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On the contraction method for convolution equations

The (weakly) SAW is described by the propagator on Z¢ :
Co(@)= 2" Y T (1-AMumw). 0<A<L

w:0—zx 0<i<j<n
w|=n

The lace expansion leads to an equation
Co=Cur xS+ A Y i Cu, Co =y,
k=1

1
S(2) = o ol =1.

The (signed) kernels 11, are complicated, but there is a further diagrammatic splitting

I, o Z ngm).

m>1
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The H( ™) can be estimated in terms of the (s, e.g.

) < A Z () Cj, (z).
NtJjatjs=
By the well known result by Brydges-Spencer, Hara-Slade: C),/c, satisfies a CLT for
d > 5, where ¢, >, Chl(x).
Key idea in the manuscript with Christine Ritzmann: II; have the same leading order
decay as the (’s. So put

def
By, = i /ck

Cn — Cn—l * S + A Z CkBk * Cn—k:-
k=1
Consider that as an equation for C = {C,,} , Cy = dy, with input {B;} , and not the
original equation with input {I1;} .
Main work: solve this problem properly. This is independent of the SAW.
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The result we have (with Ch. Ritzmann)

Theorem Assume d > 5, and A > 0 small enough. If x and n have the same parity,
then with the proper chosen variance § = 6 (\), and some v > 0

C ()

Cn

o 290715 (Qf)

< const X (n_(dJrl)/Qe_”'x'z/” +n 2y (aj)) :

01 (2) = (2mt) P exp [—'%] |

where -y, satisfies

lim sup sup 7, (z) =0,

K—oo p z|>K

Z v, (z) < const xn?.
X

~v,, takes care of the fact that there cannot be a local CLT. This is as close as possible
to a local CLT.
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First task: Extract the exponential decay. With b, & >.. Br(x).

n
Cp = Cp_1+ A g crbrcp—r, co = 1.
k=1

Although, it is not strictly a recursion, it is if A is small enough, and b,, — 0.
def . . .
Ansatz: ¢, = p"a,, a,, = lim, . a, exists, and is # 0.

anp" = ap_1p" L+ A" Z a;.bpa,_ .

k=1
n
1 Z
ap = Ap-1p + A akbkan—k
k=1
o
1
oo = Qoo+ A g b,
k=1

,0_1 = 1- )\Zakbk
k=1
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Plugging that into the original equation:

a, = Qp_1 (1 — A 220:1 akbk) + A Z apbra,_p
k=1

= Qp_1+ A Z apbr (A — Gp_1) — Aap_1 Z a.by.

k=1 k=n-+1

If the ansatz is OK, then a = {a,} solves this equation. {a,} is no longer a recursively
defined. Regard it as a fixed point for an operation on sequences x = {z,}, zo = 1:

gb (X)n _ ¢ (X)n—l = A [Z xkbk (xn—k - xn—l) — Lp—1 Z l'kbkr

k=1 k’zﬂz‘i_l
In an appropriate sequence space with norm

def
Il =k =zl

k>1
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this is contractive provided
k

and X\ is small enough. (This condition reflects d > 5 for SAW).
This leads to a fixed point
a= lim ¢" (1), 1=(1,1,1,...).

It is not necessary to prove that the operation ¢ has a unique fixed point, as any fixed
point defines, by going backwards, a sequence {c,} which satisfies the original equa-
tion, which has a unique solution. The conclusion is thatif > k |b;| < oo, and A is small
then there exists p such that

lim c,p™" € (0,00) .

n—oo
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Side remark: A puzzling open question is the case of borderline sequences {b;} ,
e.g. by =k % orb, =k 2L (k), L slowly varying with >_, & |b;| = oo.

Under which “natural”’condition does one have that there is a slowly varying function
L’ (n) such that

lim L' (n) p~"¢, € (0,00)7

n—00

p is well defined if only >, |b;| < .
In general, this cannot be true(even for small )).
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Next step: Repeat that line of argument for the sequence of distributions {C,,} . Put

A, % pC,

Ap=p  Aprx S+AY apByx Ay,
k=1

The first idea we had was to define an operation ¥ on sequences & = {¢,,} by

V(€)= p (), 1+ SHAD mBit,
k=1
A fixed point has to be & = A. Prove a CLT in the following way:
e Take a norm on sequences such that if ||£ — &'|| < oo, then &,,, £/, have to be asymp-
totically close, e.g. sup, n’ ||¢, — &,|

e Take an appropriate sequence G of which you already know that it is asymptotically
normal (with the proper variance), and prove that |G — ¥ (G)|| < oo.

e Prove that |V (G) -V (G| < (1 —¢) |G - G|,
Then you are finished.
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This however did not quite work. One first has to adjust the variance.
It is easy to find the correct variance by making the ansatz

ZA” (z) |z|° =~ adn,

(assuming the B; invariant under lattice isometries), entering the ansatz into the equa-
tion, and solve for 9. We then replaced S by a distribution £ which has the correct
variance, write the above equation as

fn — gn—l * B+ fn—l * (IO_IS o E) + AZ akBk * gn—kv
k=1

and define the operation ¥ by

(), =0,  *E+& 1% (p'S—E)+A Z ap B * &,y
k=1
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This worked, but became technically quite heavy. One chooses an appropriate norm
|-|| on sequences of distributions, and proves the above scheme with G,, = a, £*". This
leads to a CLT (local or nearly local depending on the norm) under appropriate decay
properties of the B’s.

For the application to SAW, one needs a simple bootstrapping argument by estimating
the II's in terms of the C’s, leading to the “appropriate” decay properties of the B’s in
terms of CLT properties of C,,/c,,. If X is small enough the circular argument “contracts”.
We took a somewhat complicated norm

el = sup £, o)

n.r n_(d"‘l)/QQ_V‘x‘?/” + n_d/2fyn (37)

which was chosen to make the estimate of the II's in terms of the C’s easy.

The key technical difficulty comes from the use of quite heavy (and not totally standard)
Edgeworth type estimates we needed on E*".

There was another awkward small point: For periodic nearest neighbor .S, there is not
possibility to contract the variance by an E. (This was irrelevant for SAW).



On the contraction method for convolution equations 12

The improvement we now have is based on a very simple observation:
One can of course explicitly solve the equation for U (£) by iteration

twen=é¢—§jEW”H1@—p*S*&4—A§jnf%aw%p4,nzl,
=1
N4 (5)0 — 50-

Observe now: Replace E** by any sequence F = {F/‘&}kzo of probability distributions
satisfying F, = dy. Call the operation Vg. This has {A,} as its only fixed point with
A() = (50. In fact,

n z
\IJF <€> — 5 :> Z FfL—l b S [51 — 10_15 S gl—l - )\ Z’]’)’L:l amBm S glm] — 07 Vn
[=1

and by induction

Ea=p 1S xE 1+ AY

The whole trick is make a clever choice of { F, }.

n

1 Ay By x &, Yn=—=¢§& = A,, Vn.

m=
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Toy problem: Take d = 1, state space R instead of Z. S a distribution with a density,
[xS(dx) = 0, [2%S(dzx) = 1, [|z’S(dz) < oo. ¢, the normal distribution with
variance n. Try to prove with the method that

S = Gullue = O (n77).

(The total variation norm is just for warmup: It is powerless for the SAW).
Operator V¥ : F with Fj, = 9.

Ur (§),

En — Z Eoi % [§— &1 % 5]
=1

n—1

= F, &) — Z (Foy— S Ey_y 1) % &,

1=0
Then every fixed point is S*".
First trial: £, & ¢,,, and take the norm ||£|| o sup,, vV 1€ var -

\If¢(¢>n — ¢n_n[¢n_¢n—1 *S]a

Then
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SO

lp—Tg (@) < .

The problem arises when trying to prove contraction: If £, =0, ||£]| < o

n—1
||\:[j¢ <€)nHV&1” S ||£H Z H¢n—l o S * ¢n—l—1||var 1_1/2
[=1

The factor is a const xn~'/2, but in general, one cannot have the constant being < 1.
The way out is to slightly modify the sequence F :

P [(1_n/\N> S*”Jrn/\Nqﬁn].

N N

Then if N is large enough, and ||S*" — ¢,,||... < 1 for large enough n, then one gets the
desired contraction and therefore

1S — ¢, ||.. < const xn /2.

var
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This generalizes easily to our type of equations, say in R or R?

An=p Aprx S+AY ayBix Anp,
k=1

provided one has suitable decay properties of {B;}. The crucial thing is to simply
expand

(6% B) (2) :/son(x— ) B() =05, (0) = 3, e o) | [ B )
Z” 0 (@ [ / yz-ij(dy)] + error,

v, the density of ¢, , and then one relates the derivatives of ¢ to the time derivative via
the heat equation. This all works also in the the case of asymmetric S, B (on R or RY).
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There are some technical difficulties on Z or Z?. The natural choice for the “guiding”
sequence { I, } would be a discretization of the normal distribution, like

r+1/2

sz)n(:c):/ L eule )y a e
x—1/2

which leads to the problem that ¢, * ¢, is not exactly ¢, ,,,. What we need in the end
IS

1Pnt * P — P * Pl < const x max (n, m) "2,

then of course also in more sophisticated norms, which (at least for ||-||...) is fine in the
symmetric case, but turned out to becomes again messy for the case for the asymmet-
ric case.

The cheap way on the lattice is to take simply the transition kernel of a suitable contin-
uous time random walks on Z?. For instance on Z, we take a nearest neighbor random
walk { X;} with mean ut and variance ¢ whose transition probabilities p (¢, z) satisfy

Op (t, )
ot

= b+ 1) +pta—1) = 2p(t2)] - Elp(tx+1) —plt,w 1)),
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Then we take F), (x) = p (dn, un) with appropriately adapted ¢, . This has two advan-
tages:
o F,x Fy = Fn—l—m

e Discrete space derivatives can be translated into time derivatives.

We have checked that for d = 1, total variation norm, but not yet for the norms which

are good enough for the SAW, but | cannot see a serious obstacle to handle that.

The problem we are presently working on are SAW with not necessary symmetric one-

step distributions S where also ) __ xS (x) may be # 0. Then, depending on A\, the SAW

may still have zero drift, or if > xS (z) = 0 the SAW drift may be non-zero. | expect

that there is a d-dimensional manifold in the parameter space (.5, A) for which the SAW

has zero drift.

Summarizing:

e The method is all based on direct x-space estimates. No Fourier- or Laplace-
transforms with sometimes cumbersome inversion problems are used.

e There is a lot of flexibility in choosing the “guiding” sequence { F;,} and the norm on
sequences of distributions which can be adapted to specific problems.



