Scattering Equations Recent Developments and Applications

Ellis Y. Yuan

Perimeter Institute for Theoretical Physics Department of Physics & Astronomy, University of Waterloo

Amplitudes 2014, IPhT/CEA-Saclay

June 11, 2014

Scattering Equations & Structure of Their Solutions

Ι

Definition & Background

Consider scattering of *n* massless particles ({ k_a^{μ} , h_a }, a = 1, ..., n)

$$\sum_{b\neq a} \frac{s_{a,b}}{\sigma_a - \sigma_b} = 0, \quad \forall a.$$

 $s_{a,b} = (k_a + k_b)^2$: Mandelstam variables.

 σ_a : inhomogeneous coordinate of a^{th} marked point on \mathbb{CP}^1 .

Appearance in previous literature,

[Farlie, Roberts '72], [Roberts '72], [Farlie '08]; [Gross, Mende '88];

[Witten '04]; [Makeenko, Olesen '11]; [Cachazo '12]; [Stieberger, Taylor '13].

Importance in the study of scattering amplitudes in *any dimensions* addressed in [Cachazo, He, EYY 2013].

Some Remarks ($\sum_{b \neq a} \frac{s_{a,b}}{\sigma_a - \sigma_b} = 0, \forall a$)

(1) Zero set invariant under $SL(2, \mathbb{C})$ acting on $\{\sigma_a\}$. \mathbb{CP}^1 with *n* marked points as the object of study.

(2) Equivalent statement: vanishing quadratic differential

$$\omega^{\mu}(\sigma)\omega_{\mu}(\sigma) = 0, \qquad \omega^{\mu}(\sigma) = \sum_{a=1}^{n} \frac{k_{a}^{\mu}}{\sigma - \sigma_{a}} d\sigma.$$

(3) n - 3 independent equations.

(4) Solutions of $\{\sigma_a\}$ for generic $\{k_a\}$ localized on isolated points inside $\mathbb{CP}^n/\mathrm{SL}(2,\mathbb{C})$. (n-3)! distinct solutions in total.

(5) Factorization structure ...

Bridge Connecting Two Spaces

space of kinematics configurations $\xrightarrow{\text{scattering equations}} \mathbb{CP}^1$ with marked points

Consider the limit of a singular kinematics configuration

$$(n-3)! \longrightarrow \begin{cases} (n_L+1-3)! \times (n-n_L+1-3)! & \text{singular} \\ (n-3)! - (n_L-2)! \times (n-n_L-2)! & \text{regular} \end{cases}$$

Desired *factorization* structure! (independent of space-time dimensions) Amusing Facts in 4d

$$\omega_{\alpha\dot{\alpha}}(\sigma) = \sum_{a=1}^{n} \frac{k_{a,\alpha\dot{\alpha}}}{\sigma - \sigma_a} \, d\sigma = \frac{P_{\alpha\dot{\alpha}}(\sigma) \, d\sigma}{\prod_a (\sigma - \sigma_a)}.$$

 $P_{\alpha\dot{\alpha}}(\sigma)$ a polynomial of degree n - 2, satisfying

$$P_{1\dot{1}}(\sigma)P_{2\dot{2}}(\sigma) = P_{1\dot{2}}(\sigma)P_{2\dot{1}}(\sigma).$$

Have to choose the position for each factor $(\sigma - \sigma_{root})$. With any given choice of integers d, \tilde{d} with $d + \tilde{d} = n - 2$

$$P_{\alpha\dot{\alpha}} \propto \underbrace{\lambda_{\alpha}(\sigma)}_{\text{deg. } d} \underbrace{\tilde{\lambda}_{\dot{\alpha}}(\sigma)}_{\text{deg. } \tilde{d}},$$

The (n-3)! solutions fall into *different sectors*! (*independent of* any helicity configuration)

Amusing Facts in 4d, Continued

Polynomial maps $\lambda_{\alpha}(\sigma)$, $\tilde{\lambda}_{\dot{\alpha}}(\sigma)$ in previous literature [Witten '03], [Roiban, Spradlin, Volovich '04], [Arkani-Hamed, Cachazo, Cheung, Kaplan '09], [Cachazo, Geyer '12], [Cachazo, Mason, Skinner '12], [Cachazo '13].

For each choice of d (d = 1, ..., n - 3), the number of solutions of $\{\sigma_a\}$ is the Eulerian number $\binom{n-3}{d-1}$ [Spradlin, Volovich '09].

Summation

$$\underbrace{\binom{n-3}{0}}_{\text{"MHV"}} + \underbrace{\binom{n-3}{1}}_{\text{"NMHV"}} + \dots + \underbrace{\binom{n-3}{n-2}}_{\text{"\overline{MHV"}}} = (n-3)!$$

Analytic solutions in 4d further in [Weinzierl '14], [Dolan, Goddard '14].

Similar structure in 3d; deduced from 4d. ... Dimensions higher than 4?

Polynomial Version [Dolan, Goddard '14]

Solutions of scattering equations form the zero set of the ideal spanned by the following polynomials

$$h_m := \sum_{\substack{S \subset \{1,...,n\} \ |S|=m}} k_S^2 \sigma_S = 0, \qquad m = 2, \ldots, n-2,$$

with $k_S^{\mu} = \sum_{b \in S} k_b^{\mu}$, $\sigma_S = \prod_{b \in S} \sigma_b$.

Partially gauge-fixed version, by setting $\sigma_1 = \infty$ and $\sigma_n = 0$,

$$\tilde{h}_m := \sum_{\substack{S \subset \{2, \dots, n-1\} \\ |S|=m}} k_{\{1\} \cup S}^2 \sigma_S = 0, \qquad m = 1, \dots, n-3.$$

An easy derivation is by looking at the coefficients in $\omega^{\mu}(\sigma)\omega_{\mu}(\sigma)$.

Remarks

- (1) Manifestly (n-3)! solutions by Bézout's theorem.
- (2) Every h_m (\tilde{h}_m) is multilinear in each σ_a .
- (3) Easier to obtain solutions (e.g., by elimination theory).

(4) algebra: polynomial rept. of $\mathfrak{sl}(2, \mathbb{C})$ algebra. Scattering equations \iff the unique largest irrept. Other irrepts...

(5) geometry: each irrept. defines a projective variety in \mathbb{CP}^{n-1} (or \mathbb{CP}^{n-3}) (*scattering varieties* [He, Matti, Sun '14]).

More systematic way of studying scattering equations and the structure of their solution space!

Π

Scattering Amplitudes

CHY Formula [Cachazo, He, EYY '13]

Contour integral in moduli space / summation over solutions

$$\int \frac{d^n \sigma_a}{\text{vol.}} \prod' \delta(\sum_{b \neq a} \frac{s_{a,b}}{\sigma_a - \sigma_b}) \mathcal{I}(\{k_a, \epsilon_a\}, \{\sigma_a\}) = \sum_{\substack{(n-3)!\\\text{solns.}}} \frac{\mathcal{I}(\{k_a, \epsilon_a\}, \{\sigma_a\})}{J(\{k_a\}, \{\sigma_a\})}$$

Contour wrapping around all solutions of the equations.

 $\mathcal{I} = C\tilde{C} \ (\phi^3 \text{ with gauge group } U(N) \times U(\tilde{N})),$ or $\mathcal{I} = CE$ (gluon), or $\mathcal{I} = E\tilde{E}$ (graviton).

$$C = \sum_{\alpha \in S_{n-1}} \frac{\operatorname{tr}(T^{a_{\alpha_1}} \cdots T^{a_{\alpha_n}})}{(\sigma_{\alpha_1} - \sigma_{\alpha_2}) \cdots (\sigma_{\alpha_n} - \sigma_{\alpha_1})}, \qquad E = \operatorname{Pf}'\begin{pmatrix} A & -B^T \\ B & D \end{pmatrix}$$
$$A_{a,b} = \begin{cases} \frac{s_{a,b}}{\sigma_a - \sigma_b} & a \neq b \\ 0 & a = b \end{cases}, \quad B_{a,b} = \begin{cases} \frac{2\epsilon_a \cdot k_b}{\sigma_a - \sigma_b} & a \neq b \\ -\sum_{c \neq a} \frac{2\epsilon_a \cdot k_c}{\sigma_a - \sigma_c} & a = b \end{cases}, \quad D_{a,b} = \begin{cases} \frac{2\epsilon_a \cdot c_b}{\sigma_a - \sigma_b} & a \neq b \\ 0 & a = b \end{cases}.$$

Feynman Diagrams from CHY

Consider the limit $k_n^{\mu} \rightarrow 0$. ($\sigma_{a,b} := \sigma_a - \sigma_b$)

$$E_n \longrightarrow \sum_{a=1}^{n-1} \frac{\epsilon_n \cdot k_a}{\sigma_{n,a}} E_{n-1}.$$

Can directly integrate $\{\sigma_1, \ldots, \sigma_{n-1}\}$, like those for M_{m-1}

$$M_n \longrightarrow \sum_{i=1}^{(n-4)!} \oint d\sigma_n \frac{\left(\frac{\epsilon_n \cdot k_1}{\sigma_{n,1}} + \frac{\epsilon_n \cdot k_2}{\sigma_{n,2}} + \dots + \frac{\epsilon_n \cdot k_{n-1}}{\sigma_{n,n-1}}\right)^2}{\frac{s_{n,1}}{\sigma_{n,1}} + \frac{s_{n,2}}{\sigma_{n,2}} + \dots + \frac{s_{n,n-1}}{\sigma_{n,n-1}}} \frac{\left(E_{n-1}^{(i)}\right)^2}{J_{n-1}^{(i)}}.$$

 $\sum_{a} k_{a} = 0 \& \epsilon_{a} \cdot k_{a} = 0 \Longrightarrow$ regular at $\sigma_{n} = \infty$. Contour deformation leads to Weinberg's soft theorem

$$M_n \longrightarrow \sum_{a=1}^{n-1} (\epsilon_n \cdot k_a)^2 \frac{1}{s_{n,a}} M_{n-1}.$$

Connecting Different Theories

Define $V^{(i)}[\alpha] := (\sigma_{\alpha(1),\alpha(2)} \cdots \sigma_{\alpha(n),\alpha(1)})^{-1}|_{\text{soln.}[i]}, (\sigma_{a,b} := \sigma_a - \sigma_b)$

KLT orthogonality [Cachazo, Geyer '12], [Cachazo, He, Yuan '13]

$$\sum_{\substack{\alpha,\beta\in S_{(n-3)}!\\ \alpha',\beta\in S_{(n-3)}!}} V^{(i)}[1,\alpha,n-1,n] \underbrace{\mathcal{S}[\alpha|\beta]}_{\substack{\alpha'\to 0 \text{ limit of KLT momentum kernel}\\ [Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove '10]}^{\alpha'\to 0 \text{ limit of KLT momentum kernel}} \\ \widehat{\mathcal{S}[\alpha|\beta]^{-1}} = \underbrace{\int \frac{d^n \sigma_a}{\text{vol.}} \prod' \delta(\sum_{b\neq a} \frac{s_{a,b}}{\sigma_{a,b}}) V[1,\alpha,n-1,n] V[1,\beta,n,n-1]}_{\substack{\alpha'\to 0 \text{ limit of KLT momentum kernel}\\ \beta \in \mathcal{S}[\alpha|\beta]^{-1}} = \underbrace{\int \frac{d^n \sigma_a}{\text{vol.}} \prod' \delta(\sum_{b\neq a} \frac{s_{a,b}}{\sigma_{a,b}}) V[1,\alpha,n-1,n] V[1,\beta,n,n-1]}_{\substack{\alpha'\to 0 \text{ limit of KLT momentum kernel}\\ \beta \in \mathcal{S}[\alpha|\beta]^{-1}}}$$

double-partial amplitude $m[1,\alpha,n-1,n|1,\beta,n,n-1]$ trivalent tree graphs consistent with both orderings

[Broedel, Schlotterer, Stieberger '13], [Cachazo, He, EYY '13]

Connecting Different Theories, Continued

A natural playground for studying connections between amplitudes in YM and GR!

BCJ relations [Bern, Carrasco, Johansson '08] at the level of residues upon each solution [Cachazo '12], [Cachazo, He, EYY '13], [Litsey, Stankowicz '13].

Lie algebraic structure in kinematics mirroring that of color; kinematic vertices [Monteiro, O'Connell '13] (*Monteiro's talk*).

Other constructions of explicit BCJ numerators [Cachazo, He, EYY '13], [Naculich '14].

Loop Extension

Tree level: Scattering equations $\iff \omega^{\mu}(\sigma)\omega_{\mu}(\sigma) = 0$, where $\omega^{\mu}(\sigma)$ is a meromorphic form on \mathbb{CP}^{1} , and has simple poles only at each marked point σ_{a} with residue k_{a}^{μ} .

Loop Extension

General:

Scattering equations $\iff \omega^{\mu}(\sigma)\omega_{\mu}(\sigma) = 0$,

where $\omega^{\mu}(\sigma)$ is a meromorphic form on Σ_g , and has simple poles only at each marked point σ_a with residue k_a^{μ} .

Loop Extension

General:

Scattering equations $\iff \omega^{\mu}(\sigma)\omega_{\mu}(\sigma) = 0$,

where $\omega^{\mu}(\sigma)$ is a meromorphic form on Σ_g , and has simple poles only at each marked point σ_a with residue k_a^{μ} .

 Σ_g : Riemann surface of genus $g \sim$ Amplitudes at g loops. $g = 0 \implies$ tree level.

 $g \ge 1$:

(1) Solution of ω^μ(σ) not fully determined by external data.
 (2) For the same external states, amplitudes depend on the contents propagating in the loop.

Guidance: Models on the world-sheet.

Loop Extension via Ambi-Twistor String $\omega^{\mu}(\sigma)\omega_{\mu}(\sigma) = 0 \Rightarrow$ complex null geodesics as target space

 \Rightarrow ambi-twistor strings

[Mason, Skinner '13], [Adamo, Casali, Skinner '13]; [Berkovits '13], [Gomez, EYY '13].

Genus $g \Longrightarrow g$ holomorphic 1-forms $\sim g$ loop momenta l_i^{μ}

need to be further integrated potential UV divergence

g loops, *n* particles: $\Sigma_{g,n}$, *n* + 3*g* - 3 scattering equations. $\omega^{\mu}(\sigma)$ determined by $\{k_{a}^{\mu}, l_{i}^{\mu}\}$.

Evidences: modular invariance of 1-loop partition function in the critical dimension; behavior in the non-separating or separating degeneration of $\Sigma_{g,n}$. [Adamo, Casali, Skinner '13]

Connection to the Ordinary Strings

$$\begin{split} A^{\mathrm{YM}}(I) &= \sum_{\alpha,\beta \in S_{n-3}} m[I|1,\alpha,n,n-1]\mathcal{S}[\alpha|\beta] A^{\mathrm{YM}}(1,\beta,n-1,n), \\ A^{\mathrm{String}}(I) &= \sum_{\alpha,\beta \in S_{n-3}} \underbrace{\mathbb{Z}[I|1,\alpha,n,n-1]}_{\mathrm{disk integral}} \mathcal{S}[\alpha|\beta] A^{\mathrm{SYM}}(1,\beta,n-1,n). \end{split}$$

[Mafra, Schlotterer, Stieberger '11], [Broedel, Schlotterer, Stieberger '13]

Infinite tension limit v.s. High energy limit?

[Bandos '14] Moving frame formulation of superstring gives rise to ambi-twistor string in both limits.

[Bjerrum-Bohr, Damgaard, Tourkine, Vanhove '14] Method to derive a model from the ordinary string amplitude, matching both CHY at $\alpha' \rightarrow 0$ and Gross-Mende at $\alpha' \rightarrow \infty$. (*Bjerrum-Bohr's talk*)

Miscellaneous

CHY formula applied in proving the new soft theorems [Cachazo, Strominger '14] at tree level in any dimensions, for the subleading terms. [Schwab, Volovich '14], [Afkhami-Jeddi '14]

Special Kinematics

(1) analytic solution for generic n,

(2) alternative starting point to learn the structure of solutions.

[Cachazo, He, Yuan '13], [Kalousios '14], [Dolan, Goddard '14]

Outlook (not ordered by relative importance)

- Structure of the equations and solutions, in dimensions higher than 4 (especially 6d).
- * Massive extensions for generic spins.
- * Formula in terms of on-shell superspace.
- * Verification of the loop-level extension.
- * Understanding the role of each individual residue.
- * Relation between the two limits of strings?
- ***** Further applications to new soft theorems.

*

Thank you very much! comments and questions are welcome