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1 Introduction

Motivation

Analyze “anomalous” random walks or diffusions on disordered media

Math. Physicists’ work

Survey: Ben-Avraham and S. Havlin (’00)

Detailed study of heat conduction and wave transmission

e Complicated network = Random walk on “ideal” fractals
Rammal-Toulose ('83) etc.
e Random models at critical probability (Percolation cluster etc.)

De Gennes ('76) “the ant in the labyrinth”



Bond percolation on Z (d > 2)
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dp. € (0, 1) s.t. Floo-cluster for p > p., no co-cluster for p < p,.
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‘Anomalous’ behaviour of the random walk at critical probability.

Let pi;(z,y) == Pj(X, =y)/py and

ds = —21im,, . logps (z,z)/logn.

Alexander-Orbach conjecture (J. Phys. Lett., '82)

d>2= [dg=4J3 (NOT d).

(It is now believed that this is false for small d.)




Plan of the talk

e Random walk on random disordered media
(i) Percolation cluster at criticality
(ii) Percolation cluster for diamond lattice at criticality
(iii) Random walk trace

(iv) Erdos-Rényi random graph at critical window



2 Volume + Resistance = HK estimates

(G(w),w € Q): random graph on (€2, F,P), {Y,,}: simple RW on G. For A > 1, let
RY D oy < 1 o
JA) ={R>1: 5y < u(Br) < AR", R (0, By) > T,Reﬂ:(o,y) < AR®, Vy € Bg},
for D > 1,0 < a < 1 where B, := B(0, 7).
Theorem 2.1 (Barlow-Jarai-K-Slade 08, K-Misumi "08)
If qo,c1 >0 s.t. P(R& J(N\)) <A™, for all R > 1, then Jay,as > 0 s.t.

(7) (log n)_aln_DLia < ps (z,r) < (log n)aln_DLia for large n, P — a.s.
Especially, _ , and the RW 1is recurrent.
(47) (log n)‘“QnD%a < nax d(0,Y:) < (log n)“QnD%a, for large R, P"—a.s.

So. dy=D,dy=D+a, dyf2=dy/dy .



3 (i) Percolation cluster at criticality

Consider the following models:

(1) (SPICAdEOE) OHERFEAPEICOIRON with d > ¢
(11) FPercolation with d large (say d > 19)

Let C(0) be the set of vertices connected to 0 by open bonds (random medial)
Ip. = pe(d) € (0,1) st. p > p. = I infinite cluster, p < p. = no infinite cluster
So, at p = p,, C(0) is a finite cluster with prob. 1!

= Consider incipient infinite cluster (IIC). (I.e. at the critical prob., conditioned

on £C(0) = oo.) Existence of the 11C is known for the above models.

(OP: van der Hofstad-den Hollander-Slade 02, P: van der Hofstad-Jéarai '04)

(G(w),w € Q): 1IC, (Q,F,P): prob. space for the randomness of the space
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For each G = G(w), let {Y},} be a simple RW on G.
P law of {Y,,} starting at x € G(w), pL(x,y) = PI(Y, =vy)/ 1y

Theorem 3.1 (Barlow-Jarai-K-Slade '08, Kozma-Nachmias '09)
For models I and II, da;,ay > 0 s.t. the following hold.

() (oSSR SRR =, for largen, P—as.

Especially, d,(G(w)) = 3, P-a.s. w (solves the A-O conj.), and the RW is recurrent.

(1) (e SEpo(0,0) Sen= , VRn > 1.

() Theorem 2.1 applies with D = 2. o = 1. (Need probabilistic estimates.)



Remark: (i) For p > p. (at least for model II),
(a) (HK(2)) |Gaussian heat kernel estimates| holds P-a.s. for large t (Barlow '04)
(b) n™'Y5, — By P-ass. w for some o > 0 (Quenched invariance principle)

(Sidoravicius-Sznitman 04, Berger-Biskup '07, Mathieu-Piatnitski. '07)

(i) ASO conjecture holdsfor'd = 6| for model I and d large for model II.

Critical dimension is believed to be d = 6 for model II.

Numerical simulations suggest that [AS0 conjecture is false| for d < 5 (model II).

d=5=d;=134+£0.02, d=4=d;,=1.30+£0.04
d=3=d;,=132+0.01, d=2=d;=1.318 £0.001



Remark 2: For trees, the following results are known.

(1) Critical percolation on regular trees (Kesten '86, Barlow-K '06)
Theorem 2.1 holds with D =2, a = 1.

(2) Critical invasion percolation on regular trees (Angel-Goodman-Hollander-Slade "08)

Theorem 2.1 holds with D =2, = 1.
(2) Critical G-W tree with co-variance offspring distri. (Kesten '86, Croydon-K '08)
{7, boon critical G-W proc. E[Z1] =1, P(Z1=1) # 1.
E[s?1] = 54 (1 — s)"L(1 — s), Vs < 1, where 3 € (1,2] and L(z) is slowly varying
= Theorem 2.1 holds with D = /(6 —1),a = 1.
Theorem 3.2 (Oscillations)

B

B e (1,2) dey > 0 s.t. liminf n2T(logn)"ps (0,0) =0, P — a.e. w.

n—aoo

B=2 dey >0 s.t. lim inf n%(l()g logn)*?ps (0,0) =0, P—a.e. w.

- n—a~oo




4 (ii) Percolation cluster for diamond lattice at criticality (Hambly-K ’08)

At each step, replace each edge by a parallelogram (diamond).

Let V), be a set of vertices at the n-step, E,, a set of edges at the n-step.

D, = (V,,E,), Vo =10, 1}, Um>0Vp is dense in K.

K (Scaling limit of the) Diamond hierarchical lattice Let I ={1,2,,3,4}.

K is invariant under a family of contraction maps {1 le: K = Ujei(K).



Diffusion on the diamond hierarchical lattice

4

Eolf, ) = %(f(o) — F(W)(g(0) = g(1)), Enlfr9) =) Enalforhigot).

1=1

Let  E(f.f) = lm E.(f.f), VF € F = {F : UnsoVin = R | sup&,(,f) < o0},

p: Hdff meas. on K, (1K) = 17"l Note u does NOT satisfy volume doubling.

Theorem 4.1 1) 3u, : F* C L*(K, u) compact imbedding. Let F = v,(F™).
Then (€, F) is a local reg. Dirichlet form on L*(K, ).

2) Ipi(-, ) jointly cont. heat kernel that enjoys the following estimates:

C1 d(ﬂj’7y)2 C3

a) 0 < px,y) < —exp(— e ), pelx,x) > Va,y € K,Vt € (0,1),
t t w(B(w, /)

b) cit Hlogt| ™ < pi(z, x) < ot ™! for pi-a.c. x € K, Vt < 3T (x),

c) a2 < py(0,0) < cpt™V? Vit < 1.



Percolation on K

For p € (0,1), construct DF by retaining each edge in £, indep. with prob. p.
From DP one can induce percolation on D,,_; by regarding that each edge is connected

iff it is connected on the n-th level.

f(p)

-1, where

= The induced percolation, D, is equal in law to D
f(p) =p" +4p°(1 = p) + 2p* (1 — p)* = 2p” — p’
f has 3 fixed points in [0,1]; 0,1 (attractive) and p. = (v/5 — 1)/2 (repulsive)

Lemma 4.2 If p > p., then P(0 and 1 are connected in D,) — 1 as n — oo.
If p = pe, then P(0 and 1 are connected in D,)) = p. for all n > 0.

If p < pe, then P(0 and 1 are connected in D,) — 0 as n — oo.

Let C = C(w) be the crit. perco. cluster under PP<( - |{0} and {1} are connected.))



Diffusion on the scaling limits of critical percolation clusters in K

N\

OSSN

Let 7' := U2 I" U{0} and S := {c(1), ¢r2), d}. (Recall I ={1,2,3,4}.)
()= T © & probability space of labelled trees. So w € 2 = w = {(i, u3) }ier.
Define the resistance scale factors by p,, = 1 1f u; = ¢(1), and 2 otherwise,

Then 3 Borel meas. naturally defined on C(w) by using {py, };.
Recall £y(f, g) == 3(f(0) — f(1))(g(0) — g(1)). For w = {(i, ui) }ier, set

E(f,9) = > &l f ot go )y,

iui€{c)c)}



We now repeat this construction by setting
}js% (f i, 9 0 Vi) pu,.

Let 8W%ﬁﬁ:4gww%ﬁfx Ve FW = {f :supEW(f, f) < oo}.

Theorem 4.3 1) (Y, F*) is a local req. D-form on L*(C(w), u*) Yw € Q s.t.

4
EW(fg) =Y E(fouy,goti)p,, — Yf.gEF
1=1

2) For P — a.s.w , 3¢7(-, ) jointly cont. heat kernel s.t.
a) et~ O loglogt| ™" < ¢¥(x, ) < ot~ | loglogt|®?, p-a.e. x € Clw), VE <1,
b) CSt—(Q—V)/(Q—V—I—l) < q%u(o7 0) < CQt—(H—V)/(H—V+1) Vt < 1,

g h—
v = 13384, —— —0.8404. ... Y 0.7970 . ..

where 0 =>520654...,
0+1 0—v+1




5 (iii) Random walk trace

Random Walk
Trace (RWT)
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Let G — G(w) be the trace of RW on Z¢ starting at 0.
For each G, let {Y},} be a simple RW on G starting at 0.
Let dg(, ) be the graph distance on G.

Theorem 5.1 (Croydon '09) d > 5. Let B; be BM and Wt(d) be indep. d-dim.

(i) 3c1, co > 0 such that
cn V< pg (0,0) < eon Y forlargen, P —a.s.
(7i) doy = o1(d) > 0 such that
{n12dg(0,Yiu)}e == {|Boytl}i, P —as.
(11i) oo = o9(d) > 0 such that

{n_1/4Y[tn]}t e {mgi2t|}t, P — a.s.

BM.



Theorem 5.2 (Shiraishi '08, '09)

(i) Let d = 4. ey, c0 > 0 and a slowly varying function v such that

1

cln_T(@D(n))% < p5,(0,0) < CQn_%(w(n))% for large n, P — a.s.

1

Further, 1) (n) ~ (logn)~2, that is
logp(n) 1

lim ——.
n—oo log logn 2

(i) Let d = 4. Then the following holds P — a.s. w:

n%(log n)2_14_5 < nax VY < nzlf(log n)%M for large n, P — a.s.
SRS

(1ii) Let d = 3. dez > 0 such that

P5,(0,0) < n_%(log n)"  forlargen, P — a.s.



Proposition 5.3 (Burdzy-Lawler '90)

E[Rg(0, S,)] ~cn ford > 5

3

DO —

c(logn) 2 %E[Rg((), SIS d(log n)_% ford=4

en?s E[Rg(0,5,)]S dns ford =3,

Let L, be the number of cut points (for S[0, n|) up to time n.
Also, let A, be the number of points for loop-erased RW (for S[0, n]). Then

Proposition 5.4 (Shiraishi '09) For d = 4,

%E[RQ(O, Sn)] =~ (logn)~

DOf —

© Let {Tj} be the sequence of cut times up to time n. Then RW trace near St and

St;,, intersects typically when T} — Tj is large, i.e. 3"long range intersection”.



6 (iv) Erdds-Rényi random graph at critical window
G(n,p): Erdos-Rényi random graph  lLe. V,, :={1,2,---,n} labeled vertices
Each {i,7} (i,7 € V},) is connected by a bond with prob. p.
C1: largest connected component
Phase transition at p = 1/n:  p ~ ¢/n with ¢ <1 = C7" = O(logn)
with c > 1= tC] < n
with ¢ = 1 = #C' < n?/3
Finer scaling (critical window): p = 1/n 4+ An~*3 for fixed A € R
= One can describe the asymptotics of n=%/24C? etc. (Aldous '97)
(Addario-Berry Broutin Goldschmidt '09)

n~13¢n VY (Gromov-Hausdorffsense ),

where C is considered as a rooted metric space.



Here M can be constructed from a (random) real tree by gluing a (random)

finite number of points as in the following figure.

- P
N

Yt simple RW on C.  Heat kernel estimates on C{ (on-going work).

Theorem 6.1 (Croydon '09)

dBM: Brownian motion on M and IpM(-,-) its heat kernel s.t.
— C weak
vy, BNy, Poas
et (logt )2 < pM(z,2) < est™Plogt™H ™4, Yo e Mt < T,

(Cf. Tree case: Kesten '86, Barlow-K 06, Croydon '08, Croydon-K '08)
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