INTERMITTENCY ON CATALYSTS

Frank den Hollander
Leiden University \& EURANDOM
The Netherlands

Joint work with:

Jürgen Gärtner	(Berlin)
Gregory Maillard	(Marseille)

Above the Critical Dimension, Institut Henri Poincaré, Paris, 7-11 December 2009

§ INTRODUCTION

In this talk we consider the Parabolic Anderson Model on $\mathbb{Z}^{d}, d \geq 1$:

$$
\begin{aligned}
& \frac{\partial}{\partial t} u(x, t)=\kappa \Delta u(x, t)+\gamma \xi(x, t) u(x, t), \\
& u(\cdot, 0) \equiv 1
\end{aligned}
$$

where $\kappa \in(0, \infty)$ is the diffusion constant, $\gamma \in(0, \infty)$ is the coupling constant, Δ is the discrete Laplacian, and ξ is an \mathbb{N}-valued random field.

The PAM is the parabolic analogue of the Schrödinger equation in a random potential and has been studied intensively since 1990.

INTERPRETATION

Consider a system of two types of particles, catalyst A and reactant B, such that:

- A-particles perform an autonomous dynamics given by ξ, with $\xi(x, t)$ the number of A-particles at site x at time t.
- B-particles perform independent simple random walks at rate $2 d \kappa$ and split into two at a rate that is equal to γ times the number of A-particles present at the same location.

Then

$$
u(x, t)=\text { average number of } B \text {-particles }
$$ at site x at time t given the evolution of the A-particles.

A systematic study of the PAM for time-independent random fields ξ has been carried out since 1990:

Gärtner \& Molchanov
Gärtner \& dH
Gärtner, König \& Molchanov
Biskup \& König
Mörters \& Sidorova
van der Hofstad, Mörters \& Sidorova
$+\ldots$

The focus of these papers is on the height, shape and location of the dominant peaks in the u-field in the limit of large t.

Until 2004, the only time-dependent example studied was where ξ consists of independent Brownian noises:

Carmona \& Molchanov
Carmona, Koralov \& Molchanov
Carmona, Molchanov \& Viens
Cranston, Mountford \& Shiga Greven \& dH
§ THREE TYPES OF CATALYST

In this talk we consider three different choices for the catalyst:
(1) Independent simple random walks.
(2) Symmetric exclusion process.
(3) Voter model.

Choice (1) was first considered in:

Kesten \& Sidoravicius
Gärtner \& Heydenreich

We study the annealed Lyapunov exponents

$$
\lambda_{p}=\lim _{t \rightarrow \infty} \frac{1}{p t} \log \mathbb{E}\left([u(0, t)]^{p}\right), \quad p \in \mathbb{N}
$$

where the expectation is over the ξ-field.

In particular, we investigate the dependence of λ_{p} on the diffusion constant κ. It turns out that there is a critical dimension at which the behavior changes.

The system is said to be intermitttent if $\lambda_{1}<\lambda_{2}<\cdots$

$\S ~ F E Y N M A N-K A C ~ R E P R E S E N T A T I O N$

The starting point of the analysis is the formula

$$
u(0, t)=E_{0}^{X}\left(\exp \left[\gamma \int_{0}^{t} \xi(X(s), t-s) d s\right]\right)
$$

where X is simple random walk on \mathbb{Z}^{d} with step rate $2 d \kappa$, and the expectation is taken w.r.t. X given $X(0)=0$.

Consequently, studying λ_{p} amounts to doing a large deviation analysis for a random field and a random walk together.

§ INDEPENDENT SIMPLE RANDOM WALKS

For this case ξ has state space $(\mathbb{N} \cup\{0\})^{\mathbb{Z}^{d}}$ and generator

$$
(L f)(\xi)=\frac{1}{2 d} \sum_{x \sim y} \xi(x)\left[f\left(\xi^{x \curvearrowright y}\right)-f(\xi)\right]
$$

where $\xi^{x \curvearrowright y}$ is the configuration obtained from ξ by moving a particle from x to y.

We start from the Poisson distribution with intensity $\rho \in(0, \infty)$, which is an equilibrium.

Let $G_{d}=\int_{0}^{\infty} p_{t}(0,0) d t$ be the Green function at the origin of simple random walk on \mathbb{Z}^{d} stepping at rate 1 . The following dichotomy holds:

THEOREM 1:
$\lambda_{p}=\infty$ if and only if $p \geq 1 / \gamma G_{d}$.

Thus, for recurrent random walk no λ_{p} is finite, while for transient random walk only those with small enough p are.

THEOREM 2: Assume $p<1 / \gamma G_{d}$. Then:
(i) $\kappa \mapsto \lambda_{p}(\kappa)$ is continuous, strictly decreasing and convex on $[0, \infty)$.
(ii) For $\kappa=0$:

$$
\lambda_{p}(0)=\rho \gamma \frac{\left(1 / \gamma G_{d}\right)}{\left(1 / \gamma G_{d}\right)-p}
$$

(iii) For $\kappa \rightarrow \infty$:

$$
\begin{aligned}
& \lim _{\kappa \rightarrow \infty} 2 d \kappa\left[\lambda_{p}(\kappa)-\rho \gamma\right]=\rho \gamma^{2} G_{d}+1_{d=3}(2 d)^{3}\left(\rho \gamma^{2} p\right)^{2} \mathcal{P}_{3} \\
& \mathcal{P}_{3}=\sup _{\substack{f \in H_{\left(\mathbb{R}^{3}\right)} \\
\|f\|_{2}=1}}\left[\left\|\left(-\Delta_{\mathbb{R}^{3}}\right)^{-1 / 2} f^{2}\right\|_{2}^{2}-\left\|\nabla_{\mathbb{R}^{3}} f\right\|_{2}^{2}\right]
\end{aligned}
$$

Remarkable: \mathcal{P}_{3} is the variational problem for the polaron model analyzed in Lieb (1977) and in Donsker and Varadhan (1983).

Thus, the system is intermittent for

$$
\begin{array}{ll}
d \geq 3 & \text { small } \kappa \\
d=3 & \text { large } \kappa .
\end{array}
$$

CONJECTURE 3:

In $d=3$, the curves are distinct.

CONJECTURE 4:

In $d \geq 4$, the curves merge successively.

§ SYMMETRIC EXCLUSION PROCESS

For this case ξ has state space $\{0,1\}^{\mathbb{Z}^{d}}$ and generator

$$
(L f)(\xi)=\sum_{\{x, y\} \subset \mathbb{Z}^{d}} p(x, y)\left[f\left(\xi^{x \leftrightarrow y}\right)-f(\xi)\right],
$$

where $\xi^{x \leftrightarrow y}$ is the configuration obtained from ξ by interchanging the states at x and y, and $p(\cdot, \cdot)$ is a symmetric random walk kernel.

We start from the Bernoulli distribution with density $\rho \in(0,1)$, which is an equilibrium.

THEOREM 5:
$\lambda_{p} \in[\rho \gamma, \gamma]$ and $\kappa \rightarrow \lambda_{p}(\kappa)$ is continuous, strictly decreasing and convex on $[0, \infty)$.

THEOREM 6:
(i) If $p(\cdot, \cdot)$ is recurrent, then $\lambda_{p}(\kappa)=\gamma$ for all p and κ.
(ii) If $p(\cdot, \cdot)$ is transient, then
(a) $\lambda_{p}(\kappa) \in(\rho \gamma, \gamma)$ for all p and κ.
(b) $p \mapsto \lambda_{p}(0)$ is strictly increasing.
(c) $\lim _{\kappa \rightarrow \infty} \lambda_{p}(\kappa)=\rho \gamma$.

THEOREM 7:

If $p(\cdot, \cdot)$ is simple random walk in $d \geq 3$, then

$$
\begin{aligned}
& \lim _{\kappa \rightarrow \infty} 2 d \kappa\left[\lambda_{p}(\kappa)-\rho \gamma\right] \\
& =\rho(1-\rho) \gamma^{2} G_{d}+1_{d=3}(2 d)^{3}\left[\rho(1-\rho) \gamma^{2} p\right]^{2} \mathcal{P}_{3} .
\end{aligned}
$$

$\kappa \mapsto \lambda_{p}(\kappa)$ for $p=1,2,3$ for simple random walk

§ VOTER MODEL

For this case ξ has state space $\{0,1\}^{\mathbb{Z}^{d}}$ and generator

$$
(L f)(\xi)=\sum_{\{x, y\} \subset \mathbb{Z}^{d}} p(x, y)\left[f\left(\xi^{x \rightarrow y}\right)-f(\xi)\right],
$$

where $\xi^{x \rightarrow y}$ is the configuration obtained from ξ by imposing on y the state of x, and $p(\cdot, \cdot)$ is a random walk kernel.

We start from the Bernoulli distribution with density $\rho \in(0,1)$, which is not an equilibrium, or from the non-Bernoulli equilibrium distribution.

We expect similar behavior as for symmetric exclusion, but so far only partial results have been obtained.

CONJECTURE 8:

(i) If $p(\cdot, \cdot)$ is not-strongly transient, then $\lambda_{p}=\gamma$ for all p.
(ii) If $p(\cdot, \cdot)$ is strongly transient, then $\lambda_{p} \in(\rho \gamma, \gamma)$ for all p.

THEOREM 9:

The conjecture is true when $p(\cdot, \cdot)$ has zero mean and finite variance, in which case the separation is between $1 \leq d \leq 4$ and $d \geq 5$.

THEOREM 10:
$\lambda_{p} \in[\rho \gamma, \gamma]$ and $\kappa \rightarrow \lambda_{p}(\kappa)$ is continuous on $[0, \infty)$ and strictly decreasing at least near 0.

THEOREM 11:
(a) $p \mapsto \lambda_{p}(0)$ is strictly increasing.
(b) $\lim _{\kappa \rightarrow \infty} \lambda_{p}(\kappa)=\rho \gamma$.

CONJECTURE 12:

If $p(\cdot, \cdot)$ is simple random walk in $d \geq 5$, then

$$
\begin{aligned}
\lim _{\kappa \rightarrow \infty} & 2 d \kappa\left[\lambda_{p}(\kappa)-\rho \gamma\right] \\
& =\rho(1-\rho) \gamma^{2} \frac{G_{d}^{*}}{G_{d}}+1_{d=5}(2 d)^{5}\left[\rho(1-\rho) \gamma^{2} \frac{1}{G_{d}} p\right]^{2} \mathcal{P}_{5}
\end{aligned}
$$

where

$$
\begin{aligned}
G_{d} & =\int_{0}^{\infty} p_{t}(0,0) d t \\
G_{d}^{*} & =\int_{0}^{\infty} t p_{t}(0,0) d t
\end{aligned}
$$

and \mathcal{P}_{5} is given by a variational formula analogous to \mathcal{P}_{3}.

CONCLUSION

Detailed results have been otained for three classical choices of catalyst.

For reversible dynamics (IRW + SE) a detailed analysis can be carried through. For non-reversible dynamics (VM) some aspects remain to be clarified.

There is a degree of universality in the qualitative behavior of the three models, with a special role for the critical dimension.

