\theta=\frac{\pi}{3}$), triangular $\left(\theta=\frac{\pi}{6}\right)$ lattices.
Critical Ising model on isoradial graphs

Statistical Mechanics on isoradial graphs

■ Ising: Baxter, Costas-Santos, Mercat, Smirnov-Chelkak
■ Electrical network, random walk, spanning trees:
star-triangle transformation for conductances $c(\theta)=\tan \theta$. Kenyon gave a local formula for the Green function.

- bipartite dimer models: Kenyon, de Tilière, Dubédat

Statistical Mechanics on isoradial graphs

■ Ising: Baxter, Costas-Santos, Mercat, Smirnov-Chelkak
■ Electrical network, random walk, spanning trees:
star-triangle transformation for conductances $c(\theta)=\tan \theta$. Kenyon gave a local formula for the Green function.

- bipartite dimer models: Kenyon, de Tilière, Dubédat

Goals of our work

- take an infinite isoradial graph with these critical weights
- describe a Gibbs measure for the critical Ising model

Statistical Mechanics on isoradial graphs

■ Ising: Baxter, Costas-Santos, Mercat, Smirnov-Chelkak

- Electrical network, random walk, spanning trees:
star-triangle transformation for conductances $c(\theta)=\tan \theta$. Kenyon gave a local formula for the Green function.
- bipartite dimer models: Kenyon, de Tilière, Dubédat

Goals of our work

- take an infinite isoradial graph with these critical weights
- describe a Gibbs measure for the critical Ising model
- give a "local" expression for the probability of cylinders simplest example:

Statistical Mechanics on isoradial graphs

■ Ising: Baxter, Costas-Santos, Mercat, Smirnov-Chelkak

- Electrical network, random walk, spanning trees:
star-triangle transformation for conductances $c(\theta)=\tan \theta$. Kenyon gave a local formula for the Green function.
- bipartite dimer models: Kenyon, de Tilière, Dubédat

Goals of our work

- take an infinite isoradial graph with these critical weights
- describe a Gibbs measure for the critical Ising model
- give a "local" expression for the probability of cylinders simplest example:

■ Tool: dimer models

Fisher correspondence for isoradial critical Ising

missing piece of Ising contour \Leftrightarrow "long" dimer dimer weights w_{e} :

1 for short edges, coth $J(\theta)=\cot \frac{\theta}{2}$ for long edges For finite planar graphs: Kasteleyn matrix K, K^{-1}.
For an infinite Fisher graph ?

Theorem (CB, B. de Tilière)

- The inverse of the Kasteleyn matrix on the Fisher graph G_{D} has the following integral representation:

$$
K_{v, w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

where $C_{v w}$ is a contour avoiding $\mathbb{R}^{+} v \vec{w}$.

$$
\operatorname{Exp}_{\mathbf{v}, \mathbf{w}}(\lambda)=\prod_{j=0}^{n} \frac{\lambda+e^{i \beta_{j}}}{\lambda-e^{i \beta_{j}}} \frac{\lambda+e^{i \gamma_{j}}}{\lambda-e^{i \gamma_{j}}} \quad \text { discrete harmonic }
$$

Theorem (CB, B. de Tilière)

- The inverse of the Kasteleyn matrix on the Fisher graph G_{D} has the following integral representation:

$$
K_{v, w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

where $C_{v w}$ is a contour avoiding $\mathbb{R}^{+} v \vec{w}$.

$$
\operatorname{Exp}_{\mathbf{v}, \mathbf{w}}(\lambda)=\prod_{j=0}^{n} \frac{\lambda+e^{i \beta_{j}}}{\lambda-e^{i \beta_{j}}} \frac{\lambda+e^{i \gamma_{j}}}{\lambda-e^{i \gamma_{j}}} \quad \text { discrete harmonic }
$$

- The following expressions:

$$
\mathbb{P}\left[\left(v_{1}, v_{2}\right), \ldots\left(v_{2 k-1}, v_{2 k}\right)\right]=\left(\prod_{j=1}^{k} K_{v_{2 j-1}, v_{2 j}}\right) \operatorname{Pfaff}\left(K_{v_{i}, v_{j}}^{-1}\right)
$$

define a Gibbs measure for the dimer model, and thus for the Ising model.

Idea of the proof

$$
K_{v w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

■ $f_{w}(-\lambda) \operatorname{Exp}_{v, w}(\lambda)$ is in the kernel of K. So $\left(K \cdot K^{-1}\right)_{v w}=0$ if $w \neq v$.

- On the diagonal, this is not 0 because of the singularity of the logarithm at the origin.

Idea of the proof

$$
K_{v w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

■ $f_{w}(-\lambda) \operatorname{Exp}_{v, w}(\lambda)$ is in the kernel of K. So $\left(K \cdot K^{-1}\right)_{v w}=0$ if $w \neq v$.

- On the diagonal, this is not 0 because of the singularity of the logarithm at the origin.
- The expression with the Pfaffian satisfy compatibility relations on cylinders.

Idea of the proof

$$
K_{v w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

- $f_{w}(-\lambda) \operatorname{Exp}_{v, w}(\lambda)$ is in the kernel of K. So $\left(K \cdot K^{-1}\right)_{v w}=0$ if $w \neq v$.
- On the diagonal, this is not 0 because of the singularity of the logarithm at the origin.
- The expression with the Pfaffian satisfy compatibility relations on cylinders.
- Why is it a probability measure?

$$
K_{v w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

- This expression depends only on the geometry of a path between v and w. Locality.
■ Changing the graph outside of this path, does not modify $K_{v, w}^{-1}$.

$$
K_{v w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

- This expression depends only on the geometry of a path between v and w. Locality.
■ Changing the graph outside of this path, does not modify $K_{v, w}^{-1}$.
■ Take a large piece of G_{D} containing $\left(v_{1}, v_{2}\right), \ldots,\left(v_{2 k-1}, v_{2 k}\right)$, and complete to make the graph periodic $\tilde{G_{D}}$.

$$
\left(\prod_{j=1}^{k} K_{v_{2 j-1}, v_{2 j}}\right) \operatorname{Pfaff}\left(K_{v_{i}, v_{j}}^{-1}\right)
$$

is the same on G_{D} and $\tilde{G_{D}}$.

$$
K_{v w}^{-1}=\frac{1}{(2 \pi)^{2}} \oint_{C_{v w}} f_{v}(\lambda) f_{w}(-\lambda) \operatorname{Exp}_{v w}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

- This expression depends only on the geometry of a path between v and w. Locality.
■ Changing the graph outside of this path, does not modify $K_{v, w}^{-1}$.
■ Take a large piece of G_{D} containing $\left(v_{1}, v_{2}\right), \ldots,\left(v_{2 k-1}, v_{2 k}\right)$, and complete to make the graph periodic $\tilde{G_{D}}$.

$$
\left(\prod_{j=1}^{k} K_{v_{2 j-1}, v_{2 j}}\right) \operatorname{Pfaff}\left(K_{v_{i}, v_{j}}^{-1}\right)
$$

is the same on G_{D} and $\tilde{G_{D}}$.
■ We are left to understand what happens for \mathbb{Z}^{2}-periodic G_{D}.

End of the proof

- In the periodic case, K^{-1} defines a Gibbs measures for dimers (Pfaffian process).
■ For a general isoradial graph G, The coefficient $K_{v, w}^{-1}$ does not depend much on the graph: can be computed in a periodic graph coinciding with G on a large ball.
- The Pfaffian expression defines a Gibbs measure on the dimer model, and thus on the Ising model.

End of the proof

■ In the periodic case, K^{-1} defines a Gibbs measures for dimers (Pfaffian process).
■ For a general isoradial graph G, The coefficient $K_{v, w}^{-1}$ does not depend much on the graph: can be computed in a periodic graph coinciding with G on a large ball.

- The Pfaffian expression defines a Gibbs measure on the dimer model, and thus on the Ising model.
■ Consequence: spin/spin correlations = average parity of coutours crossed by a path between the spins. Depends only on the geometry on the path.

End of the proof

- In the periodic case, K^{-1} defines a Gibbs measures for dimers (Pfaffian process).
■ For a general isoradial graph G, The coefficient $K_{v, w}^{-1}$ does not depend much on the graph: can be computed in a periodic graph coinciding with G on a large ball.
- The Pfaffian expression defines a Gibbs measure on the dimer model, and thus on the Ising model.
- Consequence: spin/spin correlations = average parity of coutours crossed by a path between the spins. Depends only on the geometry on the path.
- Computation:

$$
\begin{aligned}
P(\overbrace{\mathrm{~J}}^{+}) & =1-K_{v, w} \operatorname{Pfaff}\left[\begin{array}{cc}
0 & K_{v, w}^{-1} \\
K_{w, v}^{-1} & 0
\end{array}\right] \\
& =1-K_{v, w} K_{w, v}^{-1}=\frac{1}{4}-\frac{\theta_{e}}{2 \pi \sin \theta_{e}}
\end{aligned}
$$

Free energy

Theorem (Baxter; CB., B de Tilière)
Let G be a periodic isoradial graph with N sites in the fundamental domain. The free energy per site $F_{\text {Ising }}$ is given by

$$
F_{\text {lsing }}=-\frac{\log 2}{2}-\frac{1}{N} \sum_{e \in f . d .} \frac{\theta_{e}}{\pi} \log \theta_{e}+\frac{1}{\pi}\left(L\left(\theta_{e}\right)+L\left(\frac{\pi}{2}-\theta_{e}\right)\right)
$$

where $L(\theta)=-\int_{0}^{\theta} \ln 2 \sin t \mathrm{~d} t$ is the Lobachevsky function.

Free energy

Theorem (Baxter; CB., B de Tilière)

Let G be a periodic isoradial graph with N sites in the fundamental domain. The free energy per site $F_{\text {Ising }}$ is given by

$$
F_{\text {lsing }}=-\frac{\log 2}{2}-\frac{1}{N} \sum_{e \in f . d .} \frac{\theta_{e}}{\pi} \log \theta_{e}+\frac{1}{\pi}\left(L\left(\theta_{e}\right)+L\left(\frac{\pi}{2}-\theta_{e}\right)\right)
$$

where $L(\theta)=-\int_{0}^{\theta} \ln 2 \sin t \mathrm{~d} t$ is the Lobachevsky function.

Sketch of the proof: by deformation (following Kenyon)

- from the weight preserving correspondence, relate $F_{\text {Ising }}$ and $F_{\text {dimers }}$.
- "Flatten" the graph by deforming the chains until $\theta_{e}=0$ or $\frac{\pi}{2}$.
- When the graph is flat: independent copies of 1d lattices
- Control evolution along the deformation:

$$
\begin{gathered}
\frac{\partial \text { Pfaff } A}{\partial A_{i, j}}=(\text { Pfaff } A)\left(A^{-1}\right)_{j, i} \\
\frac{\partial \log \operatorname{Pfaff} K}{\partial \alpha}=\sum_{i<j} \frac{\partial K_{i, j}}{\partial \alpha} K_{j, i}^{-1}=\sum_{e \in \mathrm{f.d}} \mathbb{P}[e] \frac{\partial \log w_{e}}{\partial \alpha}
\end{gathered}
$$

■ Integrate along the deformation

Asymptotics

Theorem (CB., B. de Tilière)
Let x and y be two vertices of type " 2 ". Then

$$
K_{x, y}^{-1}=\frac{1}{2 \pi} \Im\left(\frac{e^{i \frac{\alpha+\alpha^{\prime}}{2}}}{x-y}\right)(1+o(1))
$$

As a consequence,

$$
\operatorname{Corr}\left[e_{x}, e_{y}\right]=-\frac{\sin \theta \sin \theta^{\prime}}{4 \pi^{2}(x-y)^{2}}(1+o(1))
$$

Dimers on periodic planar graphs

Kasteleyn: finite graph on the torus
■ Partition function, and correlations:

$$
\begin{gathered}
Z=\frac{1}{2} \sum_{j=1}^{4} \pm \text { Pfaff }_{j} \\
\mathbb{P}\left[e_{1}, \ldots, e_{k}\right]=\frac{1}{2} \sum_{j=1}^{4} \pm\left(\prod_{l=1}^{k}\left(K_{j}\right)_{v_{2 l-1}, v_{2 l}}\right) \operatorname{Pfaff}\left(\left(K_{j}^{-1}\right)_{v_{l}, v_{l}}\right)
\end{gathered}
$$

K_{j} Kast. matrix with \pm on edges crossing non trivial cycles.

- if $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ periodicity, K_{j}^{-1} by discrete Fourier transform:

$$
K_{j}^{-1}\left(w_{x, y}, v_{0,0}\right)=\frac{1}{(2 \pi)^{2}} \sum_{ \pm z^{m}= \pm w^{n}=1} z^{x} w^{y} \frac{Q_{v, w}(z, w)}{P(z, w)}
$$

Lemma: $P(z, w)=\operatorname{det} K(z, w)=c \operatorname{det} \Delta(z, w)$. Harnack curve (of genus 0).
The $4 K_{j}^{-1}$ converge to the same integral: Pfaffian process in the limit

If you want to know more about dimers. . .

October 5-10

3 mini-courses
+4 introductory talks

+ workshop
organized here
registration: http://ipht.cea.fr/statcomb2009/dimers/

