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Random walk on large graphs

Let Gn = (Vn, En) be a sequence of graphs with |Vn| = n.
Consider a random walk (Xi)i≥0 starting uniformly on Vn.

Corrosion by a random walk trajectory (H.J. Hilhorst)

Fix a real parameter u ≥ 0.
Consider the vacant set left by the random walk up to un, i.e.

Vu
n = Vn \ {X1, . . . , X⌊un⌋}

Let Cmax be the largest component of Vu
n .

How does |Cmax| behave for large n? The behavior depends on u?

Augusto Teixeira (ETH Zürich) Random walk in d -regular graph. Paris 2009 4 / 19



The sequence of graphs we consider

Assumptions on Gn:

Gn is d -regular. (A0)

∃α > 0 such that, ∀x , n, B(x , α log(n)) has at most one cycle. (A1)

The spectral gap λGn ≥ β > 0. (A2)

Examples of such graphs

Random d -regular graphs
(quenched results).

d -regular, large-girth expanders
(eg. Lubotzky-Phillips-Sarnak graphs)
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Why these graphs?

Finite approximations of trees.

Increasing interest among physicists and computer scientists.

Could serve as a ‘mean field model’ for the corresponding
problem in the discrete torus.

Consequences of (A0)-(A2)

Most points have tree-like neighborhood:

#
{

x ; B
(

x ,
α

2
log(n)

)

is a tree
}

∼ n.

Bounded Cheeger’s constant

inf
{ |∂A|

|A|
; n ≥ 1, A ⊂ Vn, |A| ≤ n/2

}

> 0.
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Main result

Recall that Vu
n = Vn \ {X1, . . . , X⌊un⌋}.

Cmax, Csec denote the largest and second largest clusters of Vu
n .

Let u∗ = d(d − 1) log(d − 1)/(d − 2)2.

Theorem (Č.T.W. 09)
Under (A0), (A1) and (A2),

(sub-critical phase) If u > u∗, there is κ(u, d , α, β) such that,

P
[

|Cmax| ≥ κ log(n)
]

→ 0. (fast)

(super-critical phase) If u < u∗, there is ρ(u, d , α, β) such that,

P
[

|Cmax| ≥ ρn
]

→ 1. (fast)

(uniqueness) If u < u∗, for every ε > 0,

P
[

|Csec| ≥ εn
]

→ 0.
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Remarks

A similar phase transition is observed in Bernoulli percolation.

The critical value in the Bernoulli case is pc = 1/(d − 1)
(the same as for the infinite tree).

Recalling that typical points have tree-like neighborhoods:
‘the critical value is local’ for Bernoulli percolation.

Where did our critical value u∗ come from?
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Random interlacements

A dependent percolation process in a given lattice.

Theorem (Sznitman 07, T. 09)
For fixed u ≥ 0, there exists a unique measure
Qu giving a random subset Vu of T

d such that,

Qu[Vu ⊃ K ] = exp{−u · cap(K )} for all finite K ⊂ T
d .

Where cap(K ) is the capacity of a set K ⊂ T
d .

Theorem (Teixeira 09)
Under the law Qu,

the set Vu has almost surely
infinite connected components

⇔ u > u∗.

Where u∗ is the value appearing in our main result.
This reinforces the local character of the critical value because...
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Local Picture

Let x ∈ Vn be such that B(x , α/2 log(n)) is isomorphic to a tree
(majority of sites).

Define C̃u
x to be the cluster of B ∩ Vu

n containing x .
Where B = B(x , α/100 log(n)).

Lemma
Assume (A0)-(A2) and take x , B as above. Then we can couple
Qu(1+ε), Qu(1−ε) and P in a way that (up to isomorphisms):

P
[

Cu(1+ε) ⊂ C̃u
x ⊂ Cu(1−ε)

]

≥ 1 − cu,εn−α/100.

Here Cu stands for Vu ∩ B(0, α/100 log(n)).

Local picture relates to critical value.
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The corresponding question for the torus

Let Gn be the d -dimensional discrete torus (Z/nZ)d .
One can similarly define the vacant set left by a random walk Vu

nd .

Theorem (Windisch 08)

The local picture of Vu
nd converges to random interlacements on Z

d .

Theorem (Sznitman 07, Sidoravicius-Sznitman 08)
There is a critical value u∗ ∈ (0,∞) for the existence of an infinite
cluster in the vacant set Vu of random interlacements on Z

d .

Does Vu
nd (the vacant set of the torus) undergo a phase transition at

the same value u∗ appearing in the vacant set Vu of Z
d?
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Main obstructions in the proof

Sub-critical

Convergence of local picture ⇒ |Cmax| is o(n) for u > u∗.

If we want |Cmax| . κu log(n), we should be aware that
κu → ∞ as u ↓ u∗.

We have to exit the ‘local picture ball’, since |Cmax| ≫ diam(Gn).

Super-critical

Local picture ⇒ For u < u∗, of order n points in V u
n belong to

‘intermediate components’ (size of order nδ).

Usual way to join these components is using ‘sprinkling’.

It is not clear how to perform sprinkling in this context,
since {Xun, Xun+1, . . . , X(u+ε)n} is highly dependent on the
‘intermediate components’.
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Piecewise independent measure

We need to extract independence from the random walk trajectory.
Compare the law P with Q defined as follows:

1 Consider i.i.d r.w. (Yi)i≥1 of length L = nγ .
2 Denote by ai and bi the start and end points of Yi .
3 Let the Zi ’s be random walk bridges from bi to ai+1 with length

ℓ = log2 n.

L ℓ

Y1 Y2 Y3 Y4 Y5Z1 Z2 Z3 Z4

Lemma
The laws Q and P up to time un are very close in total variation.

The proof uses that the mixing time ≪ log2(n).
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Sub-critical regime: The exploration process

Breath first search algorithm.

Explore the vacant component of x .

Once we meet a segment Yi ,
- call this segment ‘tied’

(the non-tied are called ‘free’),
- continue on other branch. A

y

x

Y1

Y2

Y3

Y4

We have a pool of ‘free’ segments.

The probability that y intersects a ‘free’ segment is

P
[

H(A ∪ {y}) < L
∣

∣H(A) ≥ L
]

,

where A is the explored set up to the current time.
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Bounding the conditional hitting

One needs the following conditions:

|A| < K log(n).

There are no cycles in the close
future of y (seen from A).

Only one neighbor of y in A.

The close future of y does not
meet A (no cycles to A).

y

ȳ

FA(y, r)

B(A, r)

r

A

C

Proposition
Under these conditions we can prove that

(

P
[

H(A ∪ {y}) > L
∣

∣H(A) ≥ L
]

)un1−γ

gives a sub-critical branching.

These conditions hold in all but (c log log n) steps of the algorithm.
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Super-critical regime: The sprinkling

We introduce the so-called ‘long-range bridges’.

Let (Yi) be i.i.d. random walks of length L (= nγ).

Denote by ai and bi the start and end points of Yi .

Connect all bi with ai+j (for j ≤ log(n)), with a bridge of length
ℓ = log2(n).

0 1 0 0 1

Kill some of the segments Yi independently with probability n−γ .

Extract a random walk path in the remaining set
(it will have law close to P).
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Merging ‘intermediate components’

Consider two sets A and B with volume at least cn,
obtained by collecting components of size nδ.

#{choices for A and B} ≤ 2n1−δ

By the isoperimetric inequality, there are of order n links from A to
B in Gn.

After the sprinkling, several of these links will become vacant and
A and B will be joined.

The probability that this fails ≤ c exp{−c′n1−cγ}

Choose γ small.

If all choices of A and B get joined in the end, we obtain a giant
component.
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Thanks!
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