Form factors in $\mathrm{N}=4$ SYM and their applications

Gang Yang

Humboldt Universität zu Berlin

Amplitudes 2014, a Claude Itzykson memorial conference IPhT, CEA-Saclay, June 10-13, 2014

This talk is based on

1211.7028 and work in Progress with Rutger Boels, Bernd Kniehl, Oleg Tarasov
and work in Progress with Dhritiman Nandan and Matthias Wilhelm

See also other work on form factors in $N=4$ SYM, including those of:
van Neerven, Alday, Maldacena, Zhiboedov, Brandhuber, Spense, Travaglini, GY, Bork, Kazakov, Vartanov, Gurdogan, Mooney, Gehrmann, Henn, Huber, Moch, Naculich; Engelund, Roiban, Young, Gao, Penante, Wen, ...

Outline

- Motivations
- A brief review of form factors
- Sudakov form factor and cusp anomalous dimension
- Observables from form factors
- Outlook

Motivations

On-shell techniques are very efficient
Amplitudes have surprising "hidden" symmetries and structures
(See many other talks in this conference)

How far can one apply them to compute other "off-shell" quantities, such as form factors and correlation functions?

And how are the symmetries and structures generalized there?

Motivations

$$
\int d \mathrm{PS}_{n} \times\left.\left.\right|_{\text {Amplitude }}\right|^{2}
$$

Much less explored area
(See Duhr's talk for some recent developments)

Motivations

Cross sections:

$$
\int d \mathrm{PS}_{n} \times
$$

Phase space integral
Phase space integrand (in D-dimension!) (external legs in D-dimension?)

Regularization is also necessary

Form factors can be a useful testing ground for such studies, while they also relate to interesting observables and quantities.

Outline

Motivations

- A brief review of form factors

Sudakov form factor and cusp anomalous dimension

Observables from form factors

Outlook

Form factors

Hybrids of on-shell states and off-shell operators:

$$
\begin{aligned}
F & =\int d^{4} x e^{i q \cdot x}\langle 0| \mathcal{O}(x)\left|p_{1} p_{2} \cdots p_{n}\right\rangle \\
& =\delta^{4}\left(\sum_{i=1}^{n} p_{i}-q\right)\langle 0| \mathcal{O}(q)\left|p_{1} p_{2} \cdots p_{n}\right\rangle
\end{aligned}
$$

(work in momentum space)

$\left\langle 0 \mid p_{1} p_{2} \cdots p_{n}\right\rangle$

$\langle 0| \mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \ldots \mathcal{O}\left(x_{n}\right)|0\rangle$

Form factors in $N=4$ SYM

Van Neerven 1985
"Infrared Behaviour of On Shell Form Factors in an $N=4$ Supersymmetric Yang-Mills Field Theory"

In 2007, via AdS/CFT a strong coupling picture was proposed by Alday and Maldacena.

Form factors at strong coupling $N=4$ SYM $\stackrel{\text { AdS/CFT }}{\longleftrightarrow}$ Type \|B string theory in $A d S_{5} \times S^{5}$

$z=0$

$z \rightarrow \infty$

T-duality

$$
r=\frac{1}{z}
$$

$r=0$

$r \rightarrow \infty$

Amplitudes \leftrightarrow minimal surface of Light-like Wilson loops

Form factors at strong coupling $N=4$ SYM $\stackrel{\text { AdS/CFT }}{\longleftrightarrow}$ Type $\|$ B string theory in $A d S_{5} \times S^{5}$

T-duality

$$
r=\frac{1}{z}
$$

Form factors as minimal surfaces in one period (Alday and Maldacena)
Y-system formulation (Maldacena and Zhiboedov in AdS3; Gao and GY in AdS5) Indicate hidden structure

Perturbative Form factors

MHV structure of form factors:
(Brandhuber, Spence, Travaglini, and GY)

$$
\begin{array}{r}
F_{n}^{\mathrm{MHV}}\left(1^{+}, . ., i_{\phi}, . ., j_{\phi}, . ., n^{+} ; \operatorname{tr}\left(\phi^{2}\right)\right)=\delta^{4}\left(\sum_{i=1}^{n} p_{i}-q\right) \frac{\langle i j\rangle^{2}}{\langle 12\rangle \cdots\langle n 1\rangle} \\
\mid q=\sum_{i} p_{i}, \quad p_{i}^{2}=0, \quad q^{2} \neq 0
\end{array}
$$

Parke-Taylor formula for amplitudes:

$$
\begin{array}{r}
A_{n}^{\mathrm{MHV}}\left(1^{+}, . ., i^{-}, . ., j^{-}, . ., n^{+}\right)=\delta^{4}\left(\sum_{i=1}^{n} p_{i}\right) \frac{\langle i j\rangle^{4}}{\langle 12\rangle \cdots\langle n 1\rangle} \\
\mid 0=\sum_{i} p_{i}, \quad p_{i}^{2}=0
\end{array}
$$

Perturbative Form factors

Form factor/periodic Wilson line duality at one loop
(Brandhuber, Spence, Travaglini, GY)
BCFW, MHV, unitarity can be efficiently applied, and supersymmetric formulation for stress-tensor supermultiplet.
(Brandhuber, Spence, Gurdogan, Mooney, Travaglini, GY)
(Bork, Kazakov, Vartanov)
Form factors with more general operators. See Penante's talk.
(Engelund, Roiban)
(Brandhuber, Penante, Spence, Travaglini, Wen)

Form factors

Form factors are interesting and useful quantities themselves.

$$
\mathcal{L}_{\text {eff.int. }}=-\frac{\lambda}{4} H \operatorname{tr}\left(F_{\mu \nu} F^{\mu \nu}\right)
$$

effective vertex
(see Duhr's talk)

With Brandhuber and Travaglini, we found that the 2-loop 3-point form factor in $N=4$ SYM matches exactly the leading transcendental part of two-loop Higgs+3-gluon scattering in QCD.
(Brandhuber, Travaglini, GY)
(Gehrmann, Jaquier, Glover, Koukoutsakis)
N=4 SYM
QCD

In this talk we will consider two other applications:

- Sudakov form factor \rightarrow Cusp anomalous dimension

- Cross section of form factors \rightarrow anomalous dimension of operators, and energy-energy correlation function.

Outline

Motivations

A brief review of Form factors

- Sudakov form factor and cusp anomalous dimension

Observables from form factors

Conclusion and outlook

Cusp (soft) anomalous dimension

QCD factorization:

$$
\mathcal{M}_{n}=J\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu), \epsilon\right) \times S\left(k_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu), \epsilon\right) \times h_{n}\left(k_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu), \epsilon\right)
$$

See Gardi's talk
[Mueller; Collins; Sen],
[Korchemsky, Radyushkin],
[Magnea, Sterman,
Tejeda-Yeomans]

Planar structure in N=4 SYM: [Bern, Dixon, Smirnor]

$$
\begin{aligned}
& \mathcal{M}_{n}=\prod_{i=1}^{n}\left[\mathcal{M}^{[g g \rightarrow 1]}\left(\frac{s_{i, i+1}}{\mu^{2}}, \alpha_{s}, \epsilon\right)\right]^{1 / 2} \times h_{n}\left(k_{i}, \mu, \alpha_{s}, \epsilon\right) \quad \text { cusp anomalous dimension } \\
& \text { Sudakov form factor }=\exp \left[-\frac{1}{4} \sum_{l=1}^{\infty} a^{l}\left(\frac{\mu^{2}}{-Q^{2}}\right)^{l \epsilon}\left(\frac{\hat{\gamma}_{K}^{(l)}}{(l \epsilon)^{2}}+\frac{2 \hat{\mathcal{G}}_{0}^{(l)}}{l \epsilon}\right)\right]
\end{aligned}
$$

$N=4$ SYM \rightarrow Leading transcendental part of QCD! (still a conjecture) (Kotikov, Lipatov, Onishchenko, Velizhanin)

Cusp anomalous dimension

For planar $N=4$, it is in principle known to all loop orders via integrability:
(Beisert, Eden, Staudacher)

$$
\Gamma_{\text {cusp }}=2\left(\frac{\lambda}{8 \pi^{2}}\right)-\frac{\pi^{2}}{3}\left(\frac{\lambda}{8 \pi^{2}}\right)^{2}+\frac{11 \pi^{4}}{90}\left(\frac{\lambda}{8 \pi^{2}}\right)^{3}+\left(-2 \zeta_{3}^{2}-\frac{73 \pi^{6}}{1260}\right)\left(\frac{\lambda}{8 \pi^{2}}\right)^{4}+\mathcal{O}\left(\lambda^{5}\right) \quad\left(\lambda=g^{2} N_{c}\right)
$$

[Belitsky,Gorsky,Korchemsky'03], [Kotikov, Lipatov, Onishchenko,Velizhanin'04]
[Bern,Czakon, Dixon,Kosower,Smirnov'06],[Cachazo,Spradlin, Volovich'06]
[Gubser, Klebanov, Polyakov'02], [Frolov, Tseytlin'02], [Kruczenski'02], [Makeenko'02]

On the other hand, much less is known at non-planar order for cusp anomalous dimension, even the leading order result is not known!

Cusp (soft) anomalous dimension

Leading order non-planar starts at four loop, due to the new group factor (quartic Casimir) that appears at this order.

$$
\log \langle W\rangle=g^{2} C_{F} w_{1}+g^{4} C_{F} C_{A} w_{2}+g^{6} C_{F} C_{A}^{2} w_{3}+g^{8}\left[C_{F} C_{A}^{3} w_{4 a}+\frac{d_{F}^{a b c d} d_{A}^{a b c d}}{N_{F}} w_{4 b}\right]
$$

For $S U(N)$ case, this is:

$$
\log \langle W\rangle=\frac{N^{2}-1}{2 N}\left\{g^{2} w_{1}+g^{4} N w_{2}+g^{6} N^{2} w_{3}+g^{8}\left[N^{3}\left(w_{4 a}+\frac{1}{24} w_{4 b}\right)\left(+N \frac{1}{4} w_{4 b}\right]\right\}\right)
$$

An honest calculation would be to compute cusp Wilson line or Sudakov form factors.

Wilson line computation

Web graphs via non-abelian exponential theorem: [Gatheral; Frenkel and Taylor]

See the talks of Gardi and Henn for discussion and many recent developments
three-loop

Three-loop form factor in N=4 SYM

Compact expression via color-kinematic duality:
(Boels, Kniehl, Tarasov, GY)

(b)

(f)

Results via unitarity first obtained by: (Gehrmann, Henn, Huber)

Basis	Numerator factor	Color factor	Symmetry factor
(a)	s_{12}^{2}	$8 N_{c}^{3} \delta^{a_{1} a_{2}}$	2
$(\mathrm{~b})$	s_{12}^{2}	$4 N_{c}^{3} \delta^{a_{1} a_{2}}$	4
(c)	s_{12}^{2}	$4 N_{c}^{3} \delta^{a_{1} a_{2}}$	4
$(\mathrm{~d})$	$\left(p_{2}-p_{1}\right) \cdot \ell-p_{1} \cdot p_{2}$	$2 N_{c}^{3} \delta^{a_{1} a_{2}}$	2
(e)	$-\left(p_{2}-p_{1}\right) \cdot \ell+p_{1} \cdot p_{2}$	$2 N_{c}^{3} \delta^{a_{1} a_{2}}$	1
(f)	$\left(p_{2}-p_{1}\right) \cdot \ell-p_{1} \cdot p_{2}$	0	2

Color kinematic duality

(Bern, Carrasco and Johansson)
Tree level:

$$
\begin{aligned}
& c_{s}=\tilde{f}^{a_{1} a_{2} b} \tilde{f}^{b a_{3} a_{4}}, \quad c_{t}=\tilde{f}^{a_{2} a_{3} b} \tilde{f}^{b a_{4} a_{1}}, \quad c_{u}=\tilde{f}^{a_{1} a_{3} b} \tilde{f}^{b a_{2} a_{4}} \\
& c_{s}=c_{t}+c_{u} \quad \Rightarrow \quad n_{s}=n_{t}+n_{u}
\end{aligned}
$$

Color kinematic duailty

Loop level:
(Bern, Carrasco and Johansson)

Generalization to form factors: (Boels, Kniehl, Tarasov, GY)

(a)

(b)

(c)

$$
n_{(a)}=s_{12}
$$

$$
n_{(b)}=s_{12}
$$

$$
n_{(c)}=0
$$

General strategy
(Bern, Carrasco, Dixon, Johansson, Roiban)

1. Generate all topologies (no-triangle property)
(Boels, Kniehl, Tarasov, GY)
2. Ansatz for master integrals (power-counting requirement), and all other numerators are fixed via color-kinematic duality

$$
N_{d}^{\text {ansatz }}\left(p_{1}, p_{2}, \ell\right)=\alpha_{1} \ell \cdot p_{1}+\alpha_{2} \ell \cdot p_{2}+\alpha_{3} p_{1} \cdot p_{2}
$$

3. Symmetry of the numerator

$$
\left\{p_{1}, p_{2}, \ell\right\} \quad \Longleftrightarrow \quad\left\{p_{2}, p_{1}, q-\ell\right\} \Rightarrow \alpha_{2}=-\alpha_{1}
$$

4. A simple unitarity cut

$$
\begin{gathered}
{\left.\left[N_{d}\left(p_{1}, p_{2}, \ell\right)-\left(\ell-p_{1}\right)^{2}\right]\right|_{\text {maximal cut }}=0} \\
\Rightarrow \alpha_{1}=-1, \quad \alpha_{3}=-1
\end{gathered}
$$

5. Finally, check with all unitarity cuts.

master integral

Three-loop form factor in N=4 SYM

(Boels, Kniehl, Tarasov, GY)

(e)

(f)

Basis	Numerator factor	Color factor	Symmetry factor
(a)	s_{12}^{2}	$8 N_{c}^{3} \delta^{a_{1} a_{2}}$	2
$(\mathrm{~b})$	s_{12}^{2}	$4 N_{c}^{3} \delta^{a_{1} a_{2}}$	4
(c)	s_{12}^{2}	$4 N_{c}^{3} \delta^{a_{1} a_{2}}$	4
(d)	$\left(p_{2}-p_{1}\right) \cdot \ell-p_{1} \cdot p_{2}$	$2 N_{c}^{3} \delta^{a_{1} a_{2}}$	2
(e)	$-\left(p_{2}-p_{1}\right) \cdot \ell+p_{1} \cdot p_{2}$	$2 N_{c}^{3} \delta^{a_{1} a_{2}}$	1
(f)	$\left(p_{2}-p_{1}\right) \cdot \ell-p_{1} \cdot p_{2}$	0	2

Non-planar four-loop form factors

(Boels, Kniehl, Tarasov, GY)
In a similar way, we obtain a compact integrand with at most tensor- 2 numerators:

(25)

(22)

(26)

(23)

(24)
Cles
(27)

(28)

(30)

(31)

(33)

(34)

Integration is very challenging. (work in progress)

(32)

$$
\begin{aligned}
N_{21}= & -\left(\ell_{3} \cdot p_{1}\right)^{2}-\left(\ell_{3} \cdot p_{2}\right)^{2}-6\left(\ell_{3} \cdot p_{1}\right)\left(\ell_{3} \cdot p_{2}\right) \\
& +\left(p_{1} \cdot p_{2}\right)\left[2\left(\ell_{3} \cdot \ell_{3}\right)+4\left(\ell_{3} \cdot p_{1}\right)+p_{1} \cdot p_{2}\right] \\
& +\left(\alpha_{1}+1\right)\left[\left(\ell_{3} \cdot p_{12}-p_{1} \cdot p_{2}\right)^{2}\right. \\
& \left.-\frac{2}{7}\left(\ell_{3} \cdot\left(\ell_{3}-p_{12}\right)+p_{1} \cdot p_{2}\right)\left(p_{1} \cdot p_{2}\right)\right]
\end{aligned}
$$

see the talks of Henn and Smirnov for new ideas

Outline

Motivations

A brief review of form factors

Sudakov form factor and cusp anomalous dimension

- Observables from form factors

Structure of 2pt correlator

Position space:

$$
\begin{aligned}
& \langle 0| \mathcal{T O}(x) \mathcal{O}^{\dagger}(0)|0\rangle=\frac{1}{\left(x^{2}\right)^{\Delta(g)}} \\
& =\frac{1}{\left(x^{2}\right)^{\Delta_{0}}}\left\{1+g^{2} \gamma_{1} \log \left(x^{-2}\right)+g^{4}\left[\gamma_{2} \log \left(x^{-2}\right)+\frac{\gamma_{1}^{2}}{2} \log \left(x^{-4}\right)\right]+\mathcal{O}\left(g^{5}\right)\right\}
\end{aligned}
$$

with the dimension of the operator:

$$
\Delta(g)=\Delta_{0}+\gamma_{1} g^{2}+\gamma_{2} g^{4}+\mathcal{O}\left(g^{5}\right) \quad \Delta_{0}=n(1-\epsilon), \quad n \geq 2
$$

Structure of 2 pt correlator

Momentum space: $\quad \Delta(g)=\Delta_{0}+\gamma_{1} g^{2}+\gamma_{2} g^{4}+\mathcal{O}\left(g^{5}\right) \quad \Delta_{0}=n(1-\epsilon), \quad n \geq 2$

$$
\begin{aligned}
\Pi\left(q^{2}\right) & :=\int d^{D} x e^{i q x}\langle 0| \mathcal{T} \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle \\
\longrightarrow & \int d^{D} x e^{i q \cdot x} \frac{1}{\left(x^{2}\right)^{\Delta}}=4^{D / 2-\Delta} \pi^{D / 2} \frac{\Gamma(1-\Delta) \Gamma\left(\frac{D}{2}-\Delta\right)}{\Gamma\left(2-\frac{D}{2}\right) \Gamma\left(\frac{D}{2}-1\right)} \frac{1}{\left(q^{2}\right)^{D / 2-\Delta}}
\end{aligned}
$$

UV Singularity in epsilon expansion and for small g. (Penati, Santambrogio)

$$
\frac{1}{\epsilon}+\mathcal{O}\left(\epsilon^{0}\right)+\sum_{l} g^{2 l}\left(\frac{\gamma_{l}}{\epsilon^{2}}+\text { singular terms depend on } \gamma_{i<l}+\mathcal{O}\left(\epsilon^{0}\right)\right)
$$

Tree level example

Position space:

$$
\frac{1}{\left(x^{2}\right)^{2-2 \epsilon}}
$$

Momentum space:

$$
\int d^{D} \ell \frac{1}{\ell^{2}(\ell-q)^{2}} \sim \frac{\left(-q^{2}\right)^{-\epsilon}}{\epsilon}
$$

Divergence!

Structure of Rpt correlator

By optical theorem, the cut of two-point correlation function is given as

$$
\begin{aligned}
\operatorname{Im}\left[\Pi\left(q^{2}\right)\right] & =\sigma_{\text {tot }}(q)= \\
\int d_{X} \ell \frac{1}{\ell^{2}(\ell-q)^{2}} \sim \frac{\left(-q^{2}\right)^{-\epsilon}}{\epsilon}= & \left.\frac{1}{\epsilon}-\epsilon \log \left(-q^{2}\right)|\langle 0| \mathcal{O}(0)| X\right\rangle\left.\right|^{2} \\
&
\end{aligned}
$$

The order of divergence is decreased by one.

$$
2 \pi i\left\{1+\mathcal{O}\left(\epsilon^{1}\right)+\sum_{l} g^{2}\left(\frac{\gamma_{l}}{\epsilon}+\text { singular terms depend on } \gamma_{i<l}+\mathcal{O}\left(\epsilon^{0}\right)\right)\right\}
$$

This allows us to extract anomalous dimension via cross section type of computation. For BPS operators, there is no divergence.

Energy-eneray correlators

Observables in $N=4$ SYM:

Energy-energy correlation function is given as the "weighted" cross section with form factors as the building blocks.

Cross sections with form factors

Form factors serve a useful testing ground for such studies, and for also computing interesting observables and quantities.

Summary and outlook

- Four-loop form factor \rightarrow Non-planar cusp anomalous dimension work in progress with Boels, Kniehl, Tarasov
- On-shell techniques for "real" observables and application for anomalous dimensions work in progress with Nandan and Wilhelm
- Techniques for cross sections \rightarrow phase space integration (see Duhr's talk)
- and phase space integrand: \mid Amplitude $\left.\right|^{\wedge} 2$ or $|F F|^{\wedge} 2$ (hidden structure?)
- Cross section picture at strong coupling?

Thank you for your attention!

Phase space Integrands

Original Parke-Taylor paper considered $|A|^{\wedge}$ 2:

$$
\begin{align*}
&\left|\mathcal{M}_{n}(+++++\ldots)\right|^{2}= c_{n}(g, N)\left\{0+O\left(g^{4}\right)\right\} \tag{1}\\
&\left|\mathcal{M}_{n}(-++++\ldots)\right|^{2}= c_{n}(g, N)\left[0+O\left(g^{4}\right)\right\} \tag{2}\\
&\left|\mathcal{M}_{n}(--+++\ldots)\right|^{2}=c_{n}(g, N)\left[(1 \cdot 2)^{4} \sum_{P} \frac{1}{(1 \cdot 2)(2 \cdot 3)(3 \cdot 4) \ldots(n \cdot 1)}\right. \\
&\left.+O\left(N^{-2}\right)+O\left(g^{2}\right)\right] \tag{3}
\end{align*}
$$

Similar result holds for MHIV form factor:

$$
\left|F_{n}^{\mathrm{MHV}}\right|^{2}=q^{4} \sum_{P} \frac{1}{s_{12} s_{23} \ldots s_{n 1}}
$$

Do other non-MHV cases such as \mid NMVH|^2 have simple structure?

