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The (weakly) SAW is described by the propagator on Zd :

Cn (x)
def
= (2d)�n

X
!:0!x
j!j=n

Y
0�i<j�n

�
1� �1!i=!j

�
; 0 < � � 1:

The lace expansion leads to an equation

Cn = Cn�1 � S + �
nX
k=1

�k � Cn�k; C0 = �0;

S (x) =
1

2d
; jxj = 1:

The (signed) kernels �k are complicated, but there is a further diagrammatic splitting

�k
def
=
X
m�1

�
(m)
k :
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The �(m)k can be estimated in terms of the C 's, e.g.

�
(2)
k (x) � �

X
j1+j2+j3=k

Cj1 (x)Cj2 (x)Cj3 (x) :

By the well known result by Brydges-Spencer, Hara-Slade: Cn=cn satis�es a CLT for
d � 5; where cn def=

P
xCn (x) :

Key idea in the manuscript with Christine Ritzmann: �k have the same leading order
decay as the C 's. So put

Bk
def
= �k=ck

Cn = Cn�1 � S + �
nX
k=1

ckBk � Cn�k:

Consider that as an equation for C = fCng ; C0 = �0; with input fBkg ; and not the
original equation with input f�kg :
Main work: solve this problem properly. This is independent of the SAW.
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The result we have (with Ch. Ritzmann)

Theorem Assume d � 5; and � > 0 small enough. If x and n have the same parity,
then with the proper chosen variance � = � (�) ; and some � > 0����Cn (x)cn

� 2'n� (x)
���� � const��n�(d+1)=2e��jxj2=n + n�d=2n (x)� ;

't (x) = (2�t)
�d=2 exp

"
�jxj

2

2t

#
:

where n satis�es

lim
K!1

sup
n
sup
jxj�K

n (x) = 0;X
x

n (x) � const�n2:

n takes care of the fact that there cannot be a local CLT. This is as close as possible
to a local CLT.



On the contraction method for convolution equations 5

First task: Extract the exponential decay. With bk
def
=
P

xBk (x) :

cn = cn�1 + �
nX
k=1

ckbkcn�k; c0 = 1:

Although, it is not strictly a recursion, it is if � is small enough, and bn ! 0:

Ansatz: cn = �nan; a1
def
= limn!1 an exists, and is 6= 0.

an�
n = an�1�

n�1 + ��n
nX
k=1

akbkan�k

an = an�1�
�1 + �

nX
k=1

akbkan�k

a1 = a1�
�1 + �

1X
k=1

akbka1;

��1 = 1� �
1X
k=1

akbk:
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Plugging that into the original equation:

an = an�1

�
1� �

X1

k=1
akbk

�
+ �

nX
k=1

akbkan�k

= an�1 + �
nX
k=1

akbk (an�k � an�1)� �an�1
1X

k=n+1

akbk:

If the ansatz is OK, then a = fang solves this equation. fang is no longer a recursively
de�ned. Regard it as a �xed point for an operation on sequences x = fxng ; x0 = 1:

� (x)n � � (x)n�1 = �
"

nX
k=1

xkbk (xn�k � xn�1)� xn�1
1X

k=n+1

xkbk

#
:

In an appropriate sequence space with norm

kxk def=
X
k�1

jxk � xk�1j ;
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this is contractive provided X
k

k jbkj <1;

and � is small enough. (This condition re�ects d � 5 for SAW).
This leads to a �xed point

a = lim
n!1

�n (1) ; 1 = (1; 1; 1; : : :) :

It is not necessary to prove that the operation � has a unique �xed point, as any �xed
point de�nes, by going backwards, a sequence fcng which satis�es the original equa-
tion, which has a unique solution. The conclusion is that if

P
k jbkj <1; and � is small

then there exists � such that

lim
n!1

cn�
�n 2 (0;1) :
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Side remark: A puzzling open question is the case of borderline sequences fbkg ;
e.g. bk = k�2; or bk = k�2L (k) ; L slowly varying with

P
k k jbkj =1:

Under which �natural�condition does one have that there is a slowly varying function
L0 (n) such that

lim
n!1

L0 (n) ��ncn 2 (0;1)?

� is well de�ned if only
P

k jbkj <1:
In general, this cannot be true(even for small �).
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Next step: Repeat that line of argument for the sequence of distributions fCng : Put

An
def
= ��nCn

An = �
�1An�1 � S + �

nX
k=1

akBk � An�k:

The �rst idea we had was to de�ne an operation 	 on sequences � = f�ng by

	 (�)n = �
�1	 (�)n�1 � S + �

nX
k=1

akBk � �n�k:

A �xed point has to be � = A: Prove a CLT in the following way:
� Take a norm on sequences such that if

� � �0 <1; then �n; �0n have to be asymp-
totically close, e.g. supn n�

�n � �0nvar :
� Take an appropriate sequence G of which you already know that it is asymptotically
normal (with the proper variance), and prove that kG� 	 (G)k <1:
� Prove that k	 (G)� 	 (G0)k � (1� ") kG�G0k ;
Then you are �nished.
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This however did not quite work. One �rst has to adjust the variance.
It is easy to �nd the correct variance by making the ansatzX

An (x) jxj2 � an�n;

(assuming the Bk invariant under lattice isometries), entering the ansatz into the equa-
tion, and solve for �: We then replaced S by a distribution E which has the correct
variance, write the above equation as

�n = �n�1 � E + �n�1 �
�
��1S � E

�
+ �

nX
k=1

akBk � �n�k;

and de�ne the operation 	 by

	 (�)n = 	 (�)n�1 � E + �n�1 �
�
��1S � E

�
+ �

nX
k=1

akBk � �n�k:
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This worked, but became technically quite heavy. One chooses an appropriate norm
k�k on sequences of distributions, and proves the above scheme with Gn = anE�n: This
leads to a CLT (local or nearly local depending on the norm) under appropriate decay
properties of the B's.
For the application to SAW, one needs a simple bootstrapping argument by estimating
the �'s in terms of the C 's, leading to the �appropriate� decay properties of the B's in
terms of CLT properties of Cn=cn: If � is small enough the circular argument �contracts�.
We took a somewhat complicated norm

k�k = sup
n;x

j�n (x)j
n�(d+1)=2e��jxj

2=n + n�d=2n (x)

which was chosen to make the estimate of the �'s in terms of the C 's easy.
The key technical dif�culty comes from the use of quite heavy (and not totally standard)
Edgeworth type estimates we needed on E�n:
There was another awkward small point: For periodic nearest neighbor S; there is not
possibility to contract the variance by an E: (This was irrelevant for SAW).
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The improvement we now have is based on a very simple observation:
One can of course explicitly solve the equation for 	 (�) by iteration

	 (�)n = �n �
nX
l=1

E�(n�l) �
�
�l � ��1S � �l�1 � �

Xl

m=1
amBm � �l�m

�
; n � 1;

	 (�)0 = �0:

Observe now: Replace E�k by any sequence F = fFkgk�0 of probability distributions
satisfying F0 = �0: Call the operation 	F: This has fAng as its only �xed point with
A0 = �0: In fact,

	F (�) = � =)
nX
l=1

Fn�l �
�
�l � ��1S � �l�1 � �

Xl

m=1
amBm � �l�m

�
= 0; 8n

and by induction

�n = �
�1S � �n�1 + �

Xn

m=1
amBm � �l�m; 8n =) �n = An; 8n:

The whole trick is make a clever choice of fFng.
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Toy problem: Take d = 1; state space R instead of Z: S a distribution with a density,R
xS (dx) = 0;

R
x2S (dx) = 1;

R
jxj3 S (dx) < 1: �n the normal distribution with

variance n: Try to prove with the method that

kS�n � �nkvar = O
�
n�1=2

�
:

(The total variation norm is just for warmup: It is powerless for the SAW).
Operator 	 : F with F0 = �0:

	F (�)n = �n �
nX
l=1

Fn�l � [�l � �l�1 � S]

= Fn � �0 �
n�1X
l=0

(Fn�l � S � Fn�l�1) � �l:

Then every �xed point is S�n:
First trial: Fn

def
= �n; and take the norm k�k

def
= supn

p
n k�nkvar : Then

	� (�)n = �n � n [�n � �n�1 � S] ;
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so

k��	� (�)k <1:

The problem arises when trying to prove contraction: If �0 = 0; k�k <1

k	� (�)nkvar � k�k
n�1X
l=1

k�n�l � S � �n�l�1kvar l
�1=2:

The factor is a const�n�1=2; but in general, one cannot have the constant being < 1:
The way out is to slightly modify the sequence F :

Fn =

��
1� n ^N

N

�
S�n +

n ^N
N

�n

�
:

Then if N is large enough, and kS�n � �nkvar < 1 for large enough n; then one gets the
desired contraction and therefore

kS�n � �nkvar � const�n�1=2:
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This generalizes easily to our type of equations, say in R or Rd

An = �
�1An�1 � S + �

nX
k=1

akBk � An�k;

provided one has suitable decay properties of fBkg : The crucial thing is to simply
expand

('n �B) (x) =
Z
'n (x� y)B (dy) = b�n (x)�

X
i
@i'n (x)

�Z
yiB (dy)

�
+
1

2

X
i;j
@2ij'n (x)

�Z
yiyjB (dy)

�
+ error;

'n the density of �n; and then one relates the derivatives of ' to the time derivative via
the heat equation. This all works also in the the case of asymmetric S;B (on R or Rd).
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There are some technical dif�culties on Z or Zd. The natural choice for the �guiding�
sequence fFng would be a discretization of the normal distribution, like

'̂n (x) =

Z x+1=2

x�1=2
'n (x + y) dy; x 2 Z;

which leads to the problem that '̂n � '̂m is not exactly '̂n+m: What we need in the end
is

k'̂n�1 � '̂m � '̂n � '̂m�1kvar � const�max (n;m)
�3=2 ;

then of course also in more sophisticated norms, which (at least for k�kvar) is �ne in the
symmetric case, but turned out to becomes again messy for the case for the asymmet-
ric case.
The cheap way on the lattice is to take simply the transition kernel of a suitable contin-
uous time random walks on Zd: For instance on Z; we take a nearest neighbor random
walk fXtg with mean �t and variance t whose transition probabilities p (t; x) satisfy

@p (t; x)

@t
=
1

2
[p (t; x + 1) + p (t; x� 1)� 2p (t; x)]� �

2
[p (t; x + 1)� p (t; x� 1)] :
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Then we take Fn (x) = p (�n; �n) with appropriately adapted �; �: This has two advan-
tages:
� Fn � Fm = Fn+m
� Discrete space derivatives can be translated into time derivatives.
We have checked that for d = 1; total variation norm, but not yet for the norms which
are good enough for the SAW, but I cannot see a serious obstacle to handle that.
The problem we are presently working on are SAW with not necessary symmetric one-
step distributions S where also

P
x xS (x)may be 6= 0: Then, depending on �; the SAW

may still have zero drift, or if
P

x xS (x) = 0 the SAW drift may be non-zero. I expect
that there is a d-dimensional manifold in the parameter space (S; �) for which the SAW
has zero drift.
Summarizing:
� The method is all based on direct x-space estimates. No Fourier- or Laplace-
transforms with sometimes cumbersome inversion problems are used.

� There is a lot of �exibility in choosing the �guiding� sequence fFng and the norm on
sequences of distributions which can be adapted to speci�c problems.


