Heat kernel estimates for random walks on random media at criticality

Takashi Kumagai

(Kyoto University, Japan)

http://www.math.kyoto-u.ac.jp/~kumagai/

7 December, 2009 at IHP

1 Introduction

Motivation

Analyze "anomalous" random walks or diffusions on disordered media

Math. Physicists' work

Survey: Ben-Avraham and S. Havlin ('00)

Detailed study of heat conduction and wave transmission

• Complicated network \Rightarrow Random walk on "ideal" fractals

Rammal-Toulose ('83) etc.

• Random models at critical probability (Percolation cluster etc.)

De Gennes ('76) "the ant in the labyrinth"

Bond percolation on $\mathbb{Z}^d (d \ge 2)$

 $\exists p_c \in (0,1) \text{ s.t. } \exists 1 \infty \text{-cluster for } p > p_c, \text{ no } \infty \text{-cluster for } p < p_c.$

╞╋╪╪╍╉╪╁╤╧┍╝╞╬╌└┍┯┙

ⓒ M.T. Barlow

© M.T. Barlow

'Anomalous' behaviour of the random walk at critical probability.

Let
$$p_n^{\omega}(x, y) := P_{\omega}^x(X_n = y)/\mu_y$$
 and
 $d_s = -2 \lim_{n \to \infty} \log p_{2n}^{\omega}(x, x)/\log n.$

Alexander-Orbach conjecture (J. Phys. Lett., '82)

 $d \ge 2 \Rightarrow d_s = 4/3 \pmod{d}$.

(It is now believed that this is false for small d.)

Plan of the talk

• Random walk on random disordered media

(i) Percolation cluster at criticality

(ii) Percolation cluster for diamond lattice at criticality

(iii) Random walk trace

(iv) Erdös-Rényi random graph at critical window

2 Volume + Resistance \Rightarrow HK estimates

 $(\mathcal{G}(\omega), \omega \in \Omega)$: random graph on $(\Omega, \mathcal{F}, \mathbb{P}), \{Y_n\}$: simple RW on \mathcal{G} . For $\lambda \geq 1$, let $J(\lambda) := \{R \geq 1 : \frac{R^D}{\lambda} \leq \mu(B_R) \leq \lambda R^D, R_{\text{eff}}(0, B_R^c) \geq \frac{R^\alpha}{\lambda}, R_{\text{eff}}(0, y) \leq \lambda R^\alpha, \forall y \in B_R\},$ for $D \geq 1, 0 < \alpha \leq 1$ where $B_r := B(0, r).$

Theorem 2.1 (Barlow-Járai-K-Slade '08, K-Misumi '08) If $q_0, c_1 > 0$ s.t. $\mathbb{P}(R \notin J(\lambda)) \leq c_1 \lambda^{-q_0}$, for all $R \geq 1$, then $\exists a_1, a_2 \geq 0$ s.t. (i) $(\log n)^{-a_1} n^{-\frac{D}{D+\alpha}} \leq p_{2n}^{\omega}(x,x) \leq (\log n)^{a_1} n^{-\frac{D}{D+\alpha}}$ for large n, $\mathbb{P} - a.s$.

Especially, $d_s(\mathcal{G}(\omega)) = \frac{2D}{D+\alpha}$, $\mathbb{P}-a.s. \omega$, and the RW is recurrent. (ii) $(\log n)^{-a_2} n^{\frac{1}{D+\alpha}} \leq \max_{0 \leq k \leq n} d(0, Y_k) \leq (\log n)^{a_2} n^{\frac{1}{D+\alpha}}$, for large R, $P_{\omega}^x - a.s.$ So, $d_f = D, d_w = D + \alpha$, $d_s/2 = d_f/d_w$. 3 (i) Percolation cluster at criticality

Consider the following models:

- (I) (Spread-out) oriented percolation with d > 6
- (II) Percolation with d large (say $d \ge 19$)

Let $\mathcal{C}(0)$ be the set of vertices connected to 0 by open bonds (random media!) $\exists p_c = p_c(d) \in (0, 1) \text{ s.t. } p > p_c \Rightarrow \exists \text{ infinite cluster}, p \leq p_c \Rightarrow \text{ no infinite cluster}$ So, at $p = p_c$, $\mathcal{C}(0)$ is a finite cluster with prob. 1!

⇒ Consider <u>incipient infinite cluster (IIC)</u>. (I.e. at the critical prob., conditioned on #C(0) = ∞.) Existence of the IIC is known for the above models.
(OP: van der Hofstad-den Hollander-Slade '02, P: van der Hofstad-Járai '04)

 $(\mathcal{G}(\omega), \omega \in \Omega)$: IIC, $(\Omega, \mathcal{F}, \mathbb{P})$: prob. space for the randomness of the space

For each $\mathcal{G} = \mathcal{G}(\omega)$, let $\{Y_n\}$ be a simple RW on \mathcal{G} . P_{ω}^x : law of $\{Y_n\}$ starting at $x \in \mathcal{G}(\omega)$, $p_n^{\omega}(x, y) := P_{\omega}^x(Y_n = y)/\mu_y$.

Theorem 3.1 (Barlow-Járai-K-Slade '08, Kozma-Nachmias '09) For models I and II, $\exists a_1, a_2 \geq 0$ s.t. the following hold.

(i)
$$(\log n)^{-a_1} n^{-2/3} \le p_{2n}^{\omega}(x,x) \le (\log n)^{a_1} n^{-2/3}$$
, for large n , $\mathbb{P} - a.s.$

Especially, $d_s(G(\omega)) = \frac{4}{3}$, \mathbb{P} -a.s. ω (solves the A-O conj.), and the RW is recurrent.

(*ii*)
$$(\log n)^{-a_2} n^{1/3} \le \max_{0 \le k \le n} d(0, Y_k) \le (\log n)^{a_2} n^{1/3}$$
, for large n , $P_{\omega}^x - a.s.$
(*iii*) $c_3 n^{-2/3} \le \mathbb{E}(p_{2n}(0, 0)) \le c_4 n^{-2/3}$, $\forall R, n \ge 1$.

 \odot Theorem 2.1 applies with $D = 2, \alpha = 1$. (Need probabilistic estimates.)

Remark: (i) For $p > p_c$ (at least for model II),

(a) (HK(2)) [Gaussian heat kernel estimates] holds \mathbb{P} -a.s. for large t (Barlow '04)

(b) $n^{-1}Y_{n^{2}t}^{\omega} \to B_{\sigma t}$ P-a.s. ω for some $\sigma > 0$ (Quenched invariance principle)

(Sidoravicius-Sznitman '04, Berger-Biskup '07, Mathieu-Piatnitski. '07)

(ii) A-O conjecture holds for d > 6 for model I and d large for model II.
Critical dimension is believed to be d = 6 for model II.
Numerical simulations suggest that A-O conjecture is false for d ≤ 5 (model II).
d = 5 ⇒ d_s = 1.34 ± 0.02, d = 4 ⇒ d_s = 1.30 ± 0.04
d = 3 ⇒ d_s = 1.32 ± 0.01, d = 2 ⇒ d_s = 1.318 ± 0.001

Remark 2: For trees, the following results are known.

(1) Critical percolation on regular trees (Kesten '86, Barlow-K '06)

Theorem 2.1 holds with $D = 2, \alpha = 1$.

- (2) Critical invasion percolation on regular trees (Angel-Goodman-Hollander-Slade '08) Theorem 2.1 holds with $D = 2, \alpha = 1$.
- (2) Critical G-W tree with ∞-variance offspring distri. (Kesten '86, Croydon-K '08) {Z_n}_{n≥0}: critical G-W proc. E[Z₁] = 1, P(Z₁ = 1) ≠ 1.
 E[s^{Z₁}] = s + (1 - s)^βL(1 - s), ∀s < 1, where β ∈ (1, 2] and L(x) is slowly varying ⇒ Theorem 2.1 holds with D = β/(β - 1), α = 1.

Theorem 3.2 (Oscillations)

$$\underline{\beta \in (1,2)} \ \exists \varepsilon_1 > 0 \ s.t. \ \liminf_{n \to \infty} n^{\frac{\beta}{2\beta-1}} (\log n)^{\varepsilon_1} p_{2n}^{\omega}(0,0) = 0, \ \mathbb{P} - a.e. \ \omega.$$
$$\underline{\beta = 2} \ \exists \varepsilon_2 > 0 \ s.t. \ \liminf_{n \to \infty} n^{\frac{2}{3}} (\log \log n)^{\varepsilon_2} p_{2n}^{\omega}(0,0) = 0, \ \mathbb{P} - a.e. \ \omega.$$

4 (ii) Percolation cluster for diamond lattice at criticality (Hambly-K '08)

At each step, replace each edge by a parallelogram (diamond).

Let V_n be a set of vertices at the *n*-step, E_n a set of edges at the *n*-step.

 $D_n := (V_n, E_n), V_0 = \{0, 1\}, \qquad \cup_{m \ge 0} V_m \text{ is dense in } K.$

K (Scaling limit of the) Diamond hierarchical lattice Let $I = \{1, 2, 3, 4\}$.

K is invariant under a family of contraction maps $\{\psi_i\}_{i=1}^4$: $K = \bigcup_{i \in I} \psi_i(K)$.

<u>Diffusion on the diamond hierarchical lattice</u>

$$\mathcal{E}_0(f,g) := \frac{1}{2}(f(0) - f(1))(g(0) - g(1)), \quad \mathcal{E}_n(f,g) = \sum_{i=1}^4 \mathcal{E}_{n-1}(f \circ \psi_i, g \circ \psi_i).$$

Let $\mathcal{E}(f,f) = \lim_{n \to \infty} \mathcal{E}_n(f,f), \quad \forall f \in \mathcal{F}^* := \{f : \bigcup_{m \ge 0} V_m \to \mathbb{R} \mid \sup_n \mathcal{E}_n(f,f) < \infty\}.$

 μ : Hdff meas. on K, $\mu(\psi_w(K)) = 4^{-|w|}$. Note μ does NOT satisfy volume doubling.

Theorem 4.1 1) $\exists \iota_{\mu} : \mathcal{F}^* \subset L^2(K,\mu)$ compact imbedding. Let $\mathcal{F} := \iota_{\mu}(\mathcal{F}^*)$. Then $(\mathcal{E},\mathcal{F})$ is a local reg. Dirichlet form on $L^2(K,\mu)$.

2) $\exists p_t(\cdot, \cdot) \text{ jointly cont. heat kernel that enjoys the following estimates:}$ a) $0 < p_t(x, y) \le \frac{c_1}{t} \exp(-c_2 \frac{d(x, y)^2}{t}), \ p_t(x, x) \ge \frac{c_3}{\mu(B(x, c_4\sqrt{t}))} \ \forall x, y \in K, \forall t \in (0, 1),$ b) $c_1 t^{-1} |\log t|^{-a} \le p_t(x, x) \le c_2 t^{-1} \quad \text{for } \mu\text{-a.e. } x \in K, \ \forall t < \exists T(x),$ c) $c_1 t^{-1/2} \le p_t(0, 0) \le c_2 t^{-1/2} \quad \forall t < 1.$

<u>Percolation on K</u>

For $p \in (0, 1)$, construct D_n^p by retaining each edge in E_n indep. with prob. p. From D_n^p , one can induce percolation on D_{n-1} by regarding that each edge is connected iff it is connected on the *n*-th level.

 \Rightarrow The induced percolation, $D_{n,1}$ is equal in law to $D_{n-1}^{f(p)}$, where

$$f(p) = p^4 + 4p^3(1-p) + 2p^2(1-p)^2 = 2p^2 - p^4$$

f has 3 fixed points in [0, 1]; 0, 1 (attractive) and $p_c = (\sqrt{5} - 1)/2$ (repulsive)

Lemma 4.2 If $p > p_c$, then $P(0 \text{ and } 1 \text{ are connected in } D_n) \to 1 \text{ as } n \to \infty$. If $p = p_c$, then $P(0 \text{ and } 1 \text{ are connected in } D_n) = p_c$ for all $n \ge 0$. If $p < p_c$, then $P(0 \text{ and } 1 \text{ are connected in } D_n) \to 0$ as $n \to \infty$.

Let $\mathcal{C} = \mathcal{C}(\omega)$ be the crit. perco. cluster under $P^{p_c}(\cdot | \{0\} \text{ and } \{1\} \text{ are connected.}))$

Diffusion on the scaling limits of critical percolation clusters in K

Let $T := \bigcup_{i=1}^{\infty} I^i \cup \{\emptyset\}$ and $S := \{c_{(1)}, c_{(2)}, d\}$. (Recall $I = \{1, 2, 3, 4\}$.)

 $\Omega := T \otimes \mathcal{S} \text{ probability space of labelled trees. So } \omega \in \Omega \Rightarrow \omega = \{(\mathbf{i}, u_{\mathbf{i}})\}_{\mathbf{i} \in T}.$

Define the resistance scale factors by $\rho_{u_i} = 1$ if $u_i = c_{(1)}$, and 2 otherwise.

Then $\exists \mu^{\omega}$: Borel meas. naturally defined on $\mathcal{C}(\omega)$ by using $\{\rho_{u_i}\}_i$.

Recall $\mathcal{E}_0(f,g) := \frac{1}{2}(f(0) - f(1))(g(0) - g(1))$. For $\omega = \{(\mathbf{i}, u_{\mathbf{i}})\}_{\mathbf{i}\in T}$, set

$$\mathcal{E}_1^{(\omega)}(f,g) = \sum_{i:u_i \in \{c_{(1)},c_{(2)}\}} \mathcal{E}_0(f \circ \psi_i, g \circ \psi_i) \rho_{u_\emptyset}.$$

We now repeat this construction by setting

Theorem 4.3 1) $(\mathcal{E}^{(\omega)}, \mathcal{F}^{\omega})$ is a local reg. *D*-form on $L^2(\mathcal{C}(\omega), \mu^{\omega}) \quad \forall \omega \in \Omega \ s.t.$

$$\mathcal{E}^{(\omega)}(f,g) = \sum_{i=1}^{4} \mathcal{E}^{(\sigma_i \omega)}(f \circ \psi_i, g \circ \psi_i) \rho_{u_{\emptyset}} \qquad \forall f, g \in \mathcal{F}^{\omega}.$$

2) For $\mathbb{P} - a.s.\omega$, $\exists q_t^{\omega}(\cdot, \cdot)$ jointly cont. heat kernel s.t.

a) $c_1 t^{-\theta/(\theta+1)} |\log \log t|^{-b_1} \le q_t^{\omega}(x,x) \le c_2 t^{-\theta/(\theta+1)} |\log \log t|^{b_2}, \ \mu$ -a.e. $x \in \mathcal{C}(\omega), \ \forall t < 1,$

b)
$$c_3 t^{-(\theta-\nu)/(\theta-\nu+1)} \le q_t^{\omega}(0,0) \le c_2 t^{-(\theta-\nu)/(\theta-\nu+1)} \quad \forall t < 1,$$

where $\theta = 5.2654..., \nu = 1.3384...; \quad \frac{\theta}{\theta+1} = 0.8404..., \quad \frac{\theta-\nu}{\theta-\nu+1} = 0.7970...$

Let $\mathcal{G} = \mathcal{G}(\omega)$ be the trace of RW on \mathbb{Z}^d starting at 0.

For each \mathcal{G} , let $\{Y_n\}$ be a simple RW on \mathcal{G} starting at 0.

Let $d_{\mathcal{G}}(\cdot, \cdot)$ be the graph distance on \mathcal{G} .

Theorem 5.1 (Croydon '09) $d \ge 5$. Let B_t be BM and $W_t^{(d)}$ be indep. d-dim. BM. (i) $\exists c_1, c_2 > 0$ such that

$$c_1 n^{-1/2} \le p_{2n}^{\omega}(0,0) \le c_2 n^{-1/2}$$
 for large n , $\mathbb{P}-a.s.$

(*ii*) $\exists \sigma_1 = \sigma_1(d) > 0$ such that

$$\{n^{-1/2}d_{\mathcal{G}}(0, Y_{[tn]})\}_t \xrightarrow{weak} \{|B_{\sigma_1 t}|\}_t, \quad \mathbb{P}-a.s.$$

(iii) $\exists \sigma_2 = \sigma_2(d) > 0$ such that

$$\{n^{-1/4}Y_{[tn]}\}_t \xrightarrow{weak} \{W^{(d)}_{|B_{\sigma_2 t}|}\}_t, \quad \mathbb{P}-a.s.$$

Theorem 5.2 (Shiraishi '08, '09)

(i) Let d = 4. $\exists c_1, c_2 > 0$ and a slowly varying function ψ such that

$$c_1 n^{-\frac{1}{2}} (\psi(n))^{\frac{1}{2}} \le p_{2n}^{\omega}(0,0) \le c_2 n^{-\frac{1}{2}} (\psi(n))^{\frac{1}{2}}$$
 for large n , $\mathbb{P}-a.s.$

Further, $\psi(n) \approx (\log n)^{-\frac{1}{2}}$, that is

$$\lim_{n \to \infty} \frac{\log \psi(n)}{\log \log n} = -\frac{1}{2}.$$

(ii) Let d = 4. Then the following holds $\mathbb{P} - a.s. \omega$:

$$n^{\frac{1}{4}} (\log n)^{\frac{1}{24} - \delta} \le \max_{1 \le k \le n} |Y_k^{\omega}| \le n^{\frac{1}{4}} (\log n)^{\frac{13}{12} + \delta} \quad for \ large \ n, \quad P_{\omega}^0 - a.s.$$

(iii) Let d = 3. $\exists c_3 > 0$ such that

 $p_{2n}^{\omega}(0,0) \leq n^{-\frac{10}{19}} (\log n)^a$ for large n, $\mathbb{P}-a.s.$

Critical dimension for RW on RWT is 4!

Proposition 5.3 (Burdzy-Lawler '90)

$$E[R_{\mathcal{G}}(0, S_n)] \sim cn \quad for \ d \ge 5$$

$$c(\log n)^{-\frac{1}{2}} \lesssim \frac{1}{n} E[R_{\mathcal{G}}(0, S_n)] \lesssim c'(\log n)^{-\frac{1}{3}} \quad for \ d = 4$$

$$cn^{\frac{1}{2}} \lesssim E[R_{\mathcal{G}}(0, S_n)] \lesssim c'n^{\frac{5}{6}} \quad for \ d = 3,$$

Let L_n be the number of cut points (for S[0, n]) up to time n.

Also, let A_n be the number of points for loop-erased RW (for S[0, n]). Then

$$E[L_n] \le E[R_{\mathcal{G}}(0, S_n)] \le E[A_n].$$

Proposition 5.4 (Shiraishi '09) For d = 4,

$$\frac{1}{n}E[R_{\mathcal{G}}(0,S_n)] \simeq (\log n)^{-\frac{1}{2}}$$

 \bigcirc Let $\{T_j\}$ be the sequence of cut times up to time n. Then RW trace near S_{T_j} and $S_{T_{j+1}}$ intersects typically when $T_{j+1} - T_j$ is large, i.e. \exists "long range intersection".

6 (iv) Erdös-Rényi random graph at critical window

G(n, p): Erdös-Rényi random graph I.e. $V_n := \{1, 2, \dots, n\}$ labeled vertices Each $\{i, j\}$ $(i, j \in V_n)$ is connected by a bond with prob. p.

 \mathcal{C}_1^n : largest connected component

Phase transition at p = 1/n: $p \sim c/n$ with $c < 1 \Rightarrow \sharp C_1^n = O(\log n)$ with $c > 1 \Rightarrow \sharp C_1^n \asymp n$ with $c = 1 \Rightarrow \sharp C_1^n \asymp n^{2/3}$ Finer scaling (critical window): $p = 1/n + \lambda n^{-4/3}$ for fixed $\lambda \in \mathbb{R}$

 \Rightarrow One can describe the asymptotics of $n^{-2/3} \sharp C_1^n$ etc. (Aldous '97) (Addario-Berry Broutin Goldschmidt '09)

 $n^{-1/3}\mathcal{C}_1^n \xrightarrow{d} \exists \mathcal{M}$ (Gromov-Hausdorffsense),

where \mathcal{C}_1^n is considered as a rooted metric space.

Here \mathcal{M} can be constructed from a (random) real tree by gluing a (random) finite number of points as in the following figure.

 $Y_m^{\mathcal{C}_1^n}$: simple RW on \mathcal{C}_1^n . Heat kernel estimates on \mathcal{C}_1^n (on-going work). **Theorem 6.1** (Croydon '09)

 $\exists B_t^{\mathcal{M}}$: Brownian motion on \mathcal{M} and $\exists p_t^{\mathcal{M}}(\cdot, \cdot)$ its heat kernel s.t.

$$\{n^{-1/3}Y_{[nt]}^{\mathcal{C}_1^n}\}_t \xrightarrow{weak} \{B_t^{\mathcal{M}}\}_t, \quad \mathbb{P}-a.s.$$
$$c_1 t^{-2/3} (\log t^{-1})^{-c_2} \le p_t^{\mathcal{M}}(x,x) \le c_3 t^{-2/3} (\log t^{-1})^{-c_4}, \quad \forall x \in \mathcal{M}, t \le T_0$$

(Cf. Tree case: Kesten '86, Barlow-K '06, Croydon '08, Croydon-K '08)