Heat kernel estimates for random walks on random media at criticality

Takashi Kumagai
(Kyoto University, Japan)
http://www.math.kyoto-u.ac.jp/~kumagai/

7 December, 2009 at IHP

1 Introduction

Motivation

Analyze "anomalous" random walks or diffusions on disordered media
Math. Physicists' work
Survey: Ben-Avraham and S. Havlin ('00)
Detailed study of heat conduction and wave transmission

- Complicated network \Rightarrow Random walk on "ideal" fractals

Rammal-Toulose ('83) etc.

- Random models at critical probability (Percolation cluster etc.)

De Gennes ('76) "the ant in the labyrinth"

Bond percolation on $\mathbb{Z}^{d}(d \geq 2)$

$\exists p_{c} \in(0,1)$ s.t. $\exists 1 \infty$-cluster for $p>p_{c}$, no ∞-cluster for $p<p_{c}$.

(c) M.T. Barlow

© M.T. Barlow
'Anomalous' behaviour of the random walk at critical probability.

$$
\begin{aligned}
& \text { Let } p_{n}^{\omega}(x, y):=P_{\omega}^{x}\left(X_{n}=y\right) / \mu_{y} \text { and } \\
& d_{s}=-2 \lim _{n \rightarrow \infty} \log p_{2 n}^{\omega}(x, x) / \log n
\end{aligned}
$$

Alexander-Orbach conjecture (J. Phys. Lett., '82)
$d \geq 2 \Rightarrow d_{s}=4 / 3$ (NOT d).
(It is now believed that this is false for small d.)

Plan of the talk

- Random walk on random disordered media
(i) Percolation cluster at criticality
(ii) Percolation cluster for diamond lattice at criticality
(iii) Random walk trace
(iv) Erdös-Rényi random graph at critical window

2 Volume + Resistance $\Rightarrow \mathrm{HK}$ estimates

$(\mathcal{G}(\omega), \omega \in \Omega)$: random graph on $(\Omega, \mathcal{F}, \mathbb{P}),\left\{Y_{n}\right\}$: simple RW on \mathcal{G}. For $\lambda \geq 1$, let
$J(\lambda):=\left\{R \geq 1: \frac{R^{D}}{\lambda} \leq \mu\left(B_{R}\right) \leq \lambda R^{D}, R_{\mathrm{eff}}\left(0, B_{R}^{c}\right) \geq \frac{R^{\alpha}}{\lambda}, R_{\mathrm{eff}}(0, y) \leq \lambda R^{\alpha}, \forall y \in B_{R}\right\}$,
for $D \geq 1,0<\alpha \leq 1$ where $B_{r}:=B(0, r)$.
Theorem 2.1 (Barlow-Járai-K-Slade '08, K-Misumi '08)
If $q_{0}, c_{1}>0$ s.t. $\mathbb{P}(R \notin J(\lambda)) \leq c_{1} \lambda^{-q_{0}}$, for all $R \geq 1$, then $\exists a_{1}, a_{2} \geq 0$ s.t.

$$
\begin{equation*}
(\log n)^{-a_{1}} n^{-\frac{D}{D+\alpha}} \leq p_{2 n}^{\omega}(x, x) \leq(\log n)^{a_{1}} n^{-\frac{D}{D+\alpha}} \quad \text { for large } n, \quad \mathbb{P}-\text { a.s. } \tag{i}
\end{equation*}
$$

Especially, $\quad d_{s}(\mathcal{G}(\omega))=\frac{2 D}{D+\alpha}, \mathbb{P}-$ a.s. ω, and the $R W$ is recurrent.

$$
\begin{equation*}
(\log n)^{-a_{2}} n \frac{1}{D^{+\alpha}} \leq \max _{0 \leq k \leq n} d\left(0, Y_{k}\right) \leq(\log n)^{a_{2}} n \frac{1}{D+\alpha}, \quad \text { for large } R, \quad P_{\omega}^{x}-\text { a.s. } \tag{ii}
\end{equation*}
$$

So, $d_{f}=D, d_{w}=D+\alpha, d_{s} / 2=d_{f} / d_{w}$.

3 (i) Percolation cluster at criticality

Consider the following models:
(I) (Spread-out) oriented percolation with $d>6$
(II) Percolation with d large (say $d \geq 19$)

Let $\mathcal{C}(0)$ be the set of vertices connected to 0 by open bonds (random media!) $\exists p_{c}=p_{c}(d) \in(0,1)$ s.t. $p>p_{c} \Rightarrow \exists$ infinite cluster, $p \leq p_{c} \Rightarrow$ no infinite cluster So, at $p=p_{c}, \mathcal{C}(0)$ is a finite cluster with prob. 1!
\Rightarrow Consider incipient infinite cluster (IIC). (I.e. at the critical prob., conditioned
on $\sharp \mathcal{C}(0)=\infty$.) Existence of the IIC is known for the above models.
(OP: van der Hofstad-den Hollander-Slade '02, P: van der Hofstad-Járai '04)
$(\mathcal{G}(\omega), \omega \in \Omega):$ IIC, $\quad(\Omega, \mathcal{F}, \mathbb{P}):$ prob. space for the randomness of the space

For each $\mathcal{G}=\mathcal{G}(\omega)$, let $\left\{Y_{n}\right\}$ be a simple RW on \mathcal{G}.
P_{ω}^{x} : law of $\left\{Y_{n}\right\}$ starting at $x \in \mathcal{G}(\omega), \quad p_{n}^{\omega}(x, y):=P_{\omega}^{x}\left(Y_{n}=y\right) / \mu_{y}$.

Theorem 3.1 (Barlow-Járai-K-Slade '08, Kozma-Nachmias '09)
For models I and II, $\exists a_{1}, a_{2} \geq 0$ s.t. the following hold.
(i) $\quad(\log n)^{-a_{1}} n^{-2 / 3} \leq p_{2 n}^{\omega}(x, x) \leq(\log n)^{a_{1}} n^{-2 / 3}, \quad$ for large $n, \quad \mathbb{P}$-a.s.

Especially, $d_{s}(G(\omega))=\frac{4}{3}, \mathbb{P}$-a.s. ω (solves the $A-O$ conj.), and the $R W$ is recurrent.

$$
\begin{gather*}
(\log n)^{-a_{2}} n^{1 / 3} \leq \max _{0 \leq k \leq n} d\left(0, Y_{k}\right) \leq(\log n)^{a_{2}} n^{1 / 3}, \quad \text { for large } n, \quad P_{\omega}^{x}-a . s . \tag{ii}\\
(\text { iii }) \quad c_{3} n^{-2 / 3} \leq \mathbb{E}\left(p_{2 n}(0,0)\right) \leq c_{4} n^{-2 / 3}, \quad \forall R, n \geq 1
\end{gather*}
$$Theorem 2.1 applies with $D=2, \alpha=1$. (Need probabilistic estimates.)

Remark: (i) For $p>p_{c}$ (at least for model II),
(a) $(\mathrm{HK}(2))$ [Gaussian heat kernel estimates] holds \mathbb{P}-a.s. for large t (Barlow '04)
(b) $n^{-1} Y_{n^{2} t}^{\omega} \rightarrow B_{\sigma t} \mathbb{P}$-a.s. ω for some $\sigma>0$ (Quenched invariance principle)
(Sidoravicius-Sznitman '04, Berger-Biskup '07, Mathieu-Piatnitski. '07)
(ii) A-O conjecture holds for $d>6$ for model I and d large for model II.

Critical dimension is believed to be $d=6$ for model II.
Numerical simulations suggest that A-O conjecture is false for $d \leq 5$ (model II).

$$
\begin{aligned}
& d=5 \Rightarrow d_{s}=1.34 \pm 0.02, \quad d=4 \Rightarrow d_{s}=1.30 \pm 0.04 \\
& d=3 \Rightarrow d_{s}=1.32 \pm 0.01, \quad d=2 \Rightarrow d_{s}=1.318 \pm 0.001
\end{aligned}
$$

Remark 2: For trees, the following results are known.
(1) Critical percolation on regular trees (Kesten '86, Barlow-K '06)

Theorem 2.1 holds with $D=2, \alpha=1$.
(2) Critical invasion percolation on regular trees (Angel-Goodman-Hollander-Slade '08)

Theorem 2.1 holds with $D=2, \alpha=1$.
(2) Critical G-W tree with ∞-variance offspring distri. (Kesten '86, Croydon-K '08)
$\left\{Z_{n}\right\}_{n \geq 0}$: critical G-W proc. $\mathbb{E}\left[Z_{1}\right]=1, \mathbb{P}\left(Z_{1}=1\right) \neq 1$.
$\mathbb{E}\left[s^{Z_{1}}\right]=s+(1-s)^{\beta} L(1-s), \forall s<1$, where $\beta \in(1,2]$ and $L(x)$ is slowly varying
\Rightarrow Theorem 2.1 holds with $D=\beta /(\beta-1), \alpha=1$.
Theorem 3.2 (Oscillations)

$$
\begin{array}{ll}
\underline{\beta \in(1,2)} \exists \varepsilon_{1}>0 \text { s.t. } & \liminf _{n \rightarrow \infty} n^{\frac{\beta}{2 \beta-1}}(\log n)^{\varepsilon_{1}} p_{2 n}^{\omega}(0,0)=0, \mathbb{P}-\text { a.e. } \omega . \\
\underline{\beta=2} \exists \varepsilon_{2}>0 \text { s.t. } \quad \liminf _{n \rightarrow \infty} n^{\frac{2}{3}}(\log \log n)^{\varepsilon_{2}} p_{2 n}^{\omega}(0,0)=0, \mathbb{P}-\text { a.e. } \omega .
\end{array}
$$

4 (ii) Percolation cluster for diamond lattice at criticality (Hambly-K '08)

At each step, replace each edge by a parallelogram (diamond).
Let V_{n} be a set of vertices at the n-step, E_{n} a set of edges at the n-step.
$D_{n}:=\left(V_{n}, E_{n}\right), V_{0}=\{0,1\}, \quad \cup_{m \geq 0} V_{m}$ is dense in K.
K (Scaling limit of the) Diamond hierarchical lattice \quad Let $I=\{1,2,, 3,4\}$.
K is invariant under a family of contraction maps $\left\{\psi_{i}\right\}_{i=1}^{4}: K=\cup_{i \in I} \psi_{i}(K)$.

Diffusion on the diamond hierarchical lattice

$$
\mathcal{E}_{0}(f, g):=\frac{1}{2}(f(0)-f(1))(g(0)-g(1)), \quad \mathcal{E}_{n}(f, g)=\sum_{i=1}^{4} \mathcal{E}_{n-1}\left(f \circ \psi_{i}, g \circ \psi_{i}\right) .
$$

Let $\mathcal{E}(f, f)=\lim _{n \rightarrow \infty} \mathcal{E}_{n}(f, f), \forall f \in \mathcal{F}^{*}:=\left\{f: \cup_{m \geq 0} V_{m} \rightarrow \mathbb{R} \mid \sup _{n} \mathcal{E}_{n}(f, f)<\infty\right\}$.
μ : Hdff meas. on $K, \mu\left(\psi_{w}(K)\right)=4^{-|w|}$. Note μ does NOT satisfy volume doubling.

Theorem 4.1 1) $\exists \iota_{\mu}: \mathcal{F}^{*} \subset L^{2}(K, \mu)$ compact imbedding. Let $\mathcal{F}:=\iota_{\mu}\left(\mathcal{F}^{*}\right)$.
Then $(\mathcal{E}, \mathcal{F})$ is a local reg. Dirichlet form on $L^{2}(K, \mu)$.
2) $\exists p_{t}(\cdot, \cdot)$ jointly cont. heat kernel that enjoys the following estimates:
a) $0<p_{t}(x, y) \leq \frac{c_{1}}{t} \exp \left(-c_{2} \frac{d(x, y)^{2}}{t}\right), p_{t}(x, x) \geq \frac{c_{3}}{\mu\left(B\left(x, c_{4} \sqrt{t}\right)\right)} \forall x, y \in K, \forall t \in(0,1)$,
b) $\quad c_{1} t^{-1}|\log t|^{-a} \leq p_{t}(x, x) \leq c_{2} t^{-1} \quad$ for μ-a.e. $x \in K, \forall t<\exists T(x)$,
c) $\quad c_{1} t^{-1 / 2} \leq p_{t}(0,0) \leq c_{2} t^{-1 / 2} \quad \forall t<1$.

Percolation on K

For $p \in(0,1)$, construct D_{n}^{p} by retaining each edge in E_{n} indep. with prob. p.
From D_{n}^{p}, one can induce percolation on D_{n-1} by regarding that each edge is connected iff it is connected on the n-th level.
\Rightarrow The induced percolation, $D_{n, 1}$ is equal in law to $D_{n-1}^{f(p)}$, where

$$
f(p)=p^{4}+4 p^{3}(1-p)+2 p^{2}(1-p)^{2}=2 p^{2}-p^{4}
$$

f has 3 fixed points in $[0,1] ; 0,1$ (attractive) and $p_{c}=(\sqrt{5}-1) / 2$ (repulsive)
Lemma 4.2 If $p>p_{c}$, then $P\left(0\right.$ and 1 are connected in $\left.D_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
If $p=p_{c}$, then $P\left(0\right.$ and 1 are connected in $\left.D_{n}\right)=p_{c}$ for all $n \geq 0$.
If $p<p_{c}$, then $P\left(0\right.$ and 1 are connected in $\left.D_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Let $\mathcal{C}=\mathcal{C}(\omega)$ be the crit. perco. cluster under $P^{p_{c}}(\cdot \mid\{0\}$ and $\{1\}$ are connected. $\left.)\right)$

Diffusion on the scaling limits of critical percolation clusters in K
$\mathrm{C}_{(1)}$

Let $T:=\cup_{i=1}^{\infty} I^{i} \cup\{\emptyset\}$ and $\mathcal{S}:=\left\{c_{(1)}, c_{(2)}, d\right\}$. (Recall $I=\{1,2,3,4\}$.)
$\Omega:=T \otimes \mathcal{S}$ probability space of labelled trees. So $\omega \in \Omega \Rightarrow \omega=\left\{\left(\mathbf{i}, u_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in T}$.
Define the resistance scale factors by $\rho_{u_{\mathrm{i}}}=1$ if $u_{\mathrm{i}}=c_{(1)}$, and 2 otherwise.
Then $\exists \mu^{\omega}$: Borel meas. naturally defined on $\mathcal{C}(\omega)$ by using $\left\{\rho_{u_{\mathrm{i}}}\right\}_{\mathrm{i}}$.
Recall $\mathcal{E}_{0}(f, g):=\frac{1}{2}(f(0)-f(1))(g(0)-g(1))$. For $\omega=\left\{\left(\mathbf{i}, u_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in T}$, set

$$
\mathcal{E}_{1}^{(\omega)}(f, g)=\sum_{i: u_{i} \in\left\{c_{(1)}, c_{(2)}\right\}} \mathcal{E}_{0}\left(f \circ \psi_{i}, g \circ \psi_{i}\right) \rho_{u_{\emptyset}} .
$$

We now repeat this construction by setting

$$
\mathcal{E}_{n}^{(\omega)}(f, g)=\sum_{i=1}^{4} \mathcal{E}_{n-1}^{\left(\sigma_{i} \omega\right)}\left(f \circ \psi_{i}, g \circ \psi_{i}\right) \rho_{u_{\emptyset}} .
$$

Let

$$
\mathcal{E}^{(\omega)}(f, f)=\lim _{n} \mathcal{E}_{n}^{(\omega)}(f, f), \quad \forall f \in \mathcal{F}^{(\omega)}=\left\{f: \sup _{n} \mathcal{E}^{(\omega)}(f, f)<\infty\right\} .
$$

Theorem 4.3 1) $\left(\mathcal{E}^{(\omega)}, \mathcal{F}^{\omega}\right)$ is a local reg. D-form on $L^{2}\left(\mathcal{C}(\omega), \mu^{\omega}\right) \forall \omega \in \Omega$ s.t.

$$
\mathcal{E}^{(\omega)}(f, g)=\sum_{i=1}^{4} \mathcal{E}^{\left(\sigma_{i} \omega\right)}\left(f \circ \psi_{i}, g \circ \psi_{i}\right) \rho_{u_{\emptyset}} \quad \forall f, g \in \mathcal{F}^{\omega} .
$$

2) For $\mathbb{P}-$ a.s.w, $\exists q_{t}^{\omega}(\cdot, \cdot)$ jointly cont. heat kernel s.t.
a) $c_{1} t^{-\theta /(\theta+1)}|\log \log t|^{-b_{1}} \leq q_{t}^{\omega}(x, x) \leq c_{2} t^{-\theta /(\theta+1)}|\log \log t|^{b_{2}}, \quad \mu$-a.e. $x \in \mathcal{C}(\omega), \quad \forall t<1$,
b)

$$
c_{3} t^{-(\theta-\nu) /(\theta-\nu+1)} \leq q_{t}^{\omega}(0,0) \leq c_{2} t^{-(\theta-\nu) /(\theta-\nu+1)} \quad \forall t<1,
$$

where

$$
\theta=5.2654 \ldots, \nu=1.3384 \ldots ; \quad \frac{\theta}{\theta+1}=0.8404 \ldots, \frac{\theta-\nu}{\theta-\nu+1}=0.7970 \ldots
$$

5 (iii) Random walk trace

Let $\mathcal{G}=\mathcal{G}(\omega)$ be the trace of RW on \mathbb{Z}^{d} starting at 0 .
For each \mathcal{G}, let $\left\{Y_{n}\right\}$ be a simple RW on \mathcal{G} starting at 0 .
Let $d_{\mathcal{G}}(\cdot, \cdot)$ be the graph distance on \mathcal{G}.
Theorem 5.1 (Croydon '09) $d \geq 5$. Let B_{t} be $B M$ and $W_{t}^{(d)}$ be indep. d-dim. BM.
(i) $\exists c_{1}, c_{2}>0$ such that

$$
c_{1} n^{-1 / 2} \leq p_{2 n}^{\omega}(0,0) \leq c_{2} n^{-1 / 2} \quad \text { for large } n, \quad \mathbb{P}-\text { a.s. }
$$

(ii) $\exists \sigma_{1}=\sigma_{1}(d)>0$ such that

$$
\left\{n^{-1 / 2} d_{\mathcal{G}}\left(0, Y_{[t n]}\right)\right\}_{t} \xrightarrow{\text { weak }}\left\{\left|B_{\sigma_{1} t}\right|\right\}_{t}, \quad \mathbb{P}-\text { a.s. }
$$

(iii) $\exists \sigma_{2}=\sigma_{2}(d)>0$ such that

$$
\left\{n^{-1 / 4} Y_{[t n]}\right\}_{t} \xrightarrow{\text { weak }}\left\{W_{\left|B_{\sigma_{2} t}\right|}^{(d)}\right\}_{t}, \quad \mathbb{P}-\text { a.s. }
$$

Theorem 5.2 (Shiraishi '08, '09)
(i) Let $d=4 . \exists c_{1}, c_{2}>0$ and a slowly varying function ψ such that

$$
c_{1} n^{-\frac{1}{2}}(\psi(n))^{\frac{1}{2}} \leq p_{2 n}^{\omega}(0,0) \leq c_{2} n^{-\frac{1}{2}}(\psi(n))^{\frac{1}{2}} \quad \text { for large } n, \quad \mathbb{P}-\text { a.s. }
$$

Further, $\psi(n) \approx(\log n)^{-\frac{1}{2}}$, that is

$$
\lim _{n \rightarrow \infty} \frac{\log \psi(n)}{\log \log n}=-\frac{1}{2}
$$

(ii) Let $d=4$. Then the following holds $\mathbb{P}-$ a.s. ω :

$$
n^{\frac{1}{4}}(\log n)^{\frac{1}{24}-\delta} \leq \max _{1 \leq k \leq n}\left|Y_{k}^{\omega}\right| \leq n^{\frac{1}{4}}(\log n)^{\frac{13}{12}+\delta} \quad \text { for large } n, \quad P_{\omega}^{0}-\text { a.s. }
$$

(iii) Let $d=3 . \exists c_{3}>0$ such that

$$
p_{2 n}^{\omega}(0,0) \leq n^{-\frac{10}{19}}(\log n)^{a} \quad \text { for large } n, \quad \mathbb{P} \text { - a.s. }
$$

Proposition 5.3 (Burdzy-Lawler '90)

$$
\begin{array}{ll}
& E\left[R_{\mathcal{G}}\left(0, S_{n}\right)\right] \sim c n \text { for } d \geq 5 \\
c(\log n)^{-\frac{1}{2}} \lesssim & \frac{1}{n} E\left[R_{\mathcal{G}}\left(0, S_{n}\right)\right] \lesssim c^{\prime}(\log n)^{-\frac{1}{3}} \quad \text { for } d=4 \\
& c n^{\frac{1}{2}} \lesssim E\left[R_{\mathcal{G}}\left(0, S_{n}\right)\right] \lesssim c^{\prime} n^{\frac{5}{6}} \text { for } d=3,
\end{array}
$$

Let L_{n} be the number of cut points (for $S[0, n]$) up to time n.
Also, let A_{n} be the number of points for loop-erased RW (for $S[0, n]$). Then

$$
E\left[L_{n}\right] \leq E\left[R_{\mathcal{G}}\left(0, S_{n}\right)\right] \leq E\left[A_{n}\right]
$$

Proposition 5.4 (Shiraishi '09) For $d=4$,

$$
\frac{1}{n} E\left[R_{\mathcal{G}}\left(0, S_{n}\right)\right] \simeq(\log n)^{-\frac{1}{2}}
$$

\bigcirc Let $\left\{T_{j}\right\}$ be the sequence of cut times up to time n. Then RW trace near $S_{T_{j}}$ and $S_{T_{j+1}}$ intersects typically when $T_{j+1}-T_{j}$ is large, i.e. \exists "long range intersection".

6 (iv) Erdös-Rényi random graph at critical window
$G(n, p)$: Erdös-Rényi random graph I.e. $V_{n}:=\{1,2, \cdots, n\}$ labeled vertices Each $\{i, j\}\left(i, j \in V_{n}\right)$ is connected by a bond with prob. p.
\mathcal{C}_{1}^{n} : largest connected component
Phase transition at $p=1 / n: \quad p \sim c / n$ with $c<1 \Rightarrow \sharp \mathcal{C}_{1}^{n}=O(\log n)$ with $c>1 \Rightarrow \sharp \mathcal{C}_{1}^{n} \asymp n$ with $c=1 \Rightarrow \sharp \mathcal{C}_{1}^{n} \asymp n^{2 / 3}$

Finer scaling (critical window): $\quad p=1 / n+\lambda n^{-4 / 3}$ for fixed $\lambda \in \mathbb{R}$
\Rightarrow One can describe the asymptotics of $n^{-2 / 3} \sharp \mathcal{C}_{1}^{n}$ etc. (Aldous '97)
(Addario-Berry Broutin Goldschmidt '09)

$$
n^{-1 / 3} \mathcal{C}_{1}^{n} \xrightarrow{d} \exists \mathcal{M} \quad \text { (Gromov-Hausdorffsense), }
$$

where \mathcal{C}_{1}^{n} is considered as a rooted metric space.

Here \mathcal{M} can be constructed from a (random) real tree by gluing a (random) finite number of points as in the following figure.

$Y_{m}^{\mathcal{C}_{1}^{n}}$: simple RW on \mathcal{C}_{1}^{n}. Heat kernel estimates on \mathcal{C}_{1}^{n} (on-going work).
Theorem 6.1 (Croydon '09)
$\exists B_{t}^{\mathcal{M}}$: Brownian motion on \mathcal{M} and $\exists p_{t}^{\mathcal{M}}(\cdot, \cdot)$ its heat kernel s.t.

$$
\begin{gathered}
\left\{n^{-1 / 3} Y_{[n t]}^{\mathcal{C}_{1}^{n}}\right\}_{t} \xrightarrow{\text { weak }}\left\{B_{t}^{\mathcal{M}}\right\}_{t}, \quad \mathbb{P}-\text { a.s. } \\
c_{1} t^{-2 / 3}\left(\log t^{-1}\right)^{-c_{2}} \leq p_{t}^{\mathcal{M}}(x, x) \leq c_{3} t^{-2 / 3}\left(\log t^{-1}\right)^{-c_{4}}, \quad \forall x \in \mathcal{M}, t \leq T_{0}
\end{gathered}
$$

(Cf. Tree case: Kesten '86, Barlow-K '06, Croydon '08, Croydon-K '08)

