Giant vacant component left by a random walk in a random *d*-regular graph

Augusto Teixeira

Department of Mathematics ETH Zurich

December 2009, Above the critical dimension, Paris 2009

Augusto Teixeira (ETH Zürich)

Random walk in *d*-regular graph.

Joint work with Jiří Černý and David Windisch

H 16

Random walk on large graphs

- Let $G_n = (V_n, \mathcal{E}_n)$ be a sequence of graphs with $|V_n| = n$.
- Consider a random walk $(X_i)_{i>0}$ starting uniformly on V_n .

Corrosion by a random walk trajectory (H.J. Hilhorst)

- Fix a real parameter $u \ge 0$.
- Consider the vacant set left by the random walk up to un, i.e.

$$\mathcal{V}_n^u = V_n \setminus \{X_1, \ldots, X_{\lfloor un \rfloor}\}$$

• Let C_{max} be the largest component of \mathcal{V}_n^u .

• How does $|C_{max}|$ behave for large *n*? The behavior depends on *u*?

The sequence of graphs we consider

Assumptions on G_n:

 G_n is *d*-regular.(A0) $\exists \alpha > 0$ such that, $\forall x, n, B(x, \alpha \log(n))$ has at most one cycle.(A1)The spectral gap $\lambda_{G_n} \ge \beta > 0.$ (A2)

Examples of such graphs

- Random *d*-regular graphs (quenched results).
- d-regular, large-girth expanders (eg. Lubotzky-Phillips-Sarnak graphs)

Why these graphs?

- Finite approximations of trees.
- Increasing interest among physicists and computer scientists.
- Could serve as a 'mean field model' for the corresponding problem in the discrete torus.

Consequences of (A0)-(A2)

Most points have tree-like neighborhood:

$$\#\left\{x; B\left(x, \frac{\alpha}{2}\log(n)\right) \text{ is a tree}\right\} \sim n.$$

Bounded Cheeger's constant

$$\inf\left\{\frac{|\partial A|}{|A|}; n \ge 1, A \subset V_n, |A| \le n/2\right\} > 0.$$

Main result

- Recall that $\mathcal{V}_n^u = V_n \setminus \{X_1, \ldots, X_{\lfloor un \rfloor}\}.$
- C_{max}, C_{sec} denote the largest and second largest clusters of V^u_n.
- Let $u_* = d(d-1)\log(d-1)/(d-2)^2$.

Theorem (Č.T.W. 09)

Under (A0), (A1) and (A2),

• (sub-critical phase) If $u > u_*$, there is $\kappa(u, d, \alpha, \beta)$ such that,

$$P[|\mathcal{C}_{\max}| \ge \kappa \log(n)] \to 0.$$
 (fast)

• (super-critical phase) If $u < u_*$, there is $\rho(u, d, \alpha, \beta)$ such that,

$$P[|\mathcal{C}_{\max}| \ge \rho n] \to 1.$$
 (fast)

• (uniqueness) If $u < u_*$, for every $\varepsilon > 0$,

$$P[|\mathcal{C}_{sec}| \geq \varepsilon n] \to 0.$$

Remarks

- A similar phase transition is observed in Bernoulli percolation.
- The critical value in the Bernoulli case is $p_c = 1/(d-1)$ (the same as for the infinite tree).
- Recalling that **typical** points have tree-like neighborhoods: 'the critical value is local' for Bernoulli percolation.

Where did our critical value u_* come from?

< 回 > < 回 > < 回 >

Random interlacements

A dependent percolation process in a given lattice.

Theorem (Sznitman 07, T. 09)

For fixed $u \ge 0$, there exists a unique measure Q^u giving a random subset \mathcal{V}^u of \mathbb{T}^d such that,

 $Q^{u}[\mathcal{V}^{u} \supset K] = \exp\{-u \cdot \operatorname{cap}(K)\}$ for all finite $K \subset \mathbb{T}^{d}$.

Where cap(K) is the capacity of a set $K \subset \mathbb{T}^d$.

Theorem (Teixeira 09)

Under the law Q^u,

the set \mathcal{V}^u has almost surely $\Leftrightarrow u > u_*$.

Where u_* is the value appearing in our main result. This reinforces the local character of the critical value because...

Augusto Teixeira (ETH Zürich)

Local Picture

- Let x ∈ V_n be such that B(x, α/2 log(n)) is isomorphic to a tree (majority of sites).
- Define $\tilde{\mathcal{C}}_x^u$ to be the cluster of $B \cap \mathcal{V}_n^u$ containing *x*. Where $B = B(x, \alpha/100 \log(n))$.

Lemma

Assume (A0)-(A2) and take *x*, *B* as above. Then we can couple $Q^{u(1+\varepsilon)}$, $Q^{u(1-\varepsilon)}$ and *P* in a way that (up to isomorphisms):

$$\mathbb{P}ig[\mathtt{C}_{u(1+arepsilon)}\subset ilde{\mathcal{C}}^u_{x}\subset \mathtt{C}_{u(1-arepsilon)}ig]\geq 1-c_{u,arepsilon}n^{-lpha/100}.$$

Here C_u stands for $\mathcal{V}^u \cap B(0, \alpha/100 \log(n))$.

• Local picture relates to critical value.

The corresponding question for the torus

Let G_n be the *d*-dimensional discrete torus $(\mathbb{Z}/n\mathbb{Z})^d$. One can similarly define the vacant set left by a random walk $\mathcal{V}_{n^d}^u$.

Theorem (Windisch 08)

The local picture of $\mathcal{V}_{n^d}^u$ converges to random interlacements on \mathbb{Z}^d .

Theorem (Sznitman 07, Sidoravicius-Sznitman 08)

There is a critical value $u_* \in (0, \infty)$ for the existence of an infinite cluster in the vacant set \mathcal{V}^u of random interlacements on \mathbb{Z}^d .

Does $\mathcal{V}_{n^d}^u$ (the vacant set of the torus) undergo a phase transition at the same value u_* appearing in the vacant set \mathcal{V}^u of \mathbb{Z}^d ?

Main obstructions in the proof

Sub-critical

- Convergence of local picture $\Rightarrow |C_{max}|$ is o(n) for $u > u^*$.
- If we want |C_{max}| ≤ κ_u log(n), we should be aware that κ_u → ∞ as u ↓ u^{*}.
- We have to exit the 'local picture ball', since $|C_{max}| \gg \text{diam}(G_n)$.

Super-critical

- Local picture \Rightarrow For $u < u_*$, of order *n* points in V_n^u belong to 'intermediate components' (size of order n^{δ}).
- Usual way to join these components is using 'sprinkling'.
- It is not clear how to perform sprinkling in this context, since $\{X_{un}, X_{un+1}, \ldots, X_{(u+\varepsilon)n}\}$ is highly dependent on the 'intermediate components'.

Piecewise independent measure

We need to extract independence from the random walk trajectory. Compare the law P with Q defined as follows:

- Oconsider i.i.d r.w. $(Y_i)_{i\geq 1}$ of length $L = n^{\gamma}$.
- 2 Denote by a_i and b_i the start and end points of Y_i .
- Solution Let the Z_i 's be random walk bridges from b_i to a_{i+1} with length $\ell = \log^2 n$.

Lemma

The laws Q and P up to time un are very close in total variation.

The proof uses that the mixing time $\ll \log^2(n)$.

Augusto Teixeira (ETH Zürich)

Sub-critical regime: The exploration process

- Breath first search algorithm.
- Explore the vacant component of *x*.
- Once we meet a segment Y_i ,
 - call this segment 'tied' (the non-tied are called 'free'),
 - continue on other branch.

- We have a pool of 'free' segments.
- The probability that y intersects a 'free' segment is

$$P[H(A \cup \{y\}) < L|H(A) \ge L],$$

where A is the explored set up to the current time.

Bounding the conditional hitting

One needs the following conditions:

- $|A| < K \log(n)$.
- There are no cycles in the close future of *y* (seen from *A*).
- Only one neighbor of y in A.
- The close future of *y* does not meet *A* (no cycles to *A*).

(日)

Proposition

Under these conditions we can prove that

$$(P[H(A \cup \{y\}) > L|H(A) \ge L])^{un^{1-\gamma}}$$
 gives a sub-critical branching.

These conditions hold in all but $(c \log \log n)$ steps of the algorithm.

Super-critical regime: The sprinkling

We introduce the so-called 'long-range bridges'.

- Let (Y_i) be i.i.d. random walks of length $L (= n^{\gamma})$.
- Denote by a_i and b_i the start and end points of Y_i .
- Connect all b_i with a_{i+j} (for $j \le \log(n)$), with a bridge of length $\ell = \log^2(n)$.

- Kill some of the segments Y_i independently with probability $n^{-\gamma}$.
- Extract a random walk path in the remaining set (it will have law close to *P*).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Merging 'intermediate components'

 Consider two sets A and B with volume at least cn, obtained by collecting components of size n^δ.

#{choices for *A* and *B*} $\leq 2^{n^{1-\delta}}$

- By the isoperimetric inequality, there are of order *n* links from *A* to *B* in *G_n*.
- After the sprinkling, several of these links will become vacant and *A* and *B* will be joined.

The probability that this fails $\leq c \exp\{-c' n^{1-c\gamma}\}$

- Choose γ small.
- If all choices of *A* and *B* get joined in the end, we obtain a giant component.

• □ ▶ • @ ▶ • E ▶ • E ▶

V. Sidoravicius, A.S. Sznitman

Percolation for the vacant set of random interlacements *Comm. Pure Appl. Math.*, 62(6), 831-858 (2009)

A.S. Sznitman

Vacant set of random interlacements and percolation to appear in the *Annals of Mathematics* (2007)

A. Teixeira

On the uniqueness of the infinite cluster of the vacant set of random interlacements

Annals of Applied Probability, 19, 1, 454-466 (2009)

A. Teixeira

Interlacement percolation on transient weighted graphs *Electronic Journal of Probability*, 14, 1604-1627 (2009)

A.Teixeira

On the size of a finite vacant cluster of random interlacements with small intensity

submitted (2009)

Augusto Teixeira (ETH Zürich)

★ ∃ > < ∃ >

Thanks!

イロト イロト イヨト イヨト