Giant vacant component left by a random walk in a random d-regular graph

Augusto Teixeira

Department of Mathematics
ETH Zurich

December 2009, Above the critical dimension, Paris 2009

Joint work with Jirí Černý and David Windisch

(1) 'Corrosion' of large graphs
(2) Main Result
(3) Local Picture
4. Sub-critical Phase-exploration
(5) Super-critical Phase-sprinkling

Random walk on large graphs

- Let $G_{n}=\left(V_{n}, \mathcal{E}_{n}\right)$ be a sequence of graphs with $\left|V_{n}\right|=n$.
- Consider a random walk $\left(X_{i}\right)_{i \geq 0}$ starting uniformly on V_{n}.

Corrosion by a random walk trajectory (H.J. Hilhorst)

- Fix a real parameter $u \geq 0$.
- Consider the vacant set left by the random walk up to un, i.e.

$$
\mathcal{V}_{n}^{u}=V_{n} \backslash\left\{X_{1}, \ldots, X_{\lfloor u n\rfloor}\right\}
$$

- Let $\mathcal{C}_{\text {max }}$ be the largest component of \mathcal{V}_{n}^{u}.
- How does $\left|\mathcal{C}_{\max }\right|$ behave for large n ? The behavior depends on u ?

The sequence of graphs we consider

Assumptions on G_{n} :

$$
\begin{gathered}
G_{n} \text { is } d \text {-regular. } \\
\exists \alpha>0 \text { such that, } \forall x, n, B(x, \alpha \log (n)) \text { has at most one cycle. } \\
\text { The spectral gap } \lambda_{G_{n}} \geq \beta>0 .
\end{gathered}
$$

Examples of such graphs

- Random d-regular graphs (quenched results).
- d-regular, large-girth expanders (eg. Lubotzky-Phillips-Sarnak graphs)

Why these graphs?

- Finite approximations of trees.
- Increasing interest among physicists and computer scientists.
- Could serve as a 'mean field model' for the corresponding problem in the discrete torus.

Consequences of (A0)-(A2)

- Most points have tree-like neighborhood:

$$
\#\left\{x ; B\left(x, \frac{\alpha}{2} \log (n)\right) \text { is a tree }\right\} \sim n
$$

- Bounded Cheeger's constant

$$
\inf \left\{\frac{|\partial A|}{|A|} ; n \geq 1, A \subset V_{n},|A| \leq n / 2\right\}>0
$$

Main result

- Recall that $\mathcal{V}_{n}^{u}=V_{n} \backslash\left\{X_{1}, \ldots, X_{\lfloor u n\rfloor}\right\}$.
- $\mathcal{C}_{\text {max }}, \mathcal{C}_{\text {sec }}$ denote the largest and second largest clusters of \mathcal{V}_{n}^{u}.
- Let $u_{*}=d(d-1) \log (d-1) /(d-2)^{2}$.

Theorem (Č.T.W. 09)

Under (A0), (A1) and (A2),

- (sub-critical phase) If $u>u_{*}$, there is $\kappa(u, d, \alpha, \beta)$ such that,

$$
\begin{equation*}
P\left[\left|\mathcal{C}_{\max }\right| \geq \kappa \log (n)\right] \rightarrow 0 \tag{fast}
\end{equation*}
$$

- (super-critical phase) If $u<u_{*}$, there is $\rho(u, d, \alpha, \beta)$ such that,

$$
P\left[\left|\mathcal{C}_{\max }\right| \geq \rho n\right] \rightarrow 1 . \quad \text { (fast) }
$$

- (uniqueness) If $u<u_{*}$, for every $\varepsilon>0$,

$$
P\left[\left|\mathcal{C}_{\mathrm{sec}}\right| \geq \varepsilon n\right] \rightarrow 0
$$

Remarks

- A similar phase transition is observed in Bernoulli percolation.
- The critical value in the Bernoulli case is $p_{c}=1 /(d-1)$ (the same as for the infinite tree).
- Recalling that typical points have tree-like neighborhoods: 'the critical value is local' for Bernoulli percolation.

Where did our critical value u_{*} come from?

Random interlacements

A dependent percolation process in a given lattice.
Theorem (Sznitman 07, T. 09)
For fixed $u \geq 0$, there exists a unique measure
Q^{u} giving a random subset \mathcal{V}^{u} of \mathbb{T}^{d} such that,

$$
Q^{u}\left[\mathcal{V}^{u} \supset K\right]=\exp \{-u \cdot \operatorname{cap}(K)\} \text { for all finite } K \subset \mathbb{T}^{d} .
$$

Where $\operatorname{cap}(K)$ is the capacity of a set $K \subset \mathbb{T}^{d}$.
Theorem (Teixeira 09)
Under the law Q^{u},

$$
\begin{aligned}
& \text { the set } \mathcal{V}^{u} \text { has almost surely } \\
& \text { infinite connected components }
\end{aligned} \Leftrightarrow u>u_{*} \text {. }
$$

Where u_{*} is the value appearing in our main result.
This reinforces the local character of the critical value because...

Local Picture

- Let $x \in V_{n}$ be such that $B(x, \alpha / 2 \log (n))$ is isomorphic to a tree (majority of sites).
- Define $\tilde{\mathcal{C}}_{x}^{u}$ to be the cluster of $B \cap \mathcal{V}_{n}^{u}$ containing x. Where $B=B(x, \alpha / 100 \log (n))$.

Lemma

Assume (A0)-(A2) and take x, B as above. Then we can couple $Q^{u(1+\varepsilon)}, Q^{u(1-\varepsilon)}$ and P in a way that (up to isomorphisms):

$$
\mathbb{P}\left[\mathrm{C}_{u(1+\varepsilon)} \subset \tilde{\mathcal{C}}_{x}^{u} \subset \mathrm{C}_{u(1-\varepsilon)}\right] \geq 1-c_{u, \varepsilon} n^{-\alpha / 100}
$$

Here C_{u} stands for $\mathcal{V}^{u} \cap B(0, \alpha / 100 \log (n))$.

- Local picture relates to critical value.

The corresponding question for the torus

Let G_{n} be the d-dimensional discrete torus $(\mathbb{Z} / n \mathbb{Z})^{d}$.
One can similarly define the vacant set left by a random walk $\mathcal{V}_{n^{d}}^{u}$.

Theorem (Windisch 08)

The local picture of $\mathcal{V}_{n^{d}}^{u}$ converges to random interlacements on \mathbb{Z}^{d}.

Theorem (Sznitman 07, Sidoravicius-Sznitman 08)

There is a critical value $u_{*} \in(0, \infty)$ for the existence of an infinite cluster in the vacant set \mathcal{V}^{u} of random interlacements on \mathbb{Z}^{d}.

Does $\mathcal{V}_{n^{d}}^{u}$ (the vacant set of the torus) undergo a phase transition at the same value u_{*} appearing in the vacant set \mathcal{V}^{u} of \mathbb{Z}^{d} ?

Main obstructions in the proof

Sub-critical

- Convergence of local picture $\Rightarrow\left|\mathcal{C}_{\max }\right|$ is $o(n)$ for $u>u^{*}$.
- If we want $\left|\mathcal{C}_{\max }\right| \lesssim \kappa_{u} \log (n)$, we should be aware that $\kappa_{u} \rightarrow \infty$ as $u \downarrow u^{*}$.
- We have to exit the 'local picture ball', since $\left|\mathcal{C}_{\max }\right| \gg \operatorname{diam}\left(G_{n}\right)$.

Super-critical

- Local picture \Rightarrow For $u<u_{*}$, of order n points in V_{n}^{u} belong to 'intermediate components' (size of order n^{δ}).
- Usual way to join these components is using 'sprinkling'.
- It is not clear how to perform sprinkling in this context, since $\left\{X_{u n}, X_{u n+1}, \ldots, X_{(u+\varepsilon) n}\right\}$ is highly dependent on the 'intermediate components'.

Piecewise independent measure

We need to extract independence from the random walk trajectory. Compare the law P with Q defined as follows:
(1) Consider i.i.d r.w. $\left(Y_{i}\right)_{i \geq 1}$ of length $L=n^{\gamma}$.
(2) Denote by a_{i} and b_{i} the start and end points of Y_{i}.
(3) Let the Z_{i} 's be random walk bridges from b_{i} to a_{i+1} with length $\ell=\log ^{2} n$.

Lemma

The laws Q and P up to time un are very close in total variation.
The proof uses that the mixing time $\ll \log ^{2}(n)$.

Sub-critical regime: The exploration process

- Breath first search algorithm.
- Explore the vacant component of x.
- Once we meet a segment Y_{i},
- call this segment 'tied' (the non-tied are called 'free'),
- continue on other branch.

- We have a pool of 'free' segments.
- The probability that y intersects a 'free' segment is

$$
P[H(A \cup\{y\})<L \mid H(A) \geq L],
$$

where A is the explored set up to the current time.

Bounding the conditional hitting

One needs the following conditions:

- $|A|<K \log (n)$.
- There are no cycles in the close future of y (seen from A).
- Only one neighbor of y in A.
- The close future of y does not meet A (no cycles to A).

Proposition

Under these conditions we can prove that
$(P[H(A \cup\{y\})>L \mid H(A) \geq L])^{u n^{1-\gamma}}$ gives a sub-critical branching.
These conditions hold in all but $(c \log \log n)$ steps of the algorithm.

Super-critical regime: The sprinkling

We introduce the so-called 'long-range bridges'.

- Let $\left(Y_{i}\right)$ be i.i.d. random walks of length $L\left(=n^{\gamma}\right)$.
- Denote by a_{i} and b_{i} the start and end points of Y_{i}.
- Connect all b_{i} with $a_{i+j}($ for $j \leq \log (n)$), with a bridge of length $\ell=\log ^{2}(n)$.

- Kill some of the segments Y_{i} independently with probability $n^{-\gamma}$.
- Extract a random walk path in the remaining set (it will have law close to P).

Merging 'intermediate components'

- Consider two sets A and B with volume at least $c n$, obtained by collecting components of size n^{δ}.

$$
\#\{\text { choices for } A \text { and } B\} \leq 2^{n^{1-\delta}}
$$

- By the isoperimetric inequality, there are of order n links from A to B in G_{n}.
- After the sprinkling, several of these links will become vacant and A and B will be joined.

The probability that this fails $\leq c \exp \left\{-c^{\prime} n^{1-c \gamma}\right\}$

- Choose γ small.
- If all choices of A and B get joined in the end, we obtain a giant component.
V. Sidoravicius, A.S. Sznitman

Percolation for the vacant set of random interlacements Comm. Pure Appl. Math., 62(6), 831-858 (2009)

R A.S. Sznitman
Vacant set of random interlacements and percolation
to appear in the Annals of Mathematics (2007)
(A. Teixeira
On the uniqueness of the infinite cluster of the vacant set of random interlacements
Annals of Applied Probability, 19, 1, 454-466 (2009)
R A. Teixeira
Interlacement percolation on transient weighted graphs Electronic Journal of Probability, 14, 1604-1627 (2009)
A.Teixeira

On the size of a finite vacant cluster of random interlacements with small intensity
submitted (2009)

Thanks!

