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Self-interacting random walks:

» A n.n. RW path 1, is a sequence {n;}i* , for which

1 d
ni=mo, . )

» Notation: p"i(y, x) is conditional probability that the walk
steps from 1y =y to x, given the history fj; = (no, ..., Mi).

€ 79 and i1 —ni| = 1 for each i.

n—1

Q(Xn = (x0, %1, ..., Xn)) = H X (X4, Xig1)-
i—0

> Q assumed to be translation invariant w.r.t. starting point.



Self-interacting random walks include:

simple random walk
annealed RWRE

reinforced random walks

vV v v Vv

(annealed) cookie random walks



Properties of interest:

> recurrence/transience

» LLN: existence of v := limh— % Q-as.
_ D
> CLT: X2 = (0, £)
How do these properties change as we vary some parameter(s) of
the model?



The model:

> site-percolation A-cookie environment w € {0, 1}Zd,
i.e. cookies at {x : wy, =1}
» right drift (parameter 3) when eat a cookie, left drift (1)
otherwise
Given w, the ERWD {X;;}n>0 has law Q, defined by
» Qu(Xg=0)=1and

P& (0,11

1+ (Bliwy=1y — W1 — I =17))e1 -m

2d and

pd(Mi, Mit1)

14 (Bhiwn =y Iy — M1 — Loy =iylmigag)er - Migr —mi)
- o .




Annealed ERWD

Annealed measure
Q) = | Qul)de

Under Q, interested in vl (d, B, 1, A) defined by

(1]

- n
v = im 2
n—oo M

v exists Q-a.s. for d > 6, by a theorem of Bolthausen, Sznitman
and Zeitouni (2003).

Under annealed measure: reparameterisation * = A — u(l —A)



Theorem: (H, '09)

vitl(d, B, w,A) is continuous in (B, 1, A) € [0,1]3 when d > 6 and
when d > 12, is strictly increasing:

» in § € [0, 1] for each u, A € (0, 1]
» in A e€[0,1] for each u, B € (0, 1]

(Weaker results for monotonicity in ).

if e.g. L =0, we get monotonicity in 3,A € [0,1] for d > 9.



Excited random walk (A =1, p =0)

» Benjamini and Wilson '03
» Kozma

» Zerner

» Berard and Ramirez

» Basdevant and Singh

» Others

Theorem: (v.d. Hofstad, H.)
For d > 9, v(B) is increasing in € [0, 1].



Strategy

» Speed exists (d > 6) by Bolthausen, Sznitman and Zeitouni
'03

» Show that speed formula (from expansion technique with v.d.
Hofstad) converges

(BruwA—p ¢
ol - BERATH 5™ 3 () Uy x,y)
m=2x,y

> differentiate speed formula, show that “leading” term
dominates



More interesting

Conjecture:

» Foralld>2, (B, A) € 0,13, vl exists and is monotone
increasing in 3 for fixed u, A and decreasing in u for fixed 3, A
respectively.

» For each d > 3 and u € [0, 1] and all A sufficiently large, 3!
Bo(w, d,A) € [0, 1] such that v(d, 1, Bg,A\) = 0. The same is
true if the roles of A and 3 are reversed.

Theorem: (H.) True in high dimensions.



SimulationsA=1,d =2

Sign of velocity of ERW in 2 dimensions
with competing drifts beta and mu
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Simulations A =1, d =3

Sign of velocity of ERW in 3 dimensions
with competing drifts beta and mu
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Strategy for zero-speed result

Show that:
> (d > 2) for each > 0, speed** < 0 if AR is small
» (d >9) for each 1 > 0, speed > 0 if AR is large

Then apply Theorem on continuity and monotonicity of velocity in
high dimensions



Expansion overview
For self-interacting random walks we have

n—1

QXn = (xo,x1, - xn)) = | [ p¥ (¢t xi40).
i=0

With v.d. Hofstad we investigate the two-point function

cn(x) = Q(Xn =x).

> Write
n+1
cnp1(x) =) P°Wlen(x—u)+ ) ) m(yleniiom(x—y).
Y m=2 y

Here 3 cn(x) =1.
» derive bounds on the lace expansion coefficients

» analyse the recursion relation, using the bounds on the lace
expansion coefficients (and induction)



Who cares?
Taking the Fourier transform, get

En1(K) =P°(K)En(k) + ) Am(K)Eni1 m(K),

where . .
(k)= ) e ¥cu(x) = E[e™Xn].
xezZd

Under strong™ assumptions on 7y, can inductively prove

~ _ ik- D S | L1yt
cn(kn 1) _ elk vten(k) 2)6 ikvym _ e sk Zk+en(k).

. Cnlkn

*The good news is that v and X are described in terms of the
expansion coefficients 7.



Theorem: Speed formula

If iMn—oo 2 mon D 5 XThm (X) exists and n™1X;, 2 v, then

v = pro(x) + Z Zx%m(x).

m=2 x



speed formula proof

» Summing recursion over x:

n+1

1=1+ Z Zﬂm(x)

m=2 X
Thus ), m(x) =0.
» Multiply recursion by x =y + (x —y) and sum over x

n+1

Zxcnﬂ Zyp 4D xealX)+ ) Y ymm(y)

m=2 y

n+1

EXni1—Xal =EXd+ D) Y ymm(y)

m=2 y



speed proof cont.

lim EXni1— Xnl =¥

n—oo

then since X, = > 1 _;(X;n — Xim—1), we have also

lim E[n"1X,] =¥.
n—oo

If n=1Xn g v, by bounded convergence we get

lim En"1X,] =v,
m—oo

W
(e}
<
Il
<



Variance formula (symmetric case)

Suppose that E[X;1] = 0 for each n. and for each 1,j € {1,2,...,d},

[+ [j] 00

. EXn Xy [, [j]

Jim —=ESRS =5y, and §2§ y My (y) < oo,
m= y

Then

o
Ty =BG+ Y Y yly il ().
m=2 y



The expansion coefficients.

=2 22 ) L

)N+17
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(n) < ((5 + U)A
ATTS T T en o e
Define
(x,y) Z . Lo, WM )
- ) ))
jeAmn 1O = = b b



Reformulation of speed formula

Since
D i (xy) =0,
yezd
Y vy = ) (y—xX)mm(xy),
yezd x,y€ezd
so that



Does speed formula converge?

» P4 is law of simple symmetric random walk in d dimensions,
Then

iy 2 (k4+1i—1)! .
Gdl(X) :Zmpd(Xk:X), forl} 1.
s K

Note that G*i( ) < oo if and only if d > 2i.
» G4 :=G%(0). Fori>0, let qq = (d—1)/d

&i(d) = q el 1.



Yes, when d > 6
Define

agq = mGd_l.

2a4 <1 when d > 6.

Proposition:

> Y vezd 2 T (6 Y) < (B + pAdEo(d),
» N> 2,

Y)Y Nl < d7Hd—1) T GarEa(d) ((B+wA) a2,
X,yGZd m

Consequences:
> continuity of speed as a function of (A, 3, u) for free. (d > 6)
> d > 9, for any W, speed is positive for AP large enough.

> d > 9, for any 3, 4, speed is negative for A small enough.



bounds in terms of SRW

Lemma: For all u € Z9, fj,n, and i€ Z,,

— (+1)! x (1+1) = (i41)
> T QM (X; =u) <ilgy VG, etc.
j=0 "

Given T, and Zj11, define
A(Z1) = (P™°F (25, 2j41) — PP (2, 2551) ) zgmn,)-
Lemma: For any i,

D G+ 1A(Z1)IQ™(X; =Z) <m(B +pAaa,  etc.

o0
(
j=0 Zj1



Partial derivatives of speed formula




Derivatives of formula components

0 & Al @ fim 1)
aﬁpnm(nm: X) = 2d : (I{X_nm:el} - I{X_nm:_el}) !
0 - (B + Wn, gfm 1)
Mm — Mm&Nm-1
P Mm, x) >d e
0 - My, gin ) — 1
fim — NMm&im-1}
T Mm, x) 2d e
and

% (pﬁm (M, x) = pXnim (ﬂmyx))

A
= 5qmmeAn anneta 1) (lxnm=en) = lxnn=—eu) -

The other terms are similar.



Monotonicity results

» Proceed as before using these slightly different bounds. Get

vl A
5 J A - stuff(d)
ovlll BAn
R < (B W - stuffa)
ovltt! —u—x)
— <
‘ 5 - ‘\stuff(d),

stuff(d) is order d 2
need 2a4 < 1 for “stuff’ to converge
“stuff” involves G%" ; for i =1,2,3, so need d > 8

Then need d large enough to beat constants, e.g.
(B+wAr<2
u derivative not informative when A ~ 1

vV v v VY

v



Non-positive speeds:

Lemma: For each d > 2 and p > 0, the speed™* is negative for
AB sufficiently small.

Corollary: Fix d > 9, and u € [0, 1]. For each A sufficiently large,
can find a Bo(W, d, A) so that the speed is 0. For each d > 12
Bo(w, d,A) is unique. The same is true with the roles of A and 3
reversed.



sketch proof of lemma:

Fixd > 2 and u > 0.
Prove that limsup,,_, n_IX][iH < %E[Xg”], Q-almost surely:

» Explicitly write down
Quw (X1[1+3 - Xn = 3|Xn =Xn)

Qw(xglq 2|X = n)

Qw( n+3 — XTL = 1|Xn = Xn)
also -1,-2,-3 (and 0)
> the first two increase if you switch on a cookie
» so does the sum of all three

> reverse is true for negative terms



sketch proof cont.

» Take expectations w.r.t. QQ, get quantities bounded by
Qx5! =)

» By coupling, X}, is left of walk with environmental
regeneration every 3 steps

> the latter has speed %E[Xgu]

» continuous in (B,A) € [0, 1]2
» < —e(d, u) when A =0.



Other models?

> excitement in two coordinates with (B, 32): monotonicity
of vitl in pl27

once-reinforced random walk on a tree?
variance of a random walk with partial once-reinforcement?

certain models of RWRE in high dimensions

vV v vY

(requires a tremendous advance in our analysis of the
recursion equation)



