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Abstract

The connections between alternating sign matrices and descending

plane partitions had been pondered upon ever since it was discovered

that they were counted by the same numbers. A more refined con-

jecture proposed by Mills, Robbins and Rumsey in 1983 states that

the number of ASMs with k -1’s is the same as that of descending

plane partitions with k special parts. As a first step towards this un-

derstanding, we exhibit a natural bijection between descending plane

partitions with no special part and permutations.
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Definitions: ASMs

An alternating sign matrix (ASM) is a square matrix whose only

nonzero entries are 1 and -1, in which all row and column sums are

1, and the nonzero entries alternate in sign in every row and column.

The number of alternating sign matrices of size n is given by

D(n) =
n−1∏

k=0

(3k + 1)!

(n + k)!
. (1)

Proved by Zeilberger and then Kuperberg in 1996.

The number of alternating sign matrices counted where the 1 in the

first row occurs at column k is given by

D(n, k) =
(n + k − 2

k − 1

)(2n − k − 1)!

(n − k)!

n−2∏

j=0

(3j + 1)!

(n + j)!
. (2)

Proved by Zeilberger in 1996. Recent proof by Ilse Fischer (2007)

uses more general monotone triangles.
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Descending Plane Partitions

A descending plane partition (DPP) is an array a = (aij) of positive

integers defined for j ≥ i ≥ 1 that is written in the form

a11 a12 · · · · · · · · · · · · a1,µ1

a22 · · · · · · · · · a2,µ2

· · · · · · · · ·
arr · · · ar,µr

(3)

where,

1. µ1 ≥ · · · ≥ µr,

2. ai,j ≥ ai,j+1 and ai,j > ai+1,j whenever both sides are defined,

3. ai,i > µi − i + 1 for i ≤ i ≤ r,

4. ai,i ≤ µi−1 − i + 2 for 1 < i ≤ r.
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A descending plane partition of order n is a descending plane parti-

tion all of whose entries are less than or equal to n.

Example

Here is a DPP of order 25.

12 12 11 9 8 5 1
7 7 6 5 4

5 5 3 3
3 2,

(4)

and here is one more

. (5)

Exercise: Check each axiom!

The number of DPPs is given by D(n) in (1).
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Understudied Objects!
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Timeline

• 1979, George Andrews invents DPPs to prove the so-called Weak

(q = 1) Macdonald conjecture about the number of cyclically

symmetric plane partitions in a cubic box m × m × m.

• 1982, Mills, Robbins and Rumsey prove the general Macdonald

Conjecture.

• 1983, MRR make a number of far-reaching conjectures relating

ASMs and DPPs.

• 1985, Gessel and Viennot publish their landmark paper (which

implicitly contains the bijection in this paper).

• 1986, Robbins and Rumsey define the λ-determinant, which is

one of the motivations for defining ASMs.
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• 2004, P. Lalonde shows that the antiautomorphism of DPPs is

Gessel-Viennot duality for a set of NILPs.

• 2006, C. Krattenthaler exhibits a bijection between DPPs and

rhombus tilings of a hexagon with a triangle removed from the

center.
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Special Parts of a DPP

An entry ai,j of the descending plane partition a is called a special

part if aij ≤ j − i.

Back to the example:

12 12 11 9 8 5 1
7 7 6 5 4

5 5 3 3
3 2

(6)
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Permutations: Ascents

A permutation π of the letters {1, . . . , n} has an ascent at position

k with 1 ≤ k < n, if πk < πk+1.

The number of permutations on n letters with k ascents is the

Eulerian number E(n, k) for n ≥ 0, 0 ≤ k ≤ n − 1. The triangle

begins

1
1 1

1 4 1
1 11 11 1,

(7)

and is given by

E(n, k) = (k + 1)E(n − 1, k) + (n − k)E(n − 1, k − 1), (8)

with the initial condition E(0, k) = 0 if k > 0 and E(0,0) = 1.
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Permutations: Inversions

The inversion number I(π) of a permutation π on n letters is the

number of pairs of elements i, j such that i < j and πi < πj.

Another interpretation of I(π) is the total number of elementary

transpositions required to return π to the completely descending

permutation n(n − 1) . . .21. This is not the usual convention, but

we will use this because we will count ascents.

Yet another interpretation is based on the corresponding matrix Aπ

of the permutation. Then I(π) is the number of 0’s which have a 1

to the right and above,

I(π) =
∑

i<k,j<l

(Aπ)ij(Aπ)kl.

This formula can also be used for ASMs.
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Conjecture 3 of MRR, 1983

Suppose that n, k, m, p are nonnegative integers, 1 < k < n. Let

A(n, k, m, p) be the set of alternating sign matrices such that

(i) the size of the matrix is n × n,

(ii) the 1 in the top row occurs in position k,

(iii) the number of -1’s in the matrix is m,

(iv) the number of inversions in the matrix is p.

On the other hand, let D(n, k, m, p) be the set of descending plane

partitions such that

(I) no parts exceed n,

(II) there are exactly k - 1 parts equal to n,

(III) there are exactly m special parts,

(IV) there are a total of p parts.

Then A(n, k, m, p) and D(n, k, m, p) have the same cardinality.
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The Main Result

There is a natural one-to-one correspondance between descending

plane partitions of order n with k rows and no special part, and

permutations of size n with k ascents.

In this result, k varies from 0 to n−1. The empty DPP, a = φ counts

as a permutation with zero rows, and vacuously, with no special part.

There is also exactly one permutation with zero ascents, namely

π = n(n − 1) · · ·21.

The number of descending plane partitions of order n with k rows

and no special parts is given by the Eulerian number E(n, k).
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Lemma: A single row

There is a natural one-to-one correspondance between descending

plane partitions of order n with one row a = (a1, . . . , am) and per-

mutations βγ of size n with a single ascent.

Essential idea:

Set γ = (a1, a2 − 1, . . . , am − (m − 1)) and β to be the remaining

elements in decreasing order.

1. Part (2) of the Definition ensures that elements of γ are strictly

decreasing,

2. Part (3) of the Definition ensures that a1 > m, which implies

γ 6= (m, m − 1, . . . ,1) and thus β 6= 0 and moreover the last

element of β is smaller than a1.
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What about inversions?

Ideally, we would like the number of inversion I(βγ) = m in keeping

with MRR’s conjecture. However, this does not happen. We do

however, obtain a concrete expression

I(βγ) =
m∑

i=1

ai − m2. (9)

This is because γ1 takes

γ1 − m = a1 − m

steps to reach its original position, γ2 takes

γ2 − (m − 1) = a2 − 1 − (m − 1) = a2 − m

steps and so on.

Good news: I(π) depends on a, and not the order n.
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Properties of the bijection

Assume a has length m. Then

1. γ has length m and β has length n − m,

2. βn−m = 1 occurs if and only if either m = 1 or am > m. Assuming

1 < p < n,

βn−m = p ⇔ ∀i > m − p + 1, ai = m and am−p+1 > m.

3. β1 = n occurs if and only if a1 < n. Assuming 0 < p < m,

β1 = n − p ⇔ ∀i ≤ p, ai = n and ap+1 < n.

Lastly, β1 = n − m if and only if a1 = · · · = am = p.
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Building a k-rowed DPP

1. Any row of a DPP is, by itself, also a valid DPP. Moreover, a

row which is part of a DPP with no special part is also a DPP

with no special part. The latter follows from the shifted position

of successive rows.

2. Removing the last row from a DPP yields another valid DPP.

Obviously, if the original DPP had no special part, neither will

be new one.

Therefore, any k rowed DPP with no special parts can be built from

a (k − 1 rowed DPP and a single rowed DPP) with no special parts

in the obvious way.
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The Extension Lemma

Given a set S of positive integers of cardinality n, there exists a

natural bijection between the DPP a with one row and no special

part whose length m satisfies m < n and a1 ≤ n, and a sequence of

all the elements of S with one ascent.

Essential idea:

Construct the invertible map φ : S → [n], which takes the smallest

element of S to 1, the next to 2, and so on.

Now, the one rowed DPP gives rise to a sequence βγ with one

ascent. Use φ−1 to obtain the image of this sequence.

18



Illustration of the Essential Idea

Consider the DPP of order n = 9 with no special part

7 7 6 5 5
4 4 4

3 2
(10)

Then we start with the permutation 987654321.

77655 → 98|53|76421
444 → 9853|71|642
32 → 985371|4|62

(11)

and we end up with the permutation 985371462, which has exactly

three ascents.
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Proof: DPP → Permutation

Start with a DPP with k rows α(1), . . . , α(k) of length m1, . . . , mk

respectively. We want to construct a permutation with k ascents.

Use induction on k. The case k = 1 is done. We assume that the

first k − 1 rows of a have been used to create a permutation with

k − 1 ascents, which we denote β(1) · · ·β(k).

Let S be the set of integers in β(k) of cardinality mk−1. α(k) is a

DPP with one row of length less that mk−1, no special part whose

first element is less than mk−1.

Therefore, we use the extension lemma and create a sequence with

one ascent from the elements of S, whose decreasing sequences we

call γ(k) and γ(k+1).
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Proof: DPP → Permutation (contd.)

In other words, we start with the permutation

β(1)
︸ ︷︷ ︸

. . . β(k−1)
︸ ︷︷ ︸

β(k)
︸ ︷︷ ︸

,

and end up with

β(1)
︸ ︷︷ ︸

. . . β(k−1)
︸ ︷︷ ︸

γ(k)
︸ ︷︷ ︸

γ(k+1)
︸ ︷︷ ︸

.

Assume the extension lemmas for rows α(k−1) and α(k) utilized maps

φ and φ′ respectively.

Let p be the last entry in β(k−1). We want to show that the first

entry of γ(k) is greater than p. Using the property Lemma on the

row α(k−1), we have that

ak−1,k+mk−1−2 = · · · = ak−1,k+mk−1−φ(p) = mk−1

and

ak−1,k−1 ≥ · · · ≥ ak−1,k+mk−1−φ(p)−1 ≥ mk−1 + 1.
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Proof: DPP → Permutation (contd.)

In “φ(β(k))”, the first mk−1 − (φ(p) − 1) letters of β(k) are greater

than φ(p) and the last p − 1 letters of β(k) are p − 1, . . . ,1.

For it to happen that γ
(k)
1 < p, γ

(k)
1 must be one of the last φ(p)− 1

letters of β(k). This implies that the action of α(k) forces at least all

the first mk−1−(φ(p)−1) letters into γ(k+1), which can only happen

if

ak,k = · · · = ak,k+mk−1−φ(p) = mk−1,

using the property lemma again. But this would imply

ak,k+mk−1−φ(p) = ak−1,k+mk−1−φ(p),

which violates the descent condition in the definition of the DPP.

Note that φ′ did not enter the argument because the last φ(p) − 1

letters are mapped to 1, . . . , φ(p) by φ′ also.
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Proof: Permutation → DPP

We start with the permutation β(1) · · ·β(k+1) with k ascents.

We read the permutation from the right, using the extension lemma

on every successive pair of descending segments β(j)β(j+1) to create

the row α(j) of the DPP.

Conditions (3) and (4) of the definition of the DPP as well as the

“non-speciality” of every element are ensured by the construction.

The only non-trivial item left to check is the strict columnwise de-

scent.
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Proof: Permutation → DPP (contd.)

With the previous notation for the permutation with k ascents, we

denote the lengths of β(k−1), β(k) and β(k+1) being mk−2 − mk−1,

mk−1 − mk and mk respectively so that the last three rows for the

DPP, denoted α(k−2), α(k−1) and α(k) have lengths mk−2, mk−1 and

mk.

We will now show that the ascent condition on the permutation

guarantees columnwise descent on the DPP. Suppose the last entry

of β(k) is given by

β
(k)
mk−1−mk

= p

and the first entry of β(k+1) by

β
(k+1)
1 = r, r > p.
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Proof: Permutation → DPP (contd.)

Further, let the maps used in extension lemma for the rows α(k) and

α(k−1) be denoted by φ and φ′ respectively.

Here is a sketch.

· · · · · · [ β(k−1) ] [ β(k) p] [r β(k+1) ]
︸ ︷︷ ︸

α(k),φ
︸ ︷︷ ︸

α(k−1),φ′
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Proof: Permutation → DPP (contd.)

We now use the property lemma to conclude the following:

• From Part 2,

ak−1,k+mk−1−2 = · · · = ak−1,k+mk−1−φ′(p) = mk−1,

and ak−1,k+mk−1−φ′(p)−1 ≥ mk−1 + 1.

• From Part 3,

ak,k = · · · = ak,k+mk−1−φ(r)−1 = mk−1,

and either mk−1 − mk = r or ak,k+mk−1−φ(r) < mk−1 − 1.
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Proof: Permutation → DPP (contd.)

The ascent of the permutation implies r > p. This in turn implies

φ(r) ≥ φ′(p) because it is possible that there are no elements between

r and p.

A violation of the descent condition of the DPP would entail the

overlapping of the parts of the k−1th and kth rows of a which equal

mk−1. This means

k + mk−1 − φ′(p) ≤ k + mk−1 − φ(r) − 1,

which implies that φ(r) ≤ φ′(p) − 1. But this is a contradiction.

Therefore a permutation with k ascents gives rise to a DPP with k

rows.
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Inversions

The story is easily generalized.

If a permutation π has k ascents, then the inversion number is given

by the corresponding descending plane partition a with k rows of

sizes m1, . . . , mk as

I(π) =
k∑

i=1

mi+i−1
∑

j=i

ai,j −
k∑

i=1

m2
i . (12)

Essential idea:

Each row can only add to the inversion number.

The number of elementary transpositions required to reach the per-

mutation given by the previous row is given by a formular parallel to

that for the single row case.
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Gessel-Viennot’s bijection I: DPP

Every DPP of order n corresponds to set of nonintersecting lattice

paths starting from some {(0, i)} to {(j,0)} using horizontal and

vertical steps where 0 ≤ i, j ≤ n.

The first path starts from (0, n). For every j, there is a horizontal

step at height a1,j until one reaches (k,0) for some k.

The second path starts at (0, k) and proceeds in a similar manner,

and so on.

The last path is a downward path from some (0, l) to the origin.

Thus, we have r + 1 paths where r is the number of rows of a.

29



Example

Look at the horizontal steps to the right of the diagonal.
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Gessel-Viennot’s bijection II: Permutation

Every permutation π of size n corresponds to an inversion table

f : [n] ∪ {0} → N such that f(i) = #{j|1 ≤ j < i, πj < πi}.

Example: π = 3142, f = 0021.

For each permutation, lattice paths start at some (0, i) and end at

(j, j) using horizontal and vertical steps where 0 ≤ i, j ≤ n.

For all i such that f(i) ≥ f(i + 1), a path starts at (0, i) and has a

vertical step at ((k, j − 1), (k, j)) if f(j) = j − k − 1.

The Point: All special parts of a DPP correspond to horizontal

steps to the right of the diagonal.
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Correspondance Example

0

1

2

3

4

1 2 3 4

0

0

2

1

Paths for π = 3142.
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The corresponding DPP is got by looking at the vertical positions

of the horizontal steps and so we get

a =
4 4 3

2.
(13)

From our bijection we get that a corresponds to the permutation

2413,

which is exactly the reverse of the permutation we began with.
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Open Questions

The bijection for arbitrary number of -1’s. We can look at the set

Mk(n) of n × n ASMs with k -1’s which corresponds to DPPs with

k special parts.

It turns out that #Mk(n) has a natural representation as

3k∑

j=0

cj,k
n!

j!

(n

j

)

,

which can be seen by considering ASMs as generalized permutations

in the natural way (ongoing work with F. LeGac and R. Cori).

Possibly a kind of generalized ascent does the job.
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