The loop-erased random walk and the uniform spanning tree on the four-dimensional discrete torus

by Jason Schweinsberg
University of California at San Diego

Outline of Talk

1. Loop-erased random walk
2. Uniform spanning tree
3. Continuum random tree
4. Main result
5. Outline of proof
6. Dynamics of loop-erased random walk

Loop-erased random walk

Let $\lambda=\left(u_{0}, u_{1}, \ldots, u_{j}\right)$ be a path in a graph $G=(V, E)$.
Define the loop-erasure $L E(\lambda)$ by erasing loops in the order in which they appear.

A random walk $\left(X_{t}\right)_{t=0}^{\infty}$ on a graph G is a V-valued Markov chain. At each step, moves to a randomly chosen neighboring vertex.

The loop-erased random walk (LERW) is the path $L E\left(\left(X_{t}\right)_{t=0}^{\infty}\right)$.
Well-defined when $\left(X_{t}\right)_{t=0}^{\infty}$ is transient.

Behavior of LERW on \mathbb{Z}^{d} :

- $d \geq 5$ (Lawler, 1980): All loops are short, length of the path $L E\left(\left(X_{t}\right)_{t=0}^{n}\right)$ is $O(n)$, process converges to Brownian motion.
- $d=4$ (Lawler, 1986, 1995): Length of the path $L E\left(\left(X_{t}\right)_{t=0}^{n}\right)$ is $O\left(n /(\log n)^{1 / 3}\right)$, process converges to Brownian motion.
- $d=2$ (Kenyon, 2000; Lawler-Schramm-Werner, 2004): The length of $L E\left(\left(X_{t}\right)_{t=0}^{n}\right)$ is $O\left(n^{5 / 8}\right)$, process is conformally invariant and converges to $\operatorname{SLE}(2)$.
- $d=3$ (Kozma, 2005): Scaling limit exists, invariant under dilations and rotations.

Uniform spanning tree

A spanning tree of a finite connected graph G is a connected subgraph of G containing every vertex and no cycles.

A uniform spanning tree (UST) is a spanning tree chosen uniformly at random.

Connections between UST and LERW

Theorem (Pemantle, 1991): The path from x to y in a UST has the same distribution as the LERW from x to y.

Wilson's Algorithm (Wilson, 1996): To construct UST of G,

- Pick vertices x_{0} and x_{1}, run LERW from x_{0} to x_{1} to get \mathcal{T}_{1}.
- Given \mathcal{T}_{k}, pick a vertex x_{k+1}, get \mathcal{T}_{k+1} by adjoining to \mathcal{T}_{k} an LERW from x_{k+1} to \mathcal{T}_{k}.
- Continue until all vertices are in the tree.

Can choose vertices in any order, can depend on current tree.

Continuum Random Tree (Aldous, 1991, 1993)
Consider Poisson process on $[0, \infty)$, intensity $r(t)=t$.

Begin with a segment of length t_{1}, call the endpoints x_{1}, x_{2}. Attach segment of length $t_{2}-t_{1}$ to a uniform point on the initial segment, label the endpoint x_{3}.
Continue, each segment orthogonal to all previous segments.

Limiting random metric space is continuum random tree (CRT).
Denote by μ_{k} the (exchangeable) distribution of $\left(d\left(x_{i}, x_{j}\right)\right)_{1 \leq i<j \leq k}$.
View x_{1}, \ldots, x_{k} as points picked from "mass measure" on CRT.

Scaling limits of UST on finite graphs

Theorem (Aldous, 1991): Consider the UST on the complete graph K_{m} with m vertices (equivalently, a uniform random tree on m labeled vertices). Let y_{1}, \ldots, y_{k} be vertices chosen uniformly a random. Let $d\left(y_{i}, y_{j}\right)$ be the number of vertices on the path from y_{i} to y_{j} in the UST. Then

$$
\left(\frac{d\left(y_{i}, y_{j}\right)}{\sqrt{m}}\right)_{1 \leq i<j \leq k} \rightarrow_{d} \mu_{k} .
$$

Theorem (Peres-Revelle, 2004): Consider the UST on the torus \mathbb{Z}_{n}^{d} for $d \geq 5$. Let x_{1}, \ldots, x_{k} be vertices chosen uniformly at random. Then there is a constant β such that

$$
\left(\frac{d\left(x_{i}, x_{j}\right)}{\beta n^{d / 2}}\right)_{1 \leq i<j \leq k} \rightarrow_{d} \mu_{k} .
$$

The CRT scaling limit also holds for UST on larger class of graphs including hypercubes \mathbb{Z}_{2}^{n}, expander graphs.

Corollary (Peres-Revelle, 2004): Let x and y be uniformly chosen from $\mathbb{Z}_{n}^{d}, d \geq 5$. Let $\left(X_{t}\right)_{t=0}^{T}$ be a random walk from x to y. Then

$$
\lim _{n \rightarrow \infty} P\left(\left|L E\left(\left(X_{t}\right)_{t=0}^{T}\right)\right|>\beta n^{d / 2} z\right)=e^{-z^{2} / 2}
$$

Limiting distribution called Rayleigh distribution.
Note: Benjamini-Kozma (2005) had proved that for $d \geq 5$ the length of LERW from x to y on \mathbb{Z}_{n}^{d} is $O\left(n^{d / 2}\right)$. They conjectured the length in \mathbb{Z}_{n}^{4} is $O\left(n^{2}(\log n)^{1 / 6}\right)$.
Theorem (Schweinsberg, 2009): Consider the UST on \mathbb{Z}_{n}^{4}. Let x_{1}, \ldots, x_{k} be vertices chosen uniformly at random. There is a sequence of constants $\left(\gamma_{n}\right)_{n=1}^{\infty}$ bounded away from 0 and ∞ such that

$$
\left(\frac{d\left(x_{i}, x_{j}\right)}{\gamma_{n} n^{2}(\log n)^{1 / 6}}\right)_{1 \leq i<j \leq k} \rightarrow_{d} \mu_{k} .
$$

In particular, if $\left(X_{t}\right)_{t=0}^{T}$ is a random walk from x_{1} to x_{2}, then

$$
\lim _{n \rightarrow \infty} P\left(\left|L E\left(\left(X_{t}\right)_{t=0}^{T}\right)\right|>\gamma_{n} n^{2}(\log n)^{1 / 6} z\right)=e^{-z^{2} / 2}
$$

Coupling idea (Peres-Revelle, 2004)

- Choose y_{1}, \ldots, y_{k} uniformly from K_{m}.
- Choose x_{1}, \ldots, x_{k} uniformly from \mathbb{Z}_{n}^{4}.
- Construct partial UST $\widetilde{\mathcal{T}}_{k}$ on K_{m} using Wilson's algorithm, starting random walks from y_{1}, \ldots, y_{k}.
- Construct partial UST \mathcal{T}_{k} on \mathbb{Z}_{n}^{4} using Wilson's algorithm, starting random walks from x_{1}, \ldots, x_{k}.
- Segments in random walks of length $r=\left\lfloor n^{2}(\log n)^{9 / 22}\right\rfloor$ on \mathbb{Z}_{n}^{4} correspond to individual vertices in walks on K_{m}.
- Obtain tree \mathcal{T}_{k}^{*} from \mathcal{T}_{k} by collapsing random walk segments of length r into a single vertex.
- Find coupling such that $\tilde{\mathcal{T}}_{k}=\mathcal{T}_{k}^{*}$ with high probability.
- Deduce CRT limit for UST on \mathbb{Z}_{n}^{4} from Aldous' result on K_{m}.

Coupling of random walks

Random walk on \mathbb{Z}_{n}^{4} makes short loops (occur within segment of length r) and long loops (occur on \mathbb{Z}_{n}^{4} but not on \mathbb{Z}^{4}). Long loops correspond to loops of walk on K_{m}.

Example: random walk on K_{6} begins (3, 4, 6, 2, 4, 1).

Random walk $\left(X_{t}\right)_{t=0}^{6 r-1}$ on \mathbb{Z}_{n}^{4}. Suppose that $X_{s}=X_{t}$ for some $s \in[r, 2 r)$ and $t \in[4 r, 5 r)$.

Coupling k random walks gives coupling of $\widetilde{\mathcal{T}}_{k}$ and \mathcal{T}_{k}^{*}.

Mixing times

Let $\left(X_{t}\right)_{t=0}^{\infty}$ be a random walk on \mathbb{Z}_{n}^{4}, modified to stay in its current state with probability $1 / 2$. Assume $X_{0}=0$.
Markov chain with stationary distribution $\pi(x)=1 / n^{4}$ for all x.

$$
\tau_{n}=\inf \left\{t: \max _{x \in \mathbb{Z}_{n}^{4}}\left|P\left(X_{t}=x\right)-\frac{1}{n^{4}}\right| \leq \frac{1}{2 n^{4}}\right\}
$$

We have $C_{1} n^{2} \leq \tau_{n} \leq C_{2} n^{2}$.
For $t \geq \tau_{n}$ and $x \in \mathbb{Z}_{n}^{4}$, we have exponentially fast convergence:

$$
\left|P\left(X_{t}=x\right)-\frac{1}{n^{4}}\right| \leq \frac{2^{-\left\lfloor t / \tau_{n}\right\rfloor}}{n^{4}} .
$$

A random walk $\left(X_{t}\right)_{t=0}^{\infty}$ gets close to the uniform distribution when t is $O\left(n^{2}\right)$, near the beginning of a segment of length r.
To find probability that two segments of length r intersect, assume they both start from uniform distribution.

Random walk intersections on \mathbb{Z}^{d}

Let $\left(V_{t}\right)_{t=0}^{\infty}$ and $\left(W_{t}\right)_{t=0}^{\infty}$ be independent random walks on \mathbb{Z}^{d}, started at the origin.

- If $d \leq 4$, almost surely the paths intersect infinitely often (infinitely many $x \in \mathbb{Z}^{d}$ such that $V_{s}=W_{t}=x$ for some s, t).
- If $d \geq 5$, almost surely the paths intersect only finitely often.

Let R_{n} be the cardinality of $\left\{s, t \in\{1, \ldots, n\}: V_{s}=W_{t}\right\}$.

- If $d \geq 5$, then $E\left[R_{n}\right]=O(1)$.
- If $d=4$, then $E\left[R_{n}\right]=O(\log n)$.
- If $d \leq 3$, then $E\left[R_{n}\right]=O\left(n^{(4-d) / 2}\right)$.

Intersection probabilities for loop-erased segments

Let $\left(X_{t}\right)_{t=0}^{r-1}$ and $\left(Y_{t}\right)_{t=0}^{r-1}$ be random walks on \mathbb{Z}_{n}^{4} started from the uniform distribution.

- $P\left(X_{s}=Y_{t}\right)=1 / n^{4}$ for all s, t.
- Expected number of intersections is r^{2} / n^{4}.
- If there is one intersection, there are $O(\log r)$ intersections.
- Probability of intersection is $O\left(\frac{r^{2}}{n^{4} \log r}\right)=O\left((\log n)^{-2 / 11}\right)$.
(Lyons-Peres-Schramm, 2003): Given two independent transient Markov chains with the same transition probabilities, looperasing one path reduces the probability that the paths intersect by at most a factor of 2^{8}.

Probability $L E\left(\left(X_{t}\right)_{t=0}^{r-1}\right)$ and $\left(Y_{t}\right)_{t=0}^{r-1}$ intersect is $O\left((\log n)^{-2 / 11}\right)$.

Concentration of capacity

For $U \subset \mathbb{Z}_{n}^{4}$, let $\operatorname{Cap}_{r}(U)=P\left(Y_{t} \in U\right.$ for some $\left.t<r\right)$.
We have $E\left[\operatorname{Cap}_{r}\left(L E\left(\left(X_{t}\right)_{t=0}^{r-1}\right)\right)\right]=a_{n}(\log n)^{-2 / 11}$ for a sequence of constants $\left(a_{n}\right)_{n=1}^{\infty}$ bounded away from 0 and ∞.

Distribution of $\operatorname{Cap}_{r}\left(\operatorname{LE}\left(\left(X_{t}\right)_{t=0}^{r-1}\right)\right)$ is highly concentrated around its mean (break walk into pieces, apply LLN to the probabilities of hitting individual pieces).

Let $m=\left\lfloor a_{n}^{-1}(\log n)^{2 / 11}\right\rfloor$. The next segment intersects each previous segment with probability approximately $1 / \mathrm{m}$.

Trees $\widetilde{\mathcal{T}}_{k}$ and \mathcal{T}_{k}^{*} coupled with high probability.

Length of loop-erased segments

Couple $\left(X_{t}\right)_{t=0}^{r-1}$ with walk $\left(Z_{t}\right)_{t=0}^{r-1}$ on \mathbb{Z}^{4} so that $X_{t}=Z_{t}(\bmod n)$.
$P\left(X_{s}=X_{t}\right.$ and $Z_{s} \neq Z_{t}$ for some $\left.s, t\right) \leq \frac{C r^{2}}{n^{4} \log r}=o(1)$.
Lengths of $L E\left(\left(X_{t}\right)_{t=0}^{r-1}\right)$ and $L E\left(\left(Z_{t}\right)_{t=0}^{r=1}\right)$ are $O\left(\frac{r}{(\log r)^{1 / 3}}\right)$.
We have $E\left[\left|L E\left(\left(X_{t}\right)_{t=0}^{r-1}\right)\right|\right]=b_{n} n^{2}(\log n)^{5 / 66}$ for a sequence of constants $\left(b_{n}\right)_{n=1}^{\infty}$ bounded away from 0 and ∞. Distribution of length is concentrated around mean.

Approximate $d\left(x_{i}, x_{j}\right)$ by multiplying number of vertices on path in \mathcal{T}_{k}^{*} by $b_{n} n^{2}(\log n)^{5 / 66}$.

Distances $d\left(x_{i}, x_{j}\right)$ now coupled with $d\left(y_{i}, y_{j}\right)$ in K_{m}.

Adding a root vertex

For the first step of Wilson's algorithm, we need to run LERW from x to y, but it takes $O\left(n^{4}\right)$ steps of a random walk to hit y.

Walks on \mathbb{Z}_{n}^{4} of length L intersect with probability $O\left(\frac{L^{2}}{n^{4} \log L}\right)$.

Intersections first occur when $L=O\left(n^{2}(\log n)^{1 / 2}\right)$.
Add root vertex ρ to \mathbb{Z}_{n}^{4}, connected to all vertices. Random walk goes to ρ after a geometric number of steps with mean $\beta n^{2}(\log n)^{1 / 2}$.

To apply Wilson's algorithm, first run LERW from x_{1} to ρ, then start next walks at x_{2}, \ldots, x_{k}. This gives weighted spanning tree.

Removing edges leading to ρ gives spanning forest on \mathbb{Z}_{n}^{4}.

Stochastic domination

(Peres-Revelle, 2004): If $d^{\prime}\left(x_{i}, x_{j}\right)$ denote distances in the spanning forest, total variation distance between $\left(d^{\prime}\left(x_{i}, x_{j}\right)\right)_{1 \leq i<j \leq k}$ and $\left(d\left(x_{i}, x_{j}\right)\right)_{1 \leq i<j \leq k}$ is at most the probability that x_{1}, \ldots, x_{k} are in different tree components. Choose β large to reduce this below ϵ.

Add root to K_{m}, so the probability of going to the root in one step is same as probability that r-step walk on \mathbb{Z}_{n}^{4} visits the root.

Where does the $1 / 6$ come from?

Need walks of length $O\left(n^{2}(\log n)^{1 / 2}\right)$ to get intersections.
After loop-erasure, length multiplied by $(\log n)^{-1 / 3}$.

Dynamics of LERW

Let $\left(X_{t}\right)_{t=0}^{\infty}$ be a random walk on $\mathbb{Z}_{n}^{d}, d \geq 4$.
Let $Y_{t}=\left|L E\left(\left(X_{s}\right)_{s=0}^{t}\right)\right|$ be length of the loop-erasure at time t.

- Y_{t} increases linearly when there are no long loops.
- Long loops happen at rate proportional to Y_{t}.
- Long loops hit a uniform point on path.

Definition (Evans-Pitman-Winter, 2006): The Rayleigh process ($R(t), t \geq 0$) is a $[0, \infty)$-valued Markov process such that:

- $R(t)$ increases linearly at unit speed between jumps.
- At time t, jump rate is $R(t-)$. At jump times, process gets multiplied by an independent Uniform $(0,1)$ random variable.

Rayleigh distribution is stationary distribution.
Theorem (Schweinsberg, 2008): For some constants a_{n} and b_{n}, the processes ($b_{n} Y_{\left\lfloor a_{n} t\right\rfloor}, t \geq 0$) converge to ($R(t), t \geq 0$).
Note: This result was conjectured by Jim Pitman. Result for the complete graph was proved by Evans, Pitman, Winter (2006).

