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G graph. ex: rectangular box of Z2

spin configuration σ : G → {−1,+1}
energy: H(σ) = −

∑
e=(v ,w)

Jeσvσw

probability of a spin configuration:

P(σ) =
1

Z
exp(−H(σ))

Questions: Z =?, 〈σvσw 〉 =?
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Several techniques to study/solve the Ising model

Random cluster model (percolation)

Transfer matrix

Free fermion interpretation

Fisher: correspondence with dimers models



Dimer models

a dimer configuration or a perfect
matching C of a graph G is a subset
of edges such that every vertex is
incident with exactly one edge of C.

weight w : E (G)→ R∗+
probability:

P(C) =
1

Z
∏
e∈C

we



Dimer models

P(C) =
1

Z
∏
e∈C

we

Adjacency matrix:

Ku,v =

{
we if e : u → v

−we if e : v → u

Theorem (Kasteleyn)

if G is planar, there exists an orientation such that

Z = Pf K =
√

det K ,

P
[
(v1, v2), . . . , (v2k−1, v2k) ∈ C

]
=

(
k∏

i=1

Kv2i−1,v2i

)
Pf(K−1

vi ,vj
).

K called Kasteleyn matrix



Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a
decorated graph GD .
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presence of a “long” edge in the dimer configuration ⇔ lack of this
piece of Ising contour

Works for any graph embedded in a surface without boundary.



Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a
decorated graph GD .

+

−

−

−

+

−

−

−

presence of a “long” edge in the dimer configuration ⇔ lack of this
piece of Ising contour

Works for any graph embedded in a surface without boundary.



Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a
decorated graph GD .

+

−

−

−

+

−

−

−

presence of a “long” edge in the dimer configuration ⇔ lack of this
piece of Ising contour

Works for any graph embedded in a surface without boundary.



Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a
decorated graph GD .

+

−

−

−

+

−

−

−

presence of a “long” edge in the dimer configuration ⇔ lack of this
piece of Ising contour

Works for any graph embedded in a surface without boundary.



Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a
decorated graph GD .

+

−

−

−

+

−

−

−

presence of a “long” edge in the dimer configuration ⇔ lack of this
piece of Ising contour

Works for any graph embedded in a surface without boundary.



Transfer matrix T

2n × 2n matrix: columns and rows indexed by spin config. on
a row.

T

combination of local operators building the graph edge by
edge

for periodic boundary conditions:

Z = tr T n ' λn
max

If parameters J are different on each row:

Z = tr T1 · · ·Tn '??
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Transfer matrix T

If parameters J are different on each row:

Z = tr T1 · · ·Tn '??

miracle: if the Boltzmann weights satisfy the star-triangle relation

C

B

A

c

b a

abc = ABC +
1

ABC
a

bc
=

A

BC
+

BC

A
...

[a, . . . ,A, · · · = exp J]
then T1, . . . ,Tn commute and

Z ' λ(1)
max · · ·λ(n)

max

Integrability



Parametrization of the star-triangle relation

Isoradial graphs: convenient representation

edge ↔ rhombus
θ

1-parameter family of interaction constants J(θ):

sinh(2J(θ)) =
sn
(2K(k)

π θ|k
)

cn
(2K(k)

π θ|k
) , k2 ∈ R (Baxter)

“self-duality” (Kramer-Wannier) :

k = 0, J(θ) =
1

2
log

(
1 + sin θ

cos θ

)
critical inverse temperature for square (θ = π

4 ), honeycomb
(θ = π

3 ), triangular (θ = π
6 ) lattices.

Critical Ising model on isoradial graphs
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Statistical Mechanics on isoradial graphs

Ising: Baxter, Costas-Santos, Mercat, Smirnov-Chelkak

Electrical network, random walk, spanning trees:
star-triangle transformation for conductances c(θ) = tan θ.
Kenyon gave a local formula for the Green function.

bipartite dimer models: Kenyon, de Tilière, Dubédat

Goals of our work

take an infinite isoradial graph with these critical weights

describe a Gibbs measure for the critical Ising model

give a “local” expression for the probability of cylinders
simplest example:

P

 + −

J
e

 =?

Tool: dimer models
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Fisher correspondence for isoradial critical Ising
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missing piece of Ising contour ⇔ “long” dimer

dimer weights we :

1 for short edges, coth J(θ) = cot θ2 for long edges

For finite planar graphs: Kasteleyn matrix K , K−1.
For an infinite Fisher graph ?



Theorem (CB, B. de Tilière)

The inverse of the Kasteleyn matrix on the Fisher graph GD

has the following integral representation:

K−1
v ,w =

1

(2π)2

∮
Cvw

fv (λ)fw (−λ)Expvw(λ) log(λ)dλ

where Cvw is a contour avoiding R+ ~vw.

Expv,w(λ) =
n∏

j=0

λ+ e iβj

λ− e iβj

λ+ e iγj

λ− e iγj
discrete harmonic

The following expressions:

P[(v1, v2), . . . (v2k−1, v2k)] =

 k∏
j=1

Kv2j−1,v2j

Pfaff
(
K−1

vi ,vj

)
define a Gibbs measure for the dimer model, and thus for the
Ising model.
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Idea of the proof

K−1
vw =

1

(2π)2

∮
Cvw

fv (λ)fw (−λ)Expvw(λ) log(λ)dλ

fw (−λ)Expv ,w (λ) is in the kernel of K . So
(
K · K−1

)
vw

= 0
if w 6= v .

On the diagonal, this is not 0 because of the singularity of the
logarithm at the origin.

The expression with the Pfaffian satisfy compatibility relations
on cylinders.

Why is it a probability measure?
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K−1
vw =

1

(2π)2

∮
Cvw

fv (λ)fw (−λ)Expvw(λ) log(λ)dλ

This expression depends only on the geometry of a path
between v and w . Locality.

Changing the graph outside of this path, does not modify
K−1

v ,w .

Take a large piece of GD containing (v1, v2), . . . , (v2k−1, v2k),
and complete to make the graph periodic G̃D . k∏

j=1

Kv2j−1,v2j

Pfaff
(
K−1

vi ,vj

)
is the same on GD and G̃D .

We are left to understand what happens for Z2-periodic GD .
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End of the proof

In the periodic case, K−1 defines a Gibbs measures for dimers
(Pfaffian process).
For a general isoradial graph G , The coefficient K−1

v ,w does not
depend much on the graph: can be computed in a periodic
graph coinciding with G on a large ball.
The Pfaffian expression defines a Gibbs measure on the dimer
model, and thus on the Ising model.

Consequence: spin/spin correlations = average parity of
coutours crossed by a path between the spins. Depends only
on the geometry on the path.
Computation:

P

 + −

J
e

 = 1− Kv ,w Pfaff

[
0 K−1

v ,w

K−1
w ,v 0

]

= 1− Kv ,w K−1
w ,v =

1

4
− θe

2π sin θe
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Free energy

Theorem (Baxter; CB., B de Tilière)

Let G be a periodic isoradial graph with N sites in the
fundamental domain. The free energy per site FIsing is given by

FIsing = − log 2

2
− 1

N

∑
e∈f.d.

θe
π

log θe +
1

π

(
L(θe) + L(

π

2
− θe)

)
where L(θ) = −

∫ θ
0 ln 2 sin tdt is the Lobachevsky function.

Sketch of the proof: by deformation (following Kenyon)

from the weight preserving correspondence, relate FIsing and
Fdimers.

“Flatten” the graph by deforming the chains until θe = 0 or π
2 .
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When the graph is flat: independent copies of 1d lattices

Control evolution along the deformation:

∂PfaffA

∂Ai ,j
= (PfaffA)(A−1)j ,i

∂ log PfaffK

∂α
=
∑
i<j

∂Ki ,j

∂α
K−1

j ,i =
∑
e∈f.d

P[e]
∂ log we

∂α

Integrate along the deformation



Asymptotics

Theorem (CB., B. de Tilière)

Let x and y be two vertices of type “2”. Then

K−1
x ,y =

1

2π
=

(
e i α+α′

2

x − y

)
(1 + o(1)).

As a consequence,

Corr[ex , ey ] = − sin θ sin θ′

4π2(x − y)2
(1 + o(1)).



Dimers on periodic planar graphs

Kasteleyn: finite graph on the torus

Partition function, and correlations:

Z =
1

2

4∑
j=1

±PfaffKj

P[e1, . . . , ek ] =
1

2

4∑
j=1

±

(
k∏

l=1

(Kj)v2l−1,v2l

)
Pfaff

(
(K−1

j )vl ,vl′

)
Kj Kast. matrix with ± on edges crossing non trivial cycles.

if Zm × Zn periodicity, K−1
j by discrete Fourier transform:

K−1
j (wx ,y , v0,0) =

1

(2π)2

∑
±zm=±wn=1

zxw y Qv ,w (z ,w)

P(z ,w)
.

Lemma: P(z ,w) = det K (z ,w) = c det ∆(z ,w). Harnack curve
(of genus 0).
The 4 K−1

j converge to the same integral: Pfaffian process in the
limit



If you want to know more about dimers. . .

October 5-10

3 mini-courses
+ 4 introductory talks
+ workshop

organized here

registration: http://ipht.cea.fr/statcomb2009/dimers/


