
The loop-erased random walk and the uniform spanning

tree on the four-dimensional discrete torus

by Jason Schweinsberg

University of California at San Diego

Outline of Talk

1. Loop-erased random walk

2. Uniform spanning tree

3. Continuum random tree

4. Main result

5. Outline of proof

6. Dynamics of loop-erased random walk



Loop-erased random walk

Let λ = (u0, u1, . . . , uj) be a path in a graph G = (V, E).

Define the loop-erasure LE(λ) by erasing loops in the order in

which they appear.

A random walk (Xt)
∞
t=0 on a graph G is a V -valued Markov chain.

At each step, moves to a randomly chosen neighboring vertex.

The loop-erased random walk (LERW) is the path LE((Xt)
∞
t=0).

Well-defined when (Xt)
∞
t=0 is transient.
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Behavior of LERW on Z
d:

• d ≥ 5 (Lawler, 1980): All loops are short, length of the path

LE((Xt)
n
t=0) is O(n), process converges to Brownian motion.

• d = 4 (Lawler, 1986, 1995): Length of the path LE((Xt)
n
t=0)

is O(n/(logn)1/3), process converges to Brownian motion.

• d = 2 (Kenyon, 2000; Lawler-Schramm-Werner, 2004): The

length of LE((Xt)
n
t=0) is O(n5/8), process is conformally in-

variant and converges to SLE(2).

• d = 3 (Kozma, 2005): Scaling limit exists, invariant under

dilations and rotations.



Uniform spanning tree

A spanning tree of a finite connected graph G is a connected

subgraph of G containing every vertex and no cycles.

A uniform spanning tree (UST) is a spanning tree chosen uni-

formly at random.
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Connections between UST and LERW

Theorem (Pemantle, 1991): The path from x to y in a UST

has the same distribution as the LERW from x to y.

Wilson’s Algorithm (Wilson, 1996): To construct UST of G,

• Pick vertices x0 and x1, run LERW from x0 to x1 to get T1.

• Given Tk, pick a vertex xk+1, get Tk+1 by adjoining to Tk an

LERW from xk+1 to Tk.

• Continue until all vertices are in the tree.

Can choose vertices in any order, can depend on current tree.
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Continuum Random Tree (Aldous, 1991, 1993)

Consider Poisson process on [0,∞), intensity r(t) = t.

Begin with a segment of length t1, call the endpoints x1, x2.

Attach segment of length t2− t1 to a uniform point on the initial

segment, label the endpoint x3.

Continue, each segment orthogonal to all previous segments.

Limiting random metric space is continuum random tree (CRT).

Denote by µk the (exchangeable) distribution of (d(xi, xj))1≤i<j≤k.

View x1, . . . , xk as points picked from “mass measure” on CRT.
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Scaling limits of UST on finite graphs

Theorem (Aldous, 1991): Consider the UST on the complete

graph Km with m vertices (equivalently, a uniform random tree

on m labeled vertices). Let y1, . . . , yk be vertices chosen uniformly

a random. Let d(yi, yj) be the number of vertices on the path

from yi to yj in the UST. Then

(

d(yi, yj)√
m

)

1≤i<j≤k

→d µk.

Theorem (Peres-Revelle, 2004): Consider the UST on the torus

Z
d
n for d ≥ 5. Let x1, . . . , xk be vertices chosen uniformly at

random. Then there is a constant β such that
(

d(xi, xj)

βnd/2

)

1≤i<j≤k

→d µk.

The CRT scaling limit also holds for UST on larger class of

graphs including hypercubes Z
n
2, expander graphs.



Corollary (Peres-Revelle, 2004): Let x and y be uniformly cho-

sen from Z
d
n, d ≥ 5. Let (Xt)

T
t=0 be a random walk from x to y.

Then

lim
n→∞P(|LE((Xt)

T
t=0)| > βnd/2z) = e−z2/2.

Limiting distribution called Rayleigh distribution.

Note: Benjamini-Kozma (2005) had proved that for d ≥ 5 the

length of LERW from x to y on Z
d
n is O(nd/2). They conjectured

the length in Z
4
n is O(n2(logn)1/6).

Theorem (Schweinsberg, 2009): Consider the UST on Z
4
n. Let

x1, . . . , xk be vertices chosen uniformly at random. There is a

sequence of constants (γn)∞n=1 bounded away from 0 and ∞
such that

(

d(xi, xj)

γnn2(logn)1/6

)

1≤i<j≤k

→d µk.

In particular, if (Xt)
T
t=0 is a random walk from x1 to x2, then

lim
n→∞P(|LE((Xt)

T
t=0)| > γnn2(logn)1/6z) = e−z2/2.



Coupling idea (Peres-Revelle, 2004)

• Choose y1, . . . , yk uniformly from Km.

• Choose x1, . . . , xk uniformly from Z
4
n.

• Construct partial UST T̃k on Km using Wilson’s algorithm,

starting random walks from y1, . . . , yk.

• Construct partial UST Tk on Z
4
n using Wilson’s algorithm,

starting random walks from x1, . . . , xk.

• Segments in random walks of length r = ⌊n2(logn)9/22⌋ on

Z
4
n correspond to individual vertices in walks on Km.

• Obtain tree T ∗
k from Tk by collapsing random walk segments

of length r into a single vertex.

• Find coupling such that T̃k = T ∗
k with high probability.

• Deduce CRT limit for UST on Z
4
n from Aldous’ result on Km.



Coupling of random walks

Random walk on Z
4
n makes short loops (occur within segment

of length r) and long loops (occur on Z
4
n but not on Z

4). Long
loops correspond to loops of walk on Km.

Example: random walk on K6 begins (3,4,6,2,4,1).

Random walk (Xt)
6r−1
t=0 on Z

4
n. Suppose that Xs = Xt for some

s ∈ [r,2r) and t ∈ [4r,5r).

Coupling k random walks gives coupling of T̃k and T ∗
k .
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Mixing times

Let (Xt)
∞
t=0 be a random walk on Z

4
n, modified to stay in its

current state with probability 1/2. Assume X0 = 0.

Markov chain with stationary distribution π(x) = 1/n4 for all x.

τn = inf

{

t : max
x∈Z

4
n
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We have C1n2 ≤ τn ≤ C2n2.

For t ≥ τn and x ∈ Z
4
n, we have exponentially fast convergence:
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A random walk (Xt)
∞
t=0 gets close to the uniform distribution

when t is O(n2), near the beginning of a segment of length r.

To find probability that two segments of length r intersect, as-

sume they both start from uniform distribution.



Random walk intersections on Z
d

Let (Vt)
∞
t=0 and (Wt)

∞
t=0 be independent random walks on Z

d,

started at the origin.

• If d ≤ 4, almost surely the paths intersect infinitely often

(infinitely many x ∈ Z
d such that Vs = Wt = x for some s, t).

• If d ≥ 5, almost surely the paths intersect only finitely often.

Let Rn be the cardinality of {s, t ∈ {1, . . . , n} : Vs = Wt}.

• If d ≥ 5, then E[Rn] = O(1).

• If d = 4, then E[Rn] = O(logn).

• If d ≤ 3, then E[Rn] = O(n(4−d)/2).



Intersection probabilities for loop-erased segments

Let (Xt)
r−1
t=0 and (Yt)

r−1
t=0 be random walks on Z

4
n started from

the uniform distribution.

• P(Xs = Yt) = 1/n4 for all s, t.

• Expected number of intersections is r2/n4.

• If there is one intersection, there are O(log r) intersections.

• Probability of intersection is O

(

r2

n4 log r

)

= O((logn)−2/11).

(Lyons-Peres-Schramm, 2003): Given two independent tran-

sient Markov chains with the same transition probabilities, loop-

erasing one path reduces the probability that the paths intersect

by at most a factor of 28.

Probability LE((Xt)
r−1
t=0) and (Yt)

r−1
t=0 intersect is O((logn)−2/11).



Concentration of capacity

For U ⊂ Z
4
n, let Capr(U) = P(Yt ∈ U for some t < r).

We have E[Capr(LE((Xt)
r−1
t=0))] = an(logn)−2/11 for a sequence

of constants (an)∞n=1 bounded away from 0 and ∞.

Distribution of Capr(LE((Xt)
r−1
t=0)) is highly concentrated around

its mean (break walk into pieces, apply LLN to the probabilities

of hitting individual pieces).

Let m = ⌊a−1
n (logn)2/11⌋. The next segment intersects each

previous segment with probability approximately 1/m.

Trees T̃k and T ∗
k coupled with high probability.



Length of loop-erased segments

Couple (Xt)
r−1
t=0 with walk (Zt)

r−1
t=0 on Z

4 so that Xt = Zt(mod n).

P(Xs = Xt and Zs 6= Zt for some s, t) ≤ Cr2

n4 log r
= o(1).

Lengths of LE((Xt)
r−1
t=0) and LE((Zt)

r−1
t=0) are O

(

r

(log r)1/3

)

.

We have E[|LE((Xt)
r−1
t=0)|] = bnn2(logn)5/66 for a sequence of

constants (bn)∞n=1 bounded away from 0 and ∞. Distribution of

length is concentrated around mean.

Approximate d(xi, xj) by multiplying number of vertices on path

in T ∗
k by bnn2(logn)5/66.

Distances d(xi, xj) now coupled with d(yi, yj) in Km.



Adding a root vertex

For the first step of Wilson’s algorithm, we need to run LERW

from x to y, but it takes O(n4) steps of a random walk to hit y.

Walks on Z
4
n of length L intersect with probability O

(

L2

n4 logL

)

.

Intersections first occur when L = O(n2(logn)1/2).

Add root vertex ρ to Z
4
n, connected to all vertices. Random

walk goes to ρ after a geometric number of steps with mean

βn2(logn)1/2.

To apply Wilson’s algorithm, first run LERW from x1 to ρ, then

start next walks at x2, . . . , xk. This gives weighted spanning tree.

Removing edges leading to ρ gives spanning forest on Z
4
n.



Stochastic domination

(Peres-Revelle, 2004): If d′(xi, xj) denote distances in the span-

ning forest, total variation distance between (d′(xi, xj))1≤i<j≤k

and (d(xi, xj))1≤i<j≤k is at most the probability that x1, . . . , xk

are in different tree components. Choose β large to reduce this

below ǫ.

Add root to Km, so the probability of going to the root in one

step is same as probability that r-step walk on Z
4
n visits the root.

Where does the 1/6 come from?

Need walks of length O(n2(logn)1/2) to get intersections.

After loop-erasure, length multiplied by (logn)−1/3.



Dynamics of LERW

Let (Xt)
∞
t=0 be a random walk on Z

d
n, d ≥ 4.

Let Yt = |LE((Xs)t
s=0)| be length of the loop-erasure at time t.

• Yt increases linearly when there are no long loops.

• Long loops happen at rate proportional to Yt.

• Long loops hit a uniform point on path.

Definition (Evans-Pitman-Winter, 2006): The Rayleigh process

(R(t), t ≥ 0) is a [0,∞)-valued Markov process such that:

• R(t) increases linearly at unit speed between jumps.

• At time t, jump rate is R(t−). At jump times, process gets

multiplied by an independent Uniform(0,1) random variable.

Rayleigh distribution is stationary distribution.

Theorem (Schweinsberg, 2008): For some constants an and bn,

the processes (bnY⌊ant⌋, t ≥ 0) converge to (R(t), t ≥ 0).

Note: This result was conjectured by Jim Pitman. Result for the

complete graph was proved by Evans, Pitman, Winter (2006).
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