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Definition

Definition
Consider an infinite graph G with finite degrees and select a
vertex o as the origin. To each edge of G associate an i.i.d.
Unif[0, 1] edge weight. We may assume that the edge weights
are all distinct. Inductively define a sequence of connected
subgraphs (clusters) as follows: set C0 to be the origin o, and
Ci to be the subgraph obtained by adjoining to Ci−1 the
boundary edge having smallest weight. The invasion
percolation cluster (IPC) is the union C = ∪∞i=0Ci .
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Illustration of invasion percolation
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Figure: Invasion starting from the large dot. Blue: the current invasion
cluster. Green: the boundary of the current cluster
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Relation to ordinary percolation

The edge weights that are less than p form a model of
ordinary p-percolation. We say that a vertex v is
connected to infinity, v

p←→∞, if there exists an infinite
path of edges all having weight at most p.
If the invasion encounters a p-cluster, no edges outside it
will be accepted until the p-cluster has been completely
invaded. In particular, once an infinite p-cluster (p > pc) is
encoutered, no other edges will ever be accepted.
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Relation to ordinary percolation

Definition
Consider a graph G with origin o and uniform i.i.d. edge
weights. The percolation probability at level p, written θ(p), is
the probability that o belongs to an infinite p-cluster (a
connected subgraph of edges whose weights are all < p).
The critical percolation threshold pc is

pc = inf{p : θ(p) > 0}.

J. Goodman Exponential growth of ponds in invasion percolation
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Self-organized criticality

Let ξi denote the weight of the i th invaded edge.

Theorem
(Chayes, Chayes and Newman; Häggström, Peres and
Schonmann) Suppose G is a (quasi-)transitive graph. Then
with probability 1,

lim sup
i→∞

ξi = pc

Notice that invasion percolation finds pc despite not having a
parameter in its definition. This makes it an example of
self-organized criticality.
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Ponds and outlets

Suppose e1 is the highest-weight edge ever invaded, with
weight Q1. We call e1 the first outlet. The edges invaded up to
e1 we call the first pond.
Similarly, the invaded edge after the first outlet having highest
weight is the second outlet, and the edges between them are
called the second pond, and so on.

Qn > pc

Qn+1 < Qn

limn→∞Qn = pc

P(Q1 < p) = θ(p)

J. Goodman Exponential growth of ponds in invasion percolation
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Ponds and outlets

Interpret the edge weights as heights of barriers between
vertices. Pour water into the origin. When enough water has
accumulated, water will flow over the lowest adjacent edge into
a new vertex. When more water has accumulated, water will
again pour over the lowest boundary edge, etc. Run this
process forever.

J. Goodman Exponential growth of ponds in invasion percolation
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Ponds and outlets

Suppose an edge e, with weight p, is first examined while
invading the nth pond. (That is, i is the first step at which e is on
the boundary of Ci−1.) Then we have the following dichotomy:
either

e will be invaded as part of the nth pond (if p ≤ Qn); or
e will never be invaded (if p > Qn)

This implies that the ponds are connected subgraphs and touch
each other only at the outlets. Moreover, the outlets are pivotal
in the sense that any infinite non-intersecting path in C starting
at o must pass through every outlet. Consequently C is
decomposed as an infinite chain of ponds, connected at the
outlets.

J. Goodman Exponential growth of ponds in invasion percolation
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A technical requirement

Is the maximum edge weight actually attained? In other words,
are the outlets actually well defined? The answer is Yes,
provided that

lim supi→∞ ξi = pc (for example if G is transitive); and
θ(pc) = 0, so that Qn > pc a.s.

For example, the one-dimensional case G = Z does not have a
pond and outlet structure.
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Percolation on a regular rooted tree

Henceforth we will work exclusively on a rooted regular tree.
For a rooted binary tree, we have

pc =
1
2
,

θ(p) =

{
2p−1

p2 if p ≥ pc

0 if p ≤ pc

Note particularly that

θ(p) ≈ p − pc

for p slightly above pc .
Since the graph is a tree, there is now a unique path from the
root through all of the outlets, which we call the backbone.

J. Goodman Exponential growth of ponds in invasion percolation
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Notation

Write
Ln for the distance from the (n − 1)st outlet to the nth – i.e.,
the length of backbone in the nth pond;
Rn for the length of the longest upward path in the nth pond;
R′n for the length of the longest upward path in union of the
first n ponds;
Vn for the volume (number of edges) in the nth pond;
L̂n =

∑n
j=1 Lj , V̂n =

∑n
j=1 Vj , the total backbone length and

volume for the first n ponds.

J. Goodman Exponential growth of ponds in invasion percolation
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Pond measurements in terms of the outlet weights

Earlier work (Angel, G., den Hollander, Slade) gave
descriptions of the laws of Ln, Rn and Vn, conditional on the
values of Qn. For instance, conditional on Qn, the Ln are
conditionally independent geometric random variables with
mean ≈ (Qn − pc)

−1. In particular, their fluctuations arise from
fluctuations of Qn, together with additional randomness.
The results for Qn are extended to results for Ln, Rn and Vn
using bounds on this additional randomness.

J. Goodman Exponential growth of ponds in invasion percolation
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Law of large numbers

Theorem
Define the 7-tuples

~Zn = (log(Qn − pc)
−1, log Ln, log L̂n,

log Rn, log R′n,
1
2 log Vn,

1
2 log V̂n)

and
~1 = (1,1,1,1,1,1,1)

Then w.p. 1,

lim
n→∞

1
n

Zn = ~1

J. Goodman Exponential growth of ponds in invasion percolation



Introduction
Main results

Outline of proofs
Comparison with other graphs

Law of large numbers
Central limit theorem
Large deviations
Tail asymptotics

Central limit theorem

Theorem
Let Bt denote a standard Brownian motion. Then, as
processes, (

ZbNtc − Nt · ~1
√

N

)
t≥0

⇒ (Bt · ~1)t≥0

when N →∞.

J. Goodman Exponential growth of ponds in invasion percolation
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Large deviations

Theorem
1
n log(Qn − pc)

−1 satisfies a large deviation principle with rate
function

φ(u) = u − log u − 1.
1
n log Ln, 1

n log Rn and 1
2n log Vn satisfy large deviation principles

with rate function

ψ(u) =

{
φ(u) if u ≥ 1/2
φ(1/2) + (1/2− u) if u ≤ 1/2

ψ(u) arises as the solution of the variational problem

ψ(u) = inf
v>u

[φ(v) + (v − u)]

J. Goodman Exponential growth of ponds in invasion percolation
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Tail asymptotics

Theorem
For n fixed and ε→ 0+, k →∞, σ = the degree,

P (Qn < pc(1 + ε)) ∼ 2σ
σ − 1

ε
(
log ε−1)n−1

(n − 1)!

and

P (Ln > k) ∼ P
(

L̂n > k
)
∼ 2σ
σ − 1

(log k)n−1

k(n − 1)!

P (Rn > k) � P
(
R′n > k

)
� (log k)n−1

k

P (Vn > k) � P
(

V̂n > k
)
� (log k)n−1

√
k
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Tail asymptotics reformulated

These asymptotics can be expressed as

P (Qn < pc(1 + ε)) ∼
(
log ε−1)n−1

(n − 1)!
θ(pc(1 + ε))

P (Ln > k) ∼ P
(

L̂n > k
)
∼ (log k)n−1

(n − 1)!
Ppc (o ↔ ∂B(k))

P (Rn > k) � P
(
R′n > k

)
� (log k)n−1Ppc (o ↔ ∂B(k))

P (Vn > k) � P
(

V̂n > k
)
� (log k)n−1Ppc (|C(o) | > k)
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Markov structure of the outlet weights

In any graph G, conditional on the union of the first n ponds C
and the nth outlet weight Qn, Qn+1 is chosen from the
distribution function θG\C , conditioned to be smaller than Qn.
While this representation is complicated in general, on the tree
the modified graph G\C is equivalent to G itself.
Hence the Markov structure of (Qn)

∞
n=1 is: choose Q1 according

to the distribution function θ(p); then choose subsequent Qn’s
from the same distribution, conditioned to be smaller than the
previous one.

J. Goodman Exponential growth of ponds in invasion percolation
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Reinterpreting the Markov structure

It is convenient to apply θ: then, using the smoothness of θ,
θ(V1) is Uniform[0,1]

conditional on θ(Qn), θ(Qn+1) is Uniform[0, θ(Qn)].
But this is equivalent to taking a product of independent uniform
random variables:
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Law of the sequence θ(Qn)

Theorem
The sequence (θ(Qn))

∞
n=1 has the same law as the sequence

Yn =
n∏

i=1

Ui

where the Ui are independent Uniform[0,1] random variables.
Taking logarithms, the sequence (log θ(Qn)

−1)∞n=1 has the
same law as the sequence

Zn =
n∑

i=1

Ei

where the Ei are independent Exponential(1) random variables.
J. Goodman Exponential growth of ponds in invasion percolation
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Proofs for the outlet weights

The LLN, CLT and LDP results for Qn follow at once from the
representation of log θ(Qn)

−1 as a sum of independent random
variables. The asymptotics for Qn can be computed using the
fact that log θ(Qn)

−1 is Gamma(n,1):

P(θ(Qn) < ε) = P
(

log
(
θ(Qn)

−1
)
> log ε−1

)
=

∫ ∞
log ε−1

xn−1

(n − 1)!
e−xdx

=
ε
(
log ε−1)n

(n − 1)!

∫ ∞
0

(1 + u)n−1e−u log ε−1

∼
ε
(
log ε−1)n−1

(n − 1)!

J. Goodman Exponential growth of ponds in invasion percolation
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Conditional tail bounds

To prove the LLN and CLT results, it suffices to prove bounds of
the form:

P((Qn − pc)
aXn > S) ≤ O(S−β), (S →∞)

P((Qn − pc)
aXn < s) ≤ O(sβ), (s → 0)

and for the tail asymptotics it suffices to prove

P((Qn − pc)
aXn > S|Qn) ≤ O(S−β), (S →∞)

P((Qn − pc)
aXn < s0|Qn) ≥ p0 (for some s0,p0)

for aβ > 1.
These bounds are rather modest, and indeed the stronger
bounds that follow imply the bounds above.
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Conditional tail bounds

The strongest bounds are needed to prove the LDP:

P((Qn − pc)
aXn > S|Qn) ≤ O(exp(−cSβ)), (S →∞)

and
P((Qn − pc)

aXn < s|Qn) � s1/a, (s → 0)

and Ln, Rn and Vn all satisfy these bounds.

J. Goodman Exponential growth of ponds in invasion percolation
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Results in 2 dimensions

In Z 2, it is known from results of van den Berg, Damron, Járai,
Sapozhnikov and Vágvölgyi that

a−n ≤ Qn − pc ≤ b−n,

cn ≤ Rn ≤ dn

as n→∞, and

P(Rn > k) � (log k)n−1Ppc (o ↔ ∂B(k))

just as on the tree. The fact that these same results hold, with
the same correction factor of (log k)n−1, suggests that a more
general phenomenon is at play.
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2 dimensions compared to the tree

The analysis for the tree suggests that the outlet weight Qn
explain the common behaviour in these two very different
graphs. On the tree, the representation of log θ(Qn)

−1 as a
Gamma(n,1) variable explained immediately both the
exponential growth results and the somewhat mysterious
correction factor (log k)n−1. While the exact representation for
Qn cannot be expected to hold in other graphs, it seems a
reasonable heuristic even for more complicated graphs.
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Comparison to percolation with defects

Since invasion percolation mostly accepts sub-critical edges,
occasionally interspersed with super-critical edges, it is
tempting to compare it to percolation with defects. For an
ordinary percolation model, say that o ↔n S if o is connected to
S by a path having at most n closed edges. In 2 dimensions, for
each n,

P(the nth pond intersects ∂B(0, k)) � Ppc (o ↔n−1 ∂B(0, k))

By contrast, on the tree

P(o ↔n ∂B(0, k)) � k−2−n
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Thank you.
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