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§ INTRODUCTION

In this talk we consider the Parabolic Anderson Model on
Zd, d ≥ 1:

∂

∂t
u(x, t) = κ∆u(x, t) + γξ(x, t)u(x, t),

u(·,0) ≡ 1,

where κ ∈ (0,∞) is the diffusion constant, γ ∈ (0,∞) is the
coupling constant, ∆ is the discrete Laplacian, and ξ is an
N-valued random field.

The PAM is the parabolic analogue of the Schrödinger equation in a

random potential and has been studied intensively since 1990.



INTERPRETATION

Consider a system of two types of particles, catalyst A and
reactant B, such that:

– A-particles perform an autonomous dynamics given by ξ, with
ξ(x, t) the number of A-particles at site x at time t.

– B-particles perform independent simple random walks at rate 2dκ
and split into two at a rate that is equal to γ times the number
of A-particles present at the same location.

Then

u(x, t) = average number of B-particles
at site x at time t given the
evolution of the A-particles.



A systematic study of the PAM for time-independent ran-
dom fields ξ has been carried out since 1990:

Gärtner & Molchanov
Gärtner & dH
Gärtner, König & Molchanov
Biskup & König
Mörters & Sidorova
van der Hofstad, Mörters & Sidorova
+ ...

The focus of these papers is on the height, shape and location of the

dominant peaks in the u-field in the limit of large t.



Until 2004, the only time-dependent example studied was
where ξ consists of independent Brownian noises:

Carmona & Molchanov
Carmona, Koralov & Molchanov
Carmona, Molchanov & Viens
Cranston, Mountford & Shiga
Greven & dH



§ THREE TYPES OF CATALYST

In this talk we consider three different choices for the cat-
alyst:

(1) Independent simple random walks.
(2) Symmetric exclusion process.
(3) Voter model.

Choice (1) was first considered in:

Kesten & Sidoravicius
Gärtner & Heydenreich



We study the annealed Lyapunov exponents

λp = lim
t→∞

1

pt
logE([u(0, t)]p), p ∈ N,

where the expectation is over the ξ-field.

In particular, we investigate the dependence of λp on the
diffusion constant κ. It turns out that there is a critical
dimension at which the behavior changes.

The system is said to be intermitttent if λ1 < λ2 < · · ·



§ FEYNMAN-KAC REPRESENTATION

The starting point of the analysis is the formula

u(0, t) = EX
0

(
exp

[
γ

∫ t

0
ξ(X(s), t− s) ds

])
,

where X is simple random walk on Zd with step rate 2dκ,
and the expectation is taken w.r.t. X given X(0) = 0.

Consequently, studying λp amounts to doing a large deviation analysis

for a random field and a random walk together.



§ INDEPENDENT SIMPLE RANDOM WALKS

For this case ξ has state space (N ∪ {0})Zd
and generator

(Lf)(ξ) =
1

2d

∑

x∼y
ξ(x)[f(ξx!y)− f(ξ)],

where ξx!y is the configuration obtained from ξ by moving
a particle from x to y.

We start from the Poisson distribution with intensity ρ ∈ (0,∞), which

is an equilibrium.



Let Gd =
∫∞
0 pt(0,0)dt be the Green function at the origin

of simple random walk on Zd stepping at rate 1. The
following dichotomy holds:

THEOREM 1:

λp =∞ if and only if p ≥ 1/γGd.

Thus, for recurrent random walk no λp is finite, while for
transient random walk only those with small enough p are.



THEOREM 2: Assume p < 1/γGd. Then:

(i) κ )→ λp(κ) is continuous, strictly decreasing and convex
on [0,∞).

(ii) For κ = 0:

λp(0) = ργ
(1/γGd)

(1/γGd)− p
.

(iii) For κ →∞:

lim
κ→∞2dκ[λp(κ)− ργ] = ργ2Gd + 1d=3 (2d)3(ργ2p)2P3,

P3 = sup
f∈H1(R3)
‖f‖2=1

[
‖(−∆R3)−1/2f2‖22 − ‖∇R3f‖22

]
.
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κ )→ λp(κ) for p = 1,2,3 when p < 1/γGd

Remarkable: P3 is the variational problem for the polaron model ana-

lyzed in Lieb (1977) and in Donsker and Varadhan (1983).



Thus, the system is intermittent for

d ≥ 3 small κ

d = 3 large κ.

CONJECTURE 3:

In d = 3, the curves are distinct.

CONJECTURE 4:

In d ≥ 4, the curves merge successively.



§ SYMMETRIC EXCLUSION PROCESS

For this case ξ has state space {0,1}Zd
and generator

(Lf)(ξ) =
∑

{x,y}⊂Zd

p(x, y) [f(ξx↔y)− f(ξ)],

where ξx↔y is the configuration obtained from ξ by inter-
changing the states at x and y, and p(·, ·) is a symmetric
random walk kernel.

We start from the Bernoulli distribution with density ρ ∈ (0,1), which

is an equilibrium.



THEOREM 5:

λp ∈ [ργ, γ] and κ → λp(κ) is continuous, strictly decreasing
and convex on [0,∞).

THEOREM 6:

(i) If p(·, ·) is recurrent, then λp(κ) = γ for all p and κ.
(ii) If p(·, ·) is transient, then

(a) λp(κ) ∈ (ργ, γ) for all p and κ.
(b) p )→ λp(0) is strictly increasing.
(c) limκ→∞ λp(κ) = ργ.

THEOREM 7:

If p(·, ·) is simple random walk in d ≥ 3, then

lim
κ→∞2dκ[λp(κ)− ργ]

= ρ(1− ρ)γ2Gd + 1d=3 (2d)3 [ρ(1− ρ)γ2p]2P3.
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κ )→ λp(κ) for recurrent and transient random walk
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κ )→ λp(κ) for p = 1,2,3 for simple random walk



§ VOTER MODEL

For this case ξ has state space {0,1}Zd
and generator

(Lf)(ξ) =
∑

{x,y}⊂Zd

p(x, y) [f(ξx→y)− f(ξ)],

where ξx→y is the configuration obtained from ξ by im-
posing on y the state of x, and p(·, ·) is a random walk
kernel.

We start from the Bernoulli distribution with density ρ ∈ (0,1), which is

not an equilibrium, or from the non-Bernoulli equilibrium distribution.



We expect similar behavior as for symmetric exclusion, but
so far only partial results have been obtained.

CONJECTURE 8:

(i) If p(·, ·) is not-strongly transient, then λp = γ for all p.
(ii) If p(·, ·) is strongly transient, then λp ∈ (ργ, γ) for all p.

THEOREM 9:

The conjecture is true when p(·, ·) has zero mean and finite
variance, in which case the separation is between 1 ≤ d ≤ 4
and d ≥ 5.



THEOREM 10:

λp ∈ [ργ, γ] and κ → λp(κ) is continuous on [0,∞) and
strictly decreasing at least near 0.

THEOREM 11:

(a) p )→ λp(0) is strictly increasing.
(b) limκ→∞ λp(κ) = ργ.



CONJECTURE 12:

If p(·, ·) is simple random walk in d ≥ 5, then

lim
κ→∞2dκ[λp(κ)− ργ]

= ρ(1− ρ)γ2G∗d
Gd

+ 1d=5(2d)5 [ρ(1− ρ)γ2 1

Gd
p]2P5,

where

Gd =
∫ ∞

0
pt(0,0) dt,

G∗d =
∫ ∞

0
t pt(0,0) dt,

and P5 is given by a variational formula analogous to P3.



CONCLUSION

Detailed results have been otained for three classical choi-
ces of catalyst.

For reversible dynamics (IRW + SE) a detailed analysis
can be carried through. For non-reversible dynamics (VM)
some aspects remain to be clarified.

There is a degree of universality in the qualitative behavior
of the three models, with a special role for the critical
dimension.


