Domino tilings, lattice paths and plane overpartitions

Sylvie Corteel

LIAFA, CNRS et Université Paris Diderot

Etat de la recherche SMF - October 5th, 2009
Aztec diamond of order n: 4 staircase of height n glued together.
Domino Tilings

Tile the aztec diamond of order n with $n(n + 1)$ dominos.

$2^{\left\lfloor \frac{n+1}{2} \right\rfloor}$ tilings of the aztec diamond of order n (Elkies et al 92)
Flip
Flip
Flip
Flip

[Diagram showing various shapes and arrows indicating the flipping action]
Flip

[Diagram showing various configurations and transformations related to flipping]
Flip

[Diagram of various shapes and transformations]
Flip

Rank: minimal number of flips from the horizontal tiling
Generating function

Tiling T. Number of vertical dominos : $v(T)$. Rank : $r(T)$.

$$A_n(x, q) = \sum_{T \text{ tiling of order } n} x^{v(T)} q^{r(T)} = \prod_{k=0}^{n-1} \left(1 + xq^{2k+1}\right)^{n-k}.$$

(Elkies et al, Stanley, Benchetrit)
Tilings and lattice paths
Tilings and lattice paths
Tilings and lattice paths

Rule
Generating function

• Vertical dominos = North-East and South-East steps
• Rank = height of the paths + constant

Non intersecting paths: Lindström, Gessel-Viennot (70-80s)

\[A_n(x, q) = \text{determinant } ((x, q)\text{-Schröder numbers}) \]

Combinatorics of lattice paths \(\Rightarrow\)

\[A_n(x, q) = (1 + xq)^m A_{n-1}(xq^2, q), \quad A_0(x, q) = 1. \]

\[A_n(x, q) = \prod_{k=0}^{n-1} (1 + xq^{2k+1})^{n-k}. \]
Artic circle

(Johansson 05)
Lattice paths and monotone triangles
Lattice paths and monotone triangles
Lattice paths and monotone triangles
Monotone triangles

Monotone triangles with weights 2 on the non-diagonal rim hooks

```
\begin{array}{cccccc}
\bar{3} & & & & \\
3 & & \bar{4} & & \\
2 & 3 & 5 & & \\
2 & 3 & 4 & 5 & \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
```

Alternating sign matrices with weight 2 on each -1.

```
0 0 1 0 0 \\
0 0 0 1 0 \\
0 1 0 \text{-1} 1 \\
0 0 0 1 0 \\
1 0 0 0 0 \\
```

Domino Tilings and plane overpartitions
Plane overpartitions
Tilings and flips

Flips and lattice steps
Plane overpartitions

An overpartition is a partition where the last occurrence of a part can be overlined.
\((6, 5, 5, 5, 3, 3, 3, 1)\)

A plane overpartition is a two-dimensional array such that each row is an overpartition and each column is a superpartition.

\[
\begin{array}{cccc}
5 & 5 & 5 & 3 \\
5 & 3 & 2 & 2 \\
5 & 3 \\
5
\end{array}
\]

Generating function:
\[
\sum_{\Pi} q^{\left|\Pi\right|} = \prod_{i \geq 1} \left(\frac{1 + q^i}{1 - q^i}\right)^i.
\]
Lattice paths and plane overpartitions

Plane overpartitions of shape λ

$$q^{\sum_i i\lambda_i} \prod_{x \in \lambda} \frac{1 + aq^{c_x}}{1 - q^{h_x}}$$

Krattenthaler (96), $a = -q^n$ Stanley content formula

Reverse plane overpartitions included in the shape λ

$$\prod_{x \in \lambda} \frac{1 + q^{h_x}}{1 - q^{h_x}}$$
Related objects

Plane overpartitions are in bijection with super semi-standard young tableaux.

Representation of Lie Superalgebras
Berele and Remmel (85), Krattenthaler (96)
Related objects

Plane overpartitions are in bijection with diagonally strict partitions where each rim hook counts 2

Vuletic (07), Foda and Wheeler (07, 08)

\[
\begin{array}{cccccccc}
5 & 4 & 3 & 3 & 2 & 2 & 1 & 1 \\
4 & 4 & 3 & 2 & 1 & 1 & \bar{1} & \\
3 & 3 & 2 & 2 & \bar{1} & & & \\
\bar{3} & 2 & 2 & & & & & \\
2 & & & & & & & \\
\end{array}
\quad \leftrightarrow \quad
\begin{array}{cccccccc}
5 & 4 & 3 & 3 & 2 & 2 & 1 & 1 \\
4 & 4 & 3 & 2 & 1 & 1 & 1 & \\
3 & 3 & 2 & 2 & 1 & & & \\
3 & 2 & 2 & & & & & \\
2 & & & & & & & \\
\end{array}
\]
Limit shape

Diagonally strict polane partitions weighted by $2^{k(\Pi)} q^{|\Pi|}$
Ronkin function of the polynomial $P(z, w) = z + w + zw$

Vuletic (07)
RSK type algorithms

Generating function of plane overpartitions with at most \(r \) rows and \(c \) columns

\[
\prod_{i=1}^{r} \prod_{j=1}^{c} \frac{1 + q^{i+j-1}}{1 - q^{i+j-1}}.
\]

Generating function of plane overpartitions with entries at most \(n \)

\[
\prod_{i=1}^{n} \frac{\prod_{j=1}^{n} (1 + aq^{i+j})}{\prod_{j=0}^{i-1} (1 - q^{i+j})(1 - aq^{i+j})}
\]

Generating function of plane overpartitions with at most \(r \) rows and \(c \) columns and entries at most \(n \)? NICE?
Plane partitions

Interlacing sequences

Generating function

\[\sum_{\Pi} q^{\vert\Pi\vert} = \prod_{i=1}^{\infty} \left(\frac{1}{1 - q^i} \right)^i. \]
Plane partitions

Plane partitions ↔ Non intersecting paths

\[
\sum_{\Lambda \in \mathcal{P}(a,b,c)} q^{\lvert \Lambda \rvert} = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{1 - q^{i+j+k-2}}{1 - q^{i+j+k-1}}
\]
Plane overpartitions are not a generalization of plane partitions.

\[
\sum_{|\Pi|} a^{o(\Pi)} q^{|\Pi|} = \prod_{i=1}^{\infty} \frac{(1 + aq^i)^{i-1}}{((1 - q^i)(1 - aq^i))^{[(i+1)/2]}}.
\]
Plane (over)partitions

\[A_\Pi(t) = (1 - t)^{10} (1 - t^2)^2 (1 - t^3) \]

\[
\sum_{\Pi \in \mathcal{P}(r,c)} A_\Pi(t) q^{|\Pi|} = \prod_{i=1}^{r} \prod_{j=1}^{c} \frac{1 - tq^{i+j-1}}{1 - q^{i+j-1}}.
\]

Vuletic (07) + Mac Donald case

\[t = 0: \text{plane partitions, } t = -1: \text{plane overpartitions} \]
Hall-Littlewood functions

Column strict plane partitions ↔ Plane partition

Knuth (70)

\[
\begin{pmatrix}
4444 & 4433 \\
2221 & 3322 \\
111 & 111
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
4444 \\
443 \\
111
\end{pmatrix}
\]

MacDonald (95)

\[
\sum_{\lambda} Q_{\lambda}(x; t) P_{\lambda}(y; t) = \prod_{i,j} \frac{1 - tx_i y_j}{1 - x_i y_j}.
\]

\[
\sum_{\Pi \in \mathcal{P}(r,c)} A_{\Pi}(t) q^{|\Pi|} = \prod_{i=1}^{r} \prod_{j=1}^{c} \frac{1 - tq^{i+j-1}}{1 - q^{i+j-1}}.
\]
Interlacing sequences

\[A = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1) \]

\[T_\Pi = (1 - t)^{19}(1 - t^2)^4(1 - t^3) \]

\[
\sum_\Pi T_\Pi q^{\vert \Pi \vert} = \prod_{i<j} \frac{1 - t q^{j-i}}{1 - q^{j-i}}
\]

\(A[i]=0, \ A[j]=1\)
Skew (or reverse) plane partitions

\[\prod_{i<j} \frac{1 - tq^{j-i}}{1 - q^{j-i}} = \prod_{x \in \lambda} \frac{1 - tq^{h_x}}{1 - q^{h_x}}. \]

\(t = 0 \) Gansner (76), Mac Donald case : Okada (09)
Cylindric partitions of a given profile \((A_1, \ldots, A_T)\)

\[
\prod_{n=1}^{\infty} \frac{1}{1 - q^n T} \prod_{1 \leq i, j \leq T \atop A_i = 1, A_j = 0} \frac{1 - tq^{(i-j)(T)+(n-1)T}}{1 - q^{(i-j)(T)+(n-1)T}}
\]

\(t = 0\) Gessel and Krattenthaler (97), Borodin (03)
More?

- d-complete posets (Conjecture Okada 09)
- Link between cylindric partitions ($t = 0$) and the representation of \hat{sl}_n (Tingley 07)

Thanks