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Percolation on Zd

Bonds join x to y for x, y ∈ Zd. Make bonds (x, y) independently

occupied with probability pD(y − x),

vacant with probability 1− pD(y − x),

where p ∈ [0, 1/‖D‖∞] is percolation parameter.

Key examples:
• nearest-neighbor percolation: D(x) = 1{|x|=1}/(2d);

• spread-out percolation: D(x) = 1{0<‖x‖∞≤L}/[(2L + 1)d − 1].

Special attention to spread-out long-range percolation:

D(x) =
1

ZL

(|x|
L

+ 1
)−(d+α)

,

where α > 0 and ZL is normalizing constant.



Phase transition

Percolation has a phase transition, i.e, there is a
critical probability pc = pc(d, L) ∈ (0,∞), such that

• For p < pc, a.s. no infinite cluster exists.
• For p > pc, a.s. a unique infinite cluster.
• For p = pc, behavior not understood and dimension dependent.

No percolation at criticality for d = 2,

and for nn d ≥ 19 and spread-out model with d > 6 (Hara-Slade 90).

Berger (02): For long-range percolation and α ∈ (0, d), there is no per-
colation at criticality for d ≥ 2.



Robust infrared bound

Define two-point function

τp(x) = Pp(0←→ x),

let τ̂p(k) be its Fourier transform.

Theorem 1. (Percolation infrared bound, HS90+BCHSS05b+HvdHS08.)
For d� 6 in the nearest-neighbor case, and d > 3(α ∧ 2) and L suffi-
ciently large in spread-out (long- or finite range) case,

τ̂p(k) =
1 + O(β)

pc − p + p[1− D̂(k)]

uniformly for p ∈ (pc/2, pc], where β = 1/d or β = L−d, respectively,
and D̂(k) is Fourier transform of D.

Results true under general and simple random walk condition.



Large critical clusters

Central question:

What is structure of large critical clusters?

Here we can think of
• Dimension of large clusters;
• Local structure of large clusters.

Go by name of incipient infinite cluster (IIC), which is

infinite cluster that is on verge of appearing at criticality.



2d-Incipient Infinite Cluster

Kesten (1986) has constructed IIC for percolation on Z2.

IIC describes local structure of large critical clusters.

Constructions Kesten:
(a) Condition 0 to be in infinite component for p > pc, and take limit
as p ↓ 0.

(b) Condition on 0←→ ∂Bn at p = pc, and take limit as n→∞.

For events E, define

P∞(E) = lim
p↓pc

Pp(E|0←→∞).

Similar for Construction (b). RSW theory plays an important role.

Járai (03, 04) gives several more constructions for IIC: robust object!



Definition long-range IIC

For cylinder events E, define

P∞(E) = lim
p↑pc

1

χ(p)

∑
x∈Zd

Pp(E ∩ {0←→ x}),

where χ(p) =
∑

x Pp(0←→ x) = Ep|C(0)| is expected cluster size.

Theorem 2. (Heydenreich-vdH-Hulshof) Under conditions Theorem
1, above limit exists for every cylinder event E. Moreover, P∞ ex-
tends to a probability measure on full sigma-algebra of events, and
P∞(|C(0)| =∞) = 1.



Properties IIC

Let QR = {y : |y| ≤ R} be Euclidean ball of radius R.

Theorem 3. (Heydenreich-vdH-Hulshof) Under conditions Theorem 1,
(i) there are positive constants c1 = c1(d, L) and c2 = c2(d, L) such that
for R ≥ 1

c1R
2(2∧α) ≤ E∞[|C(0) ∩QR|] ≤ c2R

2(2∧α).

(ii) We say that y is in backbone of IIC when 0←→ y and y ←→∞
occur disjointly. Denote IIC backbone by B(0).

Then, there are positive constants c3 = c3(d, L) and c4 = c4(d, L)

such that for R ≥ 1

c3R
(2∧α) ≤ E∞[|B(0) ∩QR|] ≤ c4R

(2∧α).

(Indicates that IIC backbone is (2 ∧ α) and IIC 2(2 ∧ α) dimensional).



Alternative definition IIC

For cylinder events E, define

Q∞(E) = lim
|x|→∞

Ppc(E|0←→ x).

Theorem 4. (vdH-Járai (04)) For spread-out finite-range percolation
with L sufficiently large and d > 6, or nearest-neighbour percolation
for d sufficiently large, the above limit exists for every cylinder event
E, and Q∞ = P∞.

Results make essential use of asymptotics critical two-point function
(HHS (03), Hara (08))

τ (x) = Ppc(0←→ x) ∼ |x|−(d−2).

Recent work Sakai + Chen for long-range percolation.
Asymptotics hard to prove in general, unnecessary for construction
IIC.



IIC is robust and natural object!



Proof existence IIC

Proof relies on various forms of lace expansion for two-point function
τp(x) = Pp(0←→ x).

Lace expansion can be used to show that when E only depends on
finitely many bonds,

Pp(E ∩ {0←→ x}) = ψp(E;x) +
∑
y

πp(E; y)τp(x− y).

Sum out over x and divide through by χ(p) = Ep|C(0)| =
∑

x τp(x) to
arrive at

1

χ(p)

∑
x

Pp(E ∩ {0←→ x}) =
∑
y

πp(E; y) +
1

χ(p)

∑
x

ψp(E;x).



Proof existence IIC (Cont.)

Recall

1

χ(p)

∑
x

Pp(E ∩ {0←→ x}) =
∑
y

πp(E; y) +
1

χ(p)

∑
x

ψp(E;x).

Lace expansion coefficients
∑

y ψp(E; y),
∑

y πp(E; y) are bounded
uniformly for p < pc and χ(p)→∞ as p ↑ pc, so that

P∞(E) = lim
p↑pc

1

χ(p)

∑
x

Pp(E ∩ {0←→ x}) =
∑
y

πpc(E; y).

Relatively explicit formula for IIC allows to prove equalities for differ-
ent constructions.



Random walks on high-dimensional IIC

Let (Sn)n≥0 be simple random walk on IIC, and let

pn(x, y) = Px(Sn = y)

be probability that random walk started at x is at y at time n.

Spectral dimension:

ds(IIC) = −2 lim
n→∞

log p2n(x, x)

log n
.

Volume-growth dimension:

df(IIC) = lim
r→∞

log |B(x, r)|
log r

,

where B(x, r) consists of vertices in IIC at graph distance at most r.



Random walks on IIC on tree

IIC on tree has been constructed by Kesten 86.

Consists of
• unique infinite line of descent (immortal particle);
• critical clusters attached at every vertex on infinite line.

Kesten proved
ds = 4/3, df = 2.

“Random walk trap model.”
Strongest results: Barlow + Kumagai (06).

IIC is not full dimensional, i.e., expect ds(IIC), df(IIC) < d :

anomalous diffusion.



Random walks on high-dimensional IIC

Theorem 5. (Kozma-Nachmias 09) Fix d > 6 and sufficiently spread-
out model, or d ≥ 19 and nearest-neighbor model. Then,

ds(IIC) = 4/3, df(IIC) = 2,

and, with τr hitting-time of ball BIIC(0, r) and Wn range of random
walk, i.e., number of distinct vertices visited at time n, and in prob-
ability,

lim
r→∞

logE0[τr]

log r
= 3, lim

n→∞

log |Wn|
log n

= 2/3,

where E0 denotes conditional law of RW on IIC.



RW on high-dimensional long-range IIC

Theorem 6. (Heydenreich-vdH-Hulshof) Fix d > 3(α ∧ 2) for the suffi-
ciently spread-out model. Then, results in Theorem 5 again hold:

ds(IIC) = 4/3, df(IIC) = 2,

and

lim
r→∞

logE0[τr]

log r
= 3, lim

n→∞

log |Wn|
log n

= 2/3.

Proof follows that of Nachmias + Kozma (09), adapting for
(a) different construction IIC;
(b) different control various quantities due to more general percola-
tion model.



RW on high-dimensional long-range IIC

In previous result, distinction between finite- and long-range percola-
tion models invisible in results.

To see distinction, we need to investigate geometric quantities:

exit times from Euclidean ball QR.

Let τQR
be exit time of Euclidean ball of radius R. Then, uniformly in

R ≥ 1,

PIIC

(
E0(τQR

) ≥ ε−1R3(2∧α)
)

is small when ε is small.

Believe this result to be sharp. Working on lower bound: uniformly in
R ≥ 1,

PIIC

(
E0(τQR

) ≤ εR3(2∧α)
)

is small when ε is small.



Proof: first main ingredient

• Robust theorems implying Theorem 5, 6, by Barlow, Járai, Kumagai,
Slade (08) and Kumagai, Misumi (08), assuming appropriate bounds
on effective resistances and volume growth.

BJKS (08) results used to study
(a) random walk on oriented percolation IIC above 6 dimensions;
(b) random walk on IIC for percolation on tree;
(c) random walk on invasion percolation cluster on tree.
Flexible result, Taylor made for applications in various settings.

BJKS (08): Intrinsic or graph distances;
KM (08): flexible in metric, Euclidean distance is example.



Proof: second main ingredient

• Verification of conditions BJKS (08) in KN (09) for properties under
graph distance:
Proof of df(IIC) = 2 and effective resistance bounds.
These bounds are reduced to two main bounds for critical percolation:

Epc[|Bpc(0, r)|] � r, Ppc(∂Bpc(0, r) 6= ∅) � 1/r,

alike on tree. Second bound: ρInt = 1.

All these results can easily be adapted to long-range setting, using
results in Heydenreich, vdH, Sakai (08).

• Verification of conditions KM (08) for Euclidean distance:
Upper bounds work, lower bounds under construction.



A consistent picture

Reasonable to assume that there exists a > 1 such that

E0[dIIC(0, Sn)] � n1/a.

Then,

p2n(0, 0) � 1/|BIIC(0, n1/a)|, E0[τr] � ra, E0[|Wn|] � |BIIC(0, n1/a)|.

Assumption implies

Epc[|Bpc(0, r)| | ∂Bpc(0, r) 6= ∅] ≈ EIIC[|BIIC(0, r)|] � r2.

Thus,

ds(IIC) = 4/a, lim
r→∞

logE0[τr]

log r
= a, lim

n→∞

log |Wn|
log n

= 2/a.

Remains to determine a.



Effective resistance
Proof make essential use of relation

random walks and electrical networks.

Define quadratic form

E(f, g) =
1

2

∑
b∈B

(f (b̄)− f (b))(g(b̄)− g(b)).

Then, for A,B ⊆ Zd, effective resistance between A and B is

Reff(A,B)−1 = inf{E(f, f ) : f |A = 1, f |B = 0}.

Reff(A,B) satisfies series and parallel laws in electricity. Implies, on
any graph G,

Reff(A,B) ≤ dG(A,B).

Equality when there is unique path between A and B.



Assumptions BJKS (08) and KM (08)

Let J(λ) be set of r ≥ 1 such that

λ−1r2 ≤ |BIIC(0, r)| ≤ λr2, λ−1r ≤ Reff(0, BIIC(0, r)c) ≤ λr.

• Assumption BJKS (08): There exists r∗ ≥ 1 and c1, q0 > 0 s.t.

PG(r ∈ J(λ)) ≥ 1− c1λ
−q0.

Implies that volume balls grow as radius squared, and effective resis-
tance grows as radius, like it does on tree.

• Assumption KM (08): Similar, but for balls in different metrics, and
(possibly) different volume growth and effective resistance growth.
Correct scaling:

|IIC ∩QR| ∼ R2(2∧α), Reff(0, (IIC ∩QR)c) ∼ λR2∧α.



Effective resistance

Estimate

E0[τr] � Reff(0, BIIC(0, r)c)|BIIC(0, r)| � r · r2 = r3,

so that a = 3.

• Upper bound always valid;
• Lower bound when path between 0 and BIIC(0, r)c is essentially
unique.

Implies results Theorems 5-6, subject to assumptions
• volume growth critical balls; and
• intrinsic one-arm exponent.



Questions

• Can IIC also be constructed in p ↓ p limit that Kesten (86) uses?
Problem: Weaker control over super-critical percolation.

• Can IIC also be constructed by conditioning on 0←→ ∂QR and tak-
ingR→∞ and using recent one-arm result of Kozma+Nachmias (09)?

• Can IIC also be constructed using invasion percolation?
Scaling |y|−(d−4) conjectured for invasion percolation two-point func-
tion, important open problem.

•What is scaling limit of IIC?
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