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The Ising model

m G graph. ex: rectangular box of Z?

+H -1 H I + B spin configuration o:G6—{-1,+1}
== FH +H - m energy: H(o Z Jeoyou
- = H + e=(vw)

m probability of a spin configuration:

P(0) = 5 exp(~H(0))

Questions: Z =7, (o,0,) =7



The Ising model

Several techniques to study/solve the Ising model
m Random cluster model (percolation)

m Transfer matrix
m Free fermion interpretation
Fisher: correspondence with dimers models



Dimer models

m a dimer configuration or a perfect
matching C of a graph G is a subset

/ of edges such that every vertex is
incident with exactly one edge of C.
m weight w: E(G) — R%
/ m probability:
o/ 1
PC) =~ IT we

eeC



Dimer models

1
A \ PO) = Z 1] we
eeC
Adjacency matrix:
o/

Theorem (Kasteleyn)

Kuv:

)

{We ife:u—v

—w, ife:v—u

if G is planar, there exists an orientation such that

Z = PfK = VdetK,
k
P[(Vl, V2), Cey (V2/<—17 V2/<) S C <H KV2, 17\,2,> Pf( V”VJ)‘

i=1

K called Kasteleyn matrix



Fisher correspondence

Fisher 1966: correspondence between Ising on G and dimers on a
decorated graph Gp.
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Transfer matrix T

m 2”7 x 2" matrix: columns and rows indexed by spin config. on
a row.

TTTT]

m combination of local operators building the graph edge by
edge

m for periodic boundary conditions:

Z=trT"~)\"

max

m If parameters J are different on each row:

Z=trTy - Ty



Transfer matrix T

If parameters J are different on each row:
Z=trTy--- T, =77

miracle: if the Boltzmann weights satisfy the star-triangle relation

1
c 3 abc—ABC—FTBC
A a_ A BC
b a bc BC A
C )
[a,..., A, - =expJ]
then Ti,..., T, commute and

Z ~ A8 A,

INTEGRABILITY



Parametrization of the star-triangle relation

Isoradial graphs: convenient representation

]
edge < rhombus .J—o

1-parameter family of interaction constants J(6):

sinh(2J(0)) =

U T k2 eR - (Baxter
cn(2K(k)9|k) ( )
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critical inverse temperature for square (6 = 7), honeycomb
(0 = 5), triangular (6 = %) lattices.



Parametrization of the star-triangle relation

Isoradial graphs: convenient representation

]
edge < rhombus .J—o

1-parameter family of interaction constants J(6):

sn (25346] k)

sinh(2J(0)) = g0

k> € R (Baxter)

“self-duality” (Kramer-Wannier) :

k=0, <1 + sin 0)
cosf
critical inverse temperature for square (6 = 7), honeycomb

(0 = 5), triangular (6 = %) lattices.
Critical Ising model on isoradial graphs



Statistical Mechanics on isoradial graphs

m Ising: Baxter, Costas-Santos, Mercat, Smirnov-Chelkak

m Electrical network, random walk, spanning trees:
star-triangle transformation for conductances c(6) = tan6.
Kenyon gave a local formula for the Green function.

m bipartite dimer models: Kenyon, de Tiliere, Dubédat
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Statistical Mechanics on isoradial graphs

m Ising: Baxter, Costas-Santos, Mercat, Smirnov-Chelkak

m Electrical network, random walk, spanning trees:
star-triangle transformation for conductances c(6) = tan6.
Kenyon gave a local formula for the Green function.

m bipartite dimer models: Kenyon, de Tiliere, Dubédat

Goals of our work
m take an infinite isoradial graph with these critical weights
m describe a Gibbs measure for the critical Ising model
m give a “local” expression for the probability of cylinders

simplest example:
+ -
V =7

m Tool: dimer models



Fisher correspondence for isoradial critical Ising

missing piece of Ising contour < “long” dimer

dimer weights we:
1 for short edges, coth J(0) = cotg for long edges

For finite planar graphs: Kasteleyn matrix K, K~ 1.
For an infinite Fisher graph 7



Theorem (CB, B. de Tiliere)

m The inverse of the Kasteleyn matrix on the Fisher graph Gp
has the following integral representation:

1

Kb = o 74 Fo(\) (A Expuay(A) log(A)dA

where C,,, is a contour avoiding R™ viv.

n i3: [~
A+eBixte .
Exp, w(}) = H P discrete harmonic
j=0




Theorem (CB, B. de Tiliere)

m The inverse of the Kasteleyn matrix on the Fisher graph Gp
has the following integral representation:

KL = (2}02 74 Fo(\) (A Expuay(A) log(A)dA

where C,,, is a contour avoiding R™ viv.

n i3: [~
A+eBixte .
Exp, w(}) = H P discrete harmonic
j=0

m The following expressions:

Pl(v1,v2), ... (vak—1, vax)] HKsz 1wy | Plaff (K},
Jj=1

define a Gibbs measure for the dimer model, and thus for the
Ising model.



|dea of the proof

L1
Kok = G AR NExp (1) oB(N)

m £ (—A)Expy,w(X) is in the kernel of K. So (K- K1) =0
if w#v.

m On the diagonal, this is not 0 because of the singularity of the
logarithm at the origin.
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|dea of the proof

1
w = (2m)?

74 £ (\)fur(—A)Expong (M) log(A)dA

m £ (—A)Expy,w(X) is in the kernel of K. So (K- K1) =0
if w#v.

m On the diagonal, this is not 0 because of the singularity of the
logarithm at the origin.

m The expression with the Pfaffian satisfy compatibility relations
on cylinders.

m Why is it a probability measure?
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m This expression depends only on the geometry of a path
between v and w. Locality.

m Changing the graph outside of this path, does not modify
KL
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m This expression depends only on the geometry of a path
between v and w. Locality.

m Changing the graph outside of this path, does not modify
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and complete to make the graph periodic Gp.
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Kol = (2;)2 74 Fo (M) (= A)ExDong (1) log(A)dA

m This expression depends only on the geometry of a path
between v and w. Locality.

m Changing the graph outside of this path, does not modify
KL

m Take a large piece of Gp containing (v, v2),. .., (Vak—1, Vok),

and complete to make the graph periodic Gp.
k
-1
Hszj—lvvzj Plaff (K,
j=1

is the same on Gp and Gp.

m We are left to understand what happens for Z?-periodic Gp.



End of the proof

m In the periodic case, K~! defines a Gibbs measures for dimers
(Pfaffian process).

m For a general isoradial graph G, The coefficient Kv_a, does not
depend much on the graph: can be computed in a periodic
graph coinciding with G on a large ball.

m The Pfaffian expression defines a Gibbs measure on the dimer
model, and thus on the Ising model.
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= Computation:

+ —_—
-1
P 0“0 =1 Ky Pfaff[ 0 vaw}

N/ Koy 0

1
— 1Kyl Kob = e
WY 4 27sinf,



Free energy

Theorem (Baxter; CB., B de Tiliere)
Let G be a periodic isoradial graph with N sites in the
fundamental domain. The free energy per site Fisj,g is given by

log2 1 0 1 T
Flsing = _% - N ?e IogHe + ; (L(ee) + L(§ - 9e))
ecf.d.

where L(0) = — foe In2sin tdt is the Lobachevsky function.



Free energy

Theorem (Baxter; CB., B de Tiliere)

Let G be a periodic isoradial graph with N sites in the
fundamental domain. The free energy per site Fisj,g is given by

~ log2 1 e 1 m
Flsmg = _T - N ? log O + ; (L(@e) + L(§ — He)>
ecf.d.
where L(0) = — foe In2sin tdt is the Lobachevsky function.

Sketch of the proof: by deformation (following Kenyon)

m from the weight preserving correspondence, relate Figing and
Fdimers-
m “Flatten” the graph by deforming the chains until 6. = 0 or 7.



m When the graph is flat: independent copies of 1d lattices

m Control evolution along the deformation:

OPfaff A

— -1y
on, — (PRAAA;,

0 log Pfaft K aK,,J 1_ 0 log we
— = P
o =2 g i = 2 Pl

i<j ecf.d

m Integrate along the deformation



Asymptotics

Theorem (CB., B. de Tiliere)
Let x and y be two vertices of type “2”. Then

1 e"a+2a/
Koy = 5 ( ) (1 + o(1)).

As a consequence,

sinfsin 6’

a1t o)

Corrley, ] =



Dimers on periodic planar graphs

Kasteleyn: finite graph on the torus
m Partition function, and correlations:

4
1
=5 > £PfaffK;

j=1
Plet,....e&] = Z + (H Vo 17V2/) Pfaﬁ’((Kjil)V/,V//)
_] 1 1=1
K; Kast. matrix with & on edges crossing non trivial cycles.
mif Z x Zp periodicity, K1 by discrete Fourier transform:

1 x QV,W(Zv W)
5 Z Zwy —————=,
27’[’) +zM=ftw"=1 P(Z’ W)
Lemma: P(z,w) = det K(z,w) = cdet A(z, w). Harnack curve
(of genus 0).

The 4 Kjf1 converge to the same integral: Pfaffian process in the
limit

Kj_l(ny}” VO,O) = (



If you want to know more about dimers. ..

October 5-10

S 3 mini-courses
+ 4 introductory talks
+ workshop

organized here

5 -7 octobre 2009

i P

Institut H

registration: http://ipht.cea.fr/statcomb2009/dimers/



