INTERMITTENCY ON CATALYSTS

Frank den Hollander
Leiden University & EURANDOM
The Netherlands

Joint work with:

Jirgen Gartner  (Berlin)
Gregory Maillard (Marseille)

Above the Critical Dimension, Institut Henri Poincaré,
Paris, 7—11 December 2009



§ INTRODUCTION

In this talk we consider the Parabolic Anderson Model on
7Ze d>1:

%u(m,t) = kAu(x,t) + vE£(x, t)u(z, t),

u(-,0) =1,

where k € (0,00) is the diffusion constant, v € (0,00) is the
coupling constant, A is the discrete Laplacian, and & is an
N-valued random field.

The PAM is the parabolic analogue of the Schrodinger equation in a

random potential and has been studied intensively since 1990.



INTERPRETATION

Consider a system of two types of particles, catalyst A and
reactant B, such that:

— A-particles perform an autonomous dynamics given by &, with
£(x,t) the number of A-particles at site z at time ¢.

— B-particles perform independent simple random walks at rate 2dk
and split into two at a rate that is equal to v times the number
of A-particles present at the same location.

T hen

u(x,t) = average number of B-particles
at site x at time t given the
evolution of the A-particles.




A systematic study of the PAM for time-independent ran-
dom fields & has been carried out since 1990:

Gartner & Molchanov

Gartner & dH

Gartner, Konig & Molchanov

Biskup & Konig

Morters & Sidorova

van der Hofstad, Modrters & Sidorova

+ ...

The focus of these papers is on the height, shape and location of the
dominant peaks in the u-field in the limit of large t.



Until 2004, the only time-dependent example studied was
where £ consists of independent Brownian noises:

Carmona & Molchanov
Carmona, Koralov & Molchanov
Carmona, Molchanov & Viens
Cranston, Mountford & Shiga
Greven & dH



§ THREE TYPES OF CATALYST

In this talk we consider three different choices for the cat-
alyst:

(1) Independent simple random walks.
(2) Symmetric exclusion process.
(3) Voter model.

Choice (1) was first considered in:

Kesten & Sidoravicius
Gartner & Heydenreich



We study the annealed Lyapunov exponents

1
Ap = lim —log E([u(0,t)]?), peN,
t—0o0 pt

where the expectation is over the ¢-field.

In particular, we investigate the dependence of Ap on the
diffusion constant . It turns out that there is a critical
dimension at which the behavior changes.

The system is said to be intermitttent if A1 <X < ---



5§ FEYNMAN-KAC REPRESENTATION

The starting point of the analysis is the formula

u(0,1) = ng(exp [7/()t£(X(s),t _ 9 dsD,

where X is simple random walk on 72 with step rate 2dk,
and the expectation is taken w.r.t. X given X(0) = 0.

Consequently, studying A, amounts to doing a large deviation analysis

for a random field and a random walk together.



§ INDEPENDENT SIMPLE RANDOM WALKS

For this case £ has state space (NU {0})Zd and generator

(Lf)(E) = 5 Z E@)[f(E"Y) = F(O],

d 73y
where £ is the configuration obtained from £ by moving
a particle from z to y.

We start from the Poisson distribution with intensity p € (0, c0), which
is an equilibrium.



Let G4 = J5° pt(0,0)dt be the Green function at the origin
of simple random walk on 74 stepping at rate 1. The
following dichotomy holds:

THEOREM 1:
Ap = o0 if and only if p > 1/vGy.

Thus, for recurrent random walk no A, is finite, while for
transient random walk only those with small enough p are.



THEOREM 2: Assume p < 1/~4G4. Then:

(i) k — Xp(k) is continuous, strictly decreasing and convex
on [0, c0).
(ii) For k = O:

N (1/vGg)
(1/7Gy) —p

Ap(0) = p

(iii) For k — co:
1im 2dk[Mp(k) — p7] = pv°Gg + La=3 (24)>(py°p)* P,

—1/2 022 2
Pz= sup ||[(—Ar3) 21213 — |Veafl3 |-

feHL(R3)

| fllo=1



pY pY

k— Ap(k) for p=1,2,3 when p < 1/7Gy

Remarkable: Ps is the variational problem for the polaron model ana-
lyzed in Lieb (1977) and in Donsker and Varadhan (1983).



Thus, the system is intermittent for

d>3 small k
d =3 large k.

CONJECTURE 3:

In d = 3, the curves are distinct.

CONJECTURE 4:

In d > 4, the curves merge successively.



§ SYMMETRIC EXCLUSION PROCESS

For this case £ has state space {0, 1}Zd and generator

LHE® =) plzy) [fETY) - fO]

{z,y}CZd

where £7°Y is the configuration obtained from £ by inter-

changing the states at =z and y, and p(-,-) is a symmetric
random walk kernel.

We start from the Bernoulli distribution with density p € (0,1), which
is an equilibrium.



THEOREM 5:

Ap € lpy,7v] and k — A\p(k) is continuous, strictly decreasing
and convex on [0, 00).

THEOREM 6:

(i) If p(-,-) is recurrent, then Ap(x) =~ for all p and k.
(ii) If p(-,-) is transient, then

(a) M\p(r) € (pv,7y) for all p and k.

(b) p — Ap(0) is strictly increasing.

() liMg—oo Ap(K) = p.
THEOREM 7:
If p(-,-) is simple random walk in d > 3, then

Jim 2dk[Ap(Kk) — p]
= p(1 — p)V°Gq~+ 1g=3 (2d)> [p(1 — p)7?p]* P3.



Ap(K) Ap(K)

Py T

O O

k — Ap(k) for recurrent and transient random walk



Py PY

Kk — (k) for p=1,2,3 for simple random walk



§ VOTER MODEL

For this case £ has state space {0, 1}Zd and generator

LHE© =),  plzy) [fEY) - fE]

{z,y}CZd

where £*7Y is the configuration obtained from £ by im-

posing on y the state of z, and p(-,-) is a random walk
kernel.

We start from the Bernoulli distribution with density p € (0,1), which is

not an equilibrium, or from the non-Bernoulli equilibrium distribution.



We expect similar behavior as for symmetric exclusion, but
so far only partial results have been obtained.

CONJECTURE 8:

(i) If p(-,-) is not-strongly transient, then A, =~ for all p.
(ii) If p(-,-) is strongly transient, then Ay, € (pv,y) for all p.

THEOREM 9:

The conjecture is true when p(-,-) has zero mean and finite

variance, in which case the separation is between 1 < d < 4
and d > 5.



THEOREM 10:

Ap € lpv,v] and k — Mp(k) is continuous on [0,00) and
strictly decreasing at least near O.

THEOREM 11:

(a) p+— Ap(0) is strictly increasing.



CONJECTURE 12:

If p(-,-) is simple random walk in d > 5, then
lim 2dk[Ap(k) — p]

R— 00

G 1
= p(1 — p)’yzG—d + 14—5(2d)° [p(1 — p)sz— pl? Ps,
d d

where
o0
Gy = /O pe(0,0) dt,

O
G;@:/O £ p;(0,0) dt,

and Py is given by a variational formula analogous to P3.



CONCLUSION

Detailed results have been otained for three classical choi-
ces of catalyst.

For reversible dynamics (IRW + SE) a detailed analysis
can be carried through. For non-reversible dynamics (VM)
some aspects remain to be clarified.

There is a degree of universality in the qualitative behavior
of the three models, with a special role for the critical
dimension.



