INTERMITTENCY ON CATALYSTS

Frank den Hollander Leiden University & EURANDOM The Netherlands

Joint work with:

Jürgen Gärtner(Berlin)Gregory Maillard(Marseille)

Above the Critical Dimension, Institut Henri Poincaré, Paris, 7–11 December 2009

§ INTRODUCTION

In this talk we consider the Parabolic Anderson Model on \mathbb{Z}^d , $d \ge 1$:

$$\frac{\partial}{\partial t}u(x,t) = \kappa \Delta u(x,t) + \gamma \xi(x,t)u(x,t),$$
$$u(\cdot,0) \equiv 1,$$

where $\kappa \in (0, \infty)$ is the diffusion constant, $\gamma \in (0, \infty)$ is the coupling constant, Δ is the discrete Laplacian, and ξ is an \mathbb{N} -valued random field.

The PAM is the parabolic analogue of the Schrödinger equation in a random potential and has been studied intensively since 1990.

INTERPRETATION

Consider a system of two types of particles, catalyst A and reactant B, such that:

- A-particles perform an autonomous dynamics given by ξ , with $\xi(x,t)$ the number of A-particles at site x at time t.
- *B*-particles perform independent simple random walks at rate $2d\kappa$ and split into two at a rate that is equal to γ times the number of *A*-particles present at the same location.

Then

$$u(x,t) =$$
 average number of *B*-particles
at site *x* at time *t* given the
evolution of the *A*-particles.

A systematic study of the PAM for time-independent random fields ξ has been carried out since 1990:

```
Gärtner & Molchanov
Gärtner & dH
Gärtner, König & Molchanov
Biskup & König
Mörters & Sidorova
van der Hofstad, Mörters & Sidorova
+ ...
```

The focus of these papers is on the height, shape and location of the dominant peaks in the u-field in the limit of large t.

Until 2004, the only time-dependent example studied was where ξ consists of independent Brownian noises:

Carmona & Molchanov Carmona, Koralov & Molchanov Carmona, Molchanov & Viens Cranston, Mountford & Shiga Greven & dH

\S Three types of catalyst

In this talk we consider three different choices for the catalyst:

(1) Independent simple random walks.
 (2) Symmetric exclusion process.
 (3) Voter model.

Choice (1) was first considered in:

Kesten & Sidoravicius Gärtner & Heydenreich

We study the annealed Lyapunov exponents

$$\lambda_p = \lim_{t \to \infty} \frac{1}{pt} \log \mathbb{E}([u(0,t)]^p), \quad p \in \mathbb{N},$$

where the expectation is over the ξ -field.

In particular, we investigate the dependence of λ_p on the diffusion constant κ . It turns out that there is a critical dimension at which the behavior changes.

The system is said to be intermittent if $\lambda_1 < \lambda_2 < \cdots$

§ FEYNMAN-KAC REPRESENTATION

The starting point of the analysis is the formula

$$u(0,t) = E_0^X \left(\exp\left[\gamma \int_0^t \xi(X(s), t-s) \, ds\right] \right),$$

where X is simple random walk on \mathbb{Z}^d with step rate $2d\kappa$, and the expectation is taken w.r.t. X given X(0) = 0.

Consequently, studying λ_p amounts to doing a large deviation analysis for a random field and a random walk together.

\S INDEPENDENT SIMPLE RANDOM WALKS

For this case ξ has state space $(\mathbb{N} \cup \{0\})^{\mathbb{Z}^d}$ and generator

$$(Lf)(\xi) = \frac{1}{2d} \sum_{x \sim y} \xi(x) [f(\xi^{x \to y}) - f(\xi)],$$

where $\xi^{x \frown y}$ is the configuration obtained from ξ by moving a particle from x to y.

We start from the Poisson distribution with intensity $\rho \in (0, \infty)$, which is an equilibrium.

Let $G_d = \int_0^\infty p_t(0,0) dt$ be the Green function at the origin of simple random walk on \mathbb{Z}^d stepping at rate 1. The following dichotomy holds:

THEOREM 1:

$$\lambda_p = \infty$$
 if and only if $p \ge 1/\gamma G_d$.

Thus, for recurrent random walk no λ_p is finite, while for transient random walk only those with small enough p are.

THEOREM 2: Assume $p < 1/\gamma G_d$. Then:

(i) $\kappa \mapsto \lambda_p(\kappa)$ is continuous, strictly decreasing and convex on $[0, \infty)$.

(ii) For $\kappa = 0$: $\lambda_p(0) = \rho \gamma \frac{(1/\gamma G_d)}{(1/\gamma G_d) - p}.$

(iii) For
$$\kappa \to \infty$$
:

$$\lim_{\kappa \to \infty} 2d\kappa [\lambda_p(\kappa) - \rho\gamma] = \rho\gamma^2 G_d + 1_{d=3} (2d)^3 (\rho\gamma^2 p)^2 \mathcal{P}_3,$$

$$\mathcal{P}_3 = \sup_{\substack{f \in H^1(\mathbb{R}^3) \\ \|f\|_2 = 1}} \left[\|(-\Delta_{\mathbb{R}^3})^{-1/2} f^2\|_2^2 - \|\nabla_{\mathbb{R}^3} f\|_2^2 \right].$$

 $\kappa\mapsto\lambda_p(\kappa)$ for p=1,2,3 when $p<1/\gamma G_d$

Remarkable: \mathcal{P}_3 is the variational problem for the polaron model analyzed in Lieb (1977) and in Donsker and Varadhan (1983).

Thus, the system is intermittent for

- $d \geq 3$ small κ
- d = 3 large κ .

CONJECTURE 3:

In d = 3, the curves are distinct.

CONJECTURE 4:

In $d \ge 4$, the curves merge successively.

§ SYMMETRIC EXCLUSION PROCESS

For this case ξ has state space $\{0,1\}^{\mathbb{Z}^d}$ and generator

$$(Lf)(\xi) = \sum_{\{x,y\} \subset \mathbb{Z}^d} p(x,y) \left[f(\xi^{x \leftrightarrow y}) - f(\xi) \right],$$

where $\xi^{x \leftrightarrow y}$ is the configuration obtained from ξ by interchanging the states at x and y, and $p(\cdot, \cdot)$ is a symmetric random walk kernel.

We start from the Bernoulli distribution with density $\rho \in (0, 1)$, which is an equilibrium.

THEOREM 5:

 $\lambda_p \in [\rho\gamma, \gamma]$ and $\kappa \to \lambda_p(\kappa)$ is continuous, strictly decreasing and convex on $[0, \infty)$.

THEOREM 6:

(i) If p(·,·) is recurrent, then λ_p(κ) = γ for all p and κ.
(ii) If p(·,·) is transient, then

(a) λ_p(κ) ∈ (ργ, γ) for all p and κ.
(b) p ↦ λ_p(0) is strictly increasing.
(c) lim_{κ→∞} λ_p(κ) = ργ.

THEOREM 7:

If $p(\cdot, \cdot)$ is simple random walk in $d \ge 3$, then

$$\lim_{\kappa \to \infty} 2d\kappa [\lambda_p(\kappa) - \rho\gamma]$$

= $\rho(1-\rho)\gamma^2 G_d + 1_{d=3} (2d)^3 [\rho(1-\rho)\gamma^2 p]^2 \mathcal{P}_3.$

 $\kappa \mapsto \lambda_p(\kappa)$ for recurrent and transient random walk

 $\kappa \mapsto \lambda_p(\kappa)$ for p = 1, 2, 3 for simple random walk

\S VOTER MODEL

For this case ξ has state space $\{0,1\}^{\mathbb{Z}^d}$ and generator

$$(Lf)(\xi) = \sum_{\{x,y\} \subset \mathbb{Z}^d} p(x,y) \, [f(\xi^{x \to y}) - f(\xi)],$$

where $\xi^{x \to y}$ is the configuration obtained from ξ by imposing on y the state of x, and $p(\cdot, \cdot)$ is a random walk kernel.

We start from the Bernoulli distribution with density $\rho \in (0, 1)$, which is not an equilibrium, or from the non-Bernoulli equilibrium distribution.

We expect similar behavior as for symmetric exclusion, but so far only partial results have been obtained.

CONJECTURE 8:

(i) If $p(\cdot, \cdot)$ is not-strongly transient, then $\lambda_p = \gamma$ for all p. (ii) If $p(\cdot, \cdot)$ is strongly transient, then $\lambda_p \in (\rho\gamma, \gamma)$ for all p.

THEOREM 9:

The conjecture is true when $p(\cdot, \cdot)$ has zero mean and finite variance, in which case the separation is between $1 \le d \le 4$ and $d \ge 5$.

THEOREM 10:

 $\lambda_p \in [\rho\gamma, \gamma]$ and $\kappa \to \lambda_p(\kappa)$ is continuous on $[0, \infty)$ and strictly decreasing at least near 0.

THEOREM 11:

(a) $p \mapsto \lambda_p(0)$ is strictly increasing. (b) $\lim_{\kappa \to \infty} \lambda_p(\kappa) = \rho \gamma$.

CONJECTURE 12:

If $p(\cdot, \cdot)$ is simple random walk in $d \ge 5$, then

$$\lim_{\kappa \to \infty} 2d\kappa [\lambda_p(\kappa) - \rho\gamma]$$

= $\rho(1-\rho)\gamma^2 \frac{G_d^*}{G_d} + 1_{d=5}(2d)^5 [\rho(1-\rho)\gamma^2 \frac{1}{G_d}p]^2 \mathcal{P}_5,$

where

$$G_d = \int_0^\infty p_t(0,0) \, dt,$$

$$G_d^* = \int_0^\infty t \, p_t(0,0) \, dt,$$

and \mathcal{P}_5 is given by a variational formula analogous to \mathcal{P}_3 .

CONCLUSION

Detailed results have been obtained for three classical choices of catalyst.

For reversible dynamics (IRW + SE) a detailed analysis can be carried through. For non-reversible dynamics (VM) some aspects remain to be clarified.

There is a degree of universality in the qualitative behavior of the three models, with a special role for the critical dimension.