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Bernoulli bond percolation

I Example : Nearest
neighbour graph on Z2.

I Edges augmented with
i.i.d. uniform [0,1] r.v.s.

I Fix p, 0 < p < 1, and keep
only edges of weight at
most p. (Call the rezult Z2

p.)
I Here p = 0.6.
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Bernoulli percolation on Z2

I A phase transition occurs at
p = 1/2.

I Write Cp for the component
of Z2

p containing the origin.
I p < 1/2 : all components

are finite, and |Cp| has
exponential tails. (Subcritical case)

I p > 1/2 : with probability 1
there is a unique infinite
component. (Supercritical case)

I p = 1/2 : there is no infinite
component∗ but |Cp| only
has polynomial tails.
(Critical case)
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Scaling or no scaling
There are two natural points of view to take : unscaled and
rescaled.

The unscaled point of view essentially studies the “local”
behavior of the percolation process far from the origin.
(Random walk analogues : (Local) central limit theorem, Berry-Esseen, large deviations.)
(Percolation questions : Cluster sizes, connection probabilities.)

The rescaled (scaling limit) point of view captures the global
behavior of the process.
(Random walk analogue : Convergence to Brownian motion.)
(Percolation questions : conformal invariance, convergence to SLE.)

In the remainder of this talk, I will focus on rescaled critical
percolation on the complete graph.
A caveat : only “static” critical percolation, not the percolation
process. (E.g., no “critical exponent” analogues.)
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Percolation on the complete graph
I Complete graph Kn : vertices 1, . . . ,n and all possible

edges.

I Denote by Gn,p the graph obtained by only keeping edges
of Kn of weight at most p.

I In Gn,p, each edge is independently present with
probability p.

Erdős & Renyi, 1960

I For p = (1− ε)/n, a.a.s. every component of Gn,p has size
O(log n).

I For p = (1 + ε)/n, a.a.s. one component of Gn,p has size
Θ(n), all others have size O(log n).

I For p = 1/n, a.a.s. the largest component of Gn,p has size
Θ(n2/3) and there may be many components of this order.
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Erdős & Renyi, 1960

I For p = (1− ε)/n, a.a.s. every component of Gn,p has size
O(log n).

I For p = (1 + ε)/n, a.a.s. one component of Gn,p has size
Θ(n), all others have size O(log n).

I For p = 1/n, a.a.s. the largest component of Gn,p has size
Θ(n2/3) and there may be many components of this order.

Critical percolation on the complete graph



A quick comment : graph surplus.
A tree is a connected graph with no cycles. A tree always has
one more vertex than it has edges.
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A connected graph which is not a tree has surplus equal to the
number of edges more than a tree that it has. The graph on the
right has surplus 3.
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Convergence of component sizes of Gn,1/n.
I Let C(n)

1 ,C(n)
2 , . . . be the sizes of the connected

components of Gn,1/n, listed in decreasing order, let

S(n)
1 ,S(n)

2 , . . . be their surplusses.

Theorem (Aldous, 1997)

(C(n)
1 /n2/3,C(n)

2 /n2/3, . . .)→ (L1,L2, . . .), and

(S(n)
1 ,S(n)

2 , . . .)→ (S1,S2, . . .),

jointly in distribution, as n→∞.

I The first convergence is in the space of sequences
x = (x1, x2, . . .) with

∑
x2

i <∞ and with distance

d(x,y) =
√∑

(xi − yi)2.

I The second is of finite-dimensional distributions.
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Convergence of component sizes of Gn,1/n.

What are the limit sequences ?

I Let {Bt}t≥0 be a
standard Brownian
motion

I Let Wt = Bt − t2/2.
I Let

W ∗
t = Wt − inf0≤s≤t Ws.

I Then Si is distributed as the
number of marks under the
excursion with length Li .
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Convergence of component sizes of Gn,1/n.

I The first limit object
(L1,L2, . . .)
is the sequence of the
lengths of the excursions
above 0 of W ∗

t (in
decreasing order).

I Let P be a
homogeneous Poisson
process of “marks”
under the excursions of
W ∗

t .

I Then Si is distributed as the
number of marks under the
excursion with length Li .
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Criticality.

I In the critical case Gn,1/n, “big” connected components
(clusters) have just started to appear.

I These big clusters aren’t trees, but they are close to being
trees in that they have only a few “surplus” edges.

I Large random trees are rather well understood and there is
a very well-developed limit theory, which I will now briefly
review.

I In order to understand the structure of the big clusters in
the critical case p = 1/n, we have developed a
corresponding theory for graphs with surplus edges.
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Digression : convergence of large random trees.

Fix m ≤ n and any tree T with vertex set 1, . . . ,m. What is the
probability that T is a component of Gn,1/n ?

? Each edge of T must be present.

? Each edge between vertices {1, . . . ,m} that is not an edge of
T must be absent.

? Each edge between vertices {1, . . . ,m} and vertices
{m + 1, . . . ,n} must be absent.

(
1
n

)m−1

·
(

1− 1
n

)(m
2)−(m−1)

·
(

1− 1
n

)m(n−m)

This probability does not depend on the precise choice of the
tree T .
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{m + 1, . . . ,n} must be absent.(

1
n

)m−1

·
(

1− 1
n

)(m
2)−(m−1)

·
(

1− 1
n

)m(n−m)

This probability does not depend on the precise choice of the
tree T .
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Digression : convergence of large random trees.

I Now let C be a component of Gn,1/n with m vertices, and
suppose we condition C to be a tree.

I By the preceding calculation, C is distributed as a uniform
random tree on m labelled vertices ; any spanning tree of
the vertex set is equally likely. (There are mm−2 such
possible trees.)
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Digression : convergence of large random trees.

So fix an integer m and generate a uniform random tree on
labels 1,2, . . . ,m (which we view as rooted at 1).

These trees are well understood ; they are distributed as
Poisson Galton-Watson trees conditional on their size. In
particular, they have height Θ(

√
m).
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Digression : convergence of large random trees.

Suppose now we imagine letting m get large. Take the tree and
let its edges all have length 1√

m . (This is like looking at the tree
from further and further away, while adding more and more
vertices.)

1

2

1

5 2

6 3

7

4

1

5

6 3 4

12

10

98 112

7

. . .
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The continuum random tree.
A very deep and beautiful result due to David Aldous says that
as m→∞, there is a limiting object, called the Brownian
continuum random tree.

[Picture by Grégory Miermont.]
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The Harris walk.
The Harris walk is an excursion encoding heights in a finite tree.

X(t)

1

0 t

3

2

2 5

873

4 6

1

[Picture by Marie Albenque.]

When the tree is uniformly random on 1,2, . . . ,m, this
essentially looks like a random walk with 2m steps, conditioned
to stay positive and return to zero at time 2m.
Rescaled, its limit is a Brownian excursion.
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Trees coded by continuous functions.
Given any continuous excursion, we can define an associated
tree (metric space), by gluing together points of the excursion
that (a) have the same height and (b) can see each other.

f (t)

0 s s′ t 1

f (s)

[Picture by Marie Albenque.]

The Brownian continuum random tree is the tree (metric space)
associated to a standard Brownian excursion.
This is the limit of a uniform random tree : what kind of limit ?
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Metric space convergence.

Given sets S, T in a metric
space (M,d), let

b(S,T ) = inf{r : T ⊂ br (S)}.

The Hausdorff distance

dH(S,T ) between S and T is
max(b(S,T ),b(T ,S)).

The Gromov-Hausdorff distance between metric spaces (S,d1)
and (T ,d2) is

inf{dH(S,T )},

where the infemum is over all metric spaces (M,d) containing
both (S,d1 and (T ,d2) as subspaces.
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Metric space convergence.

The uniform random tree on 1, . . . ,m, with distances rescaled
by 1/

√
m, converges in distribution to the Brownian continuum

random tree, with respect to the Gromov-Hausdorff distance.
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Handling the surplus edges.
We saw how to associate a tree to a continuous excursion by
gluing together points of the excursion that (a) have the same
height and (b) can see each other.

A mark under the excursion naturally identifies two points of the
associated tree.

We obtain a new metric space by identifying these points.
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Limiting random graph : what kind of limit.

Let C(n) = (C(n)
1 , C(n)

2 , . . .) be the size-ordered sequence of
components of Gn,1/n.

We prove that

(C(n)
1 , C(n)

2 , . . .)
d→ (M1,M2, . . .).

The sequence of metric spaces (M1,M2, . . .) is obtained from
Aldous’s reflected Brownian motion with drift by making the
identifications given by the Poisson process.

Here convergence is with respect to the metric

d(C,M) =

( ∞∑
i=1

dGH(Ci ,Mi)
4

)1/4

.
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Proof idea.

I Let C be a component of Gn,1/n, and suppose we condition
C to have m vertices and s surplus edges.

I Then C is distributed as a uniform random connected
graph on m labelled vertices with s surplus edges (I am
equally likely to pick each of connected graphs with surplus
s on those labels.)
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Proof idea.

The key turns out to be to study a component of Gn,1/n
conditioned on its size but not on its excess. Can we find a
similar limiting object ?
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A canonical spanning tree.
Consider the Harris walk of a spanning tree of {1, . . . ,m}.

X(t)

1

0 t

3

2

2 5
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4 6

1

In other words, any connected graph G on 1, . . . ,m will have a
“canonical” spanning tree T , and G can be obtained from T by
adding a subset of the marks under the Harris walk for T .
So the greater the area a(T ) under the walk, the more graphs
with canonical tree T .

In Gn,1/n, conditional upon T , each possible surplus edge
(mark) should be present with probability 1/n.
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X(t)

A mark at a lattice point under the excursion corresponds to a
unique possible surplus edge.

In other words, any connected
graph G on 1, . . . ,m will have a “canonical” spanning tree T ,
and G can be obtained from T by adding a subset of the marks
under the Harris walk for T .
So the greater the area a(T ) under the walk, the more graphs
with canonical tree T .
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(mark) should be present with probability 1/n.
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For every graph G on 1, . . . ,m, there is some tree T so that G
can be obtained from T by adding such marks.

Furthermore, for distinct trees T , T ′, the graphs that can be
obtained by adding such edges are disjoint. In other words,
any connected graph G on 1, . . . ,m will have a “canonical”
spanning tree T , and G can be obtained from T by adding a
subset of the marks under the Harris walk for T .
So the greater the area a(T ) under the walk, the more graphs
with canonical tree T .

In Gn,1/n, conditional upon T , each possible surplus edge
(mark) should be present with probability 1/n.
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In other words, any connected graph G on 1, . . . ,m will have a
“canonical” spanning tree T , and G can be obtained from T by
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So the greater the area a(T ) under the walk, the more graphs
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Tilting.

We wanted a way of generating a random component of Gn,1/n
with size m. We are now in a position to do this.

I First select a tree randomly by picking each of the labelled
trees T on 1,2, . . . ,m with a probability weight proportional
to (1− 1/n)−a(T ).

I Having chosen T , then add each of the a(T ) allowed
surplus edges (marks) independently with probability 1/n.

The result : a uniformly random connected component of
Gn,1/n, conditioned upon having size m.
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The depth-first walk for a uniform random tree.
When time is scaled by 1/m, space is scaled by 1/

√
m, the limit

of Harris walk of a uniform tree is Brownian excursion.

t

X(t)

The area a(T ) is then Θ(m3/2), so if m = n2/3 then
a(T ) = Θ(n) and (

1− 1
n

)−a(T )

∼ e−a(T )/n.

We choose a tree with probability prop. to (1− 1/n)−a(T ).

This corresponds to an exponential “tilt” of the distribution of the
limiting Brownian excursion.

This tilt can be shown to be exactly the effect of the quadratic
drift. (Using Girsanov’s theorem.)
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Thank you

Thank you.
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