
N = 4 scattering amplitudes and the geometry
of cluster coordinates

Cristian Vergu

ETH Zürich
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Main questions

We want to obtain scattering amplitudes explicitly.
Two related questions:

I What functions?

I Of what arguments?

Two quick (incomplete) answers:

I Transcendental functions

I Cluster coordinates

Not all transcendental functions are good candidates. What is the
right subclass of functions to consider?



Transcendental functions

We’ve learned that a large class of functions appearing in
scattering amplitudes (or Wilson loops and correlation functions)
are transcendental functions. These functions are iterated integrals
of type

Tn(x) =

∫ x

d logR1(t1)

∫ t1

d logR2(t2) · · ·
∫ tn−1

d logRn(tn),

where Rj are rational fractions. The integrals are taken around
some contour in a higher dimensional space.
It is important to stress that, once we choose a way to parametrize
the space (a way to put coordinates x on the manifold containing
the integration path), the symbol describes the transcendental
function modulo branch cuts completely and canonically.



Integration

Now the problem is to compute these integrals (or integrate the
symbol). Given an integrable symbol

Rn ⊗ . . .⊗ R1,

compute the integral

Tn(x) =

∫ x

d logR1(t1)

∫ t1

d logR2(t2) · · ·
∫ tn−1

d logRn(tn).

It’s best to split the problem in simpler problems. We will focus on
the “indecomposable” part, which can not be written as products
of lower transcendentality functions.



Transcendentality two
The symbol of a product of functions is the shuffle product of the
symbols of the terms

S(fg) = S(f )ttS(g),

where

(f1⊗· · ·⊗fn)tt(g1⊗· · ·⊗gm) = f1⊗((f2⊗· · ·⊗fn)tt(g1⊗· · ·⊗gm))+

g1 ⊗ ((f1 ⊗ · · · ⊗ fn)tt(g2 ⊗ · · · ⊗ gm)).

If we work modulo products, i.e. we project out the shuffles, the
most general integrable symbol of transcendentality two is
antisymmetric. It is a theorem that it can always be written as∑

i<j

ai ∧ aj =
∑
i

ci (1− xi ) ∧ xi →
∑
i

ci{xi}2.

The objects {x}2 satisfy the dilogarithm identities. They are
elements of a group called Bloch group B2.



Transcendentality three

Here instead of antisymmetrizing as for transcendentality two, we
apply the following operation

a⊗ b ⊗ c → a ∧ b ⊗ c − a ∧ c ⊗ b − c ∧ a⊗ b + c ∧ b ⊗ a.

If the initial symbol was integrable, then, after this projection the
answer is writable as∑

i

ci (1− xi ) ∧ xi ⊗ xi →
∑
i

ci{xi}3.

The objects {x}3 satisfy the trilogarithm identities. They are
elements of a group called Bloch group B3.
The function whose symbol we study is of type

−
∑
i

ci Li3(xi ) + products.



Transcendentality four

Here we don’t completely understand the class of functions. But
we can project and partially integrate to two kinds of objects

I Objects of type
∑

i<j{xi}2 ∧ {xj}2 ∈ Λ2B2

I Objects of type
∑

ij{yi}3 ⊗ zj ∈ B3 ⊗ C∗

If the Λ2B2 part vanishes, then the answer contains at worst Li4
(Goncharov).
The Λ2B2 and B3 ⊗ C∗ parts satisfy a consistency condition:∑

ij

({xi}2⊗(1−xj)∧xj−{xj}2⊗(1−xi )∧xi+{yi}2⊗yi∧zj) = 0.



Enhanced bootstrap?

A recent line of research [Dixon, Drummond, Duhr, Henn, von
Hippel, Pennington] was to start with a general ansatz for the
symbol and impose various constraints on it: symmetry, parity,
integrability, collinear limits, near collinear limits, Regge limits (see
also [Goddard, Heslop, Khoze]). This turns out to be very
constraining.
At transcendentality four one may instead start with the B3 ⊗ C∗

and Λ2B2 which satisfy the compatibility condition (see [Golden,
Paulos, Spradlin, Volovich]).
At transcendentality six more interesting possibilities appear.
Of course, the product terms have to be dealt with separately.



Six-point kinematics

u1 =
x213x

2
46

x214x
2
36

=
〈1234〉〈4561〉
〈1245〉〈3461〉

, u2 =
x224x

2
15

x225x
2
14

, u3 =
x235x

2
26

x236x
2
25

.

In 2D language we have three cross-ratios:

u1 =
(23)(65)

(25)(63)
, u2 =

(34)(16)

(36)(14)
, u3 =

(45)(21)

(41)(25)
,

where (ij) = zi − zj .
The configuration space is either six points in CP3 or six points in
CP1. The coordinates are of type 〈ijkl〉 or (ij) and are related by

〈ijkl〉 → (mn),

where ijklmn is an even permutation of 123456.



Euclidean region
This is a region where x2ij < 0 (for signature +−−−) and which is
free of branch cuts. Then ui > 0 for i = 1, 2, 3.
We can instead think of the region ui > 0 for i = 1, 2, 3 with no
restriction on signature. If (1− u1 − u2 − u3)

2 − 4u1u2u3 > 0 then
have signature ++−−, if (1− u1 − u2 − u3)

2 − 4u1u2u3 < 0 they
have +−−− signature. When (1− u1 − u2 − u3)

2 − 4u1u2u3 = 0
the kinematics is conformally related to lower-dimensional
kinematics.



Euclidean region in 2D representation
If four points have a real cross-ratio, then they belong on a circle.
Using this we can show that in ++−− signature all six points
belong to the same circle. For Lorentzian signature they belong to
three different circles

(1, 2, 3, 4, 5, 6), (1, 2, 4, 6, 3, 5), (1, 2, 4, 6, 5, 3), (1, 2, 6, 4, 3, 5),

(1, 2, 6, 4, 5, 3), (1, 3, 2, 4, 6, 5), (1, 3, 2, 6, 4, 5), (1, 3, 4, 2, 6, 5), · · ·
The arrangement of points on a circle has an interpretation in
mathematics as a positive region in CP1, but the Lorentzian region
with its three circles doesn’t!



Collinear limits
In terms of cross-ratios the collinear limits are given by u3 = 0 and
u1 + u2 = 1 and cyclic permutations. In the 2D language the
collinear limits are z2 → z3 together with z5 → z6 and cyclic
permutations. After the limit we are left with four points on a
circle so the collinear limit is parametrized by their (real)
cross-ratio.

Figure: A way to approach the collinear limit from Lorentzian signature.



Cross-ratios . . .
If we have a number of (ordered) points in two dimensions we can
present the cross-ratios they form in a graphical form. We form a
convex polygon whose vertices are the initial points. Then to each
diagonal in a triangulation we associate a cross-ratio.

Figure: To the diagonal E we associate the cross-ratio

r(3, 5, 1, 2) = r(1, 2, 3, 5) = (12)(35)
(23)(15) . Reading in opposite order to obtain

the inverse.



. . . and mutations
For each triangulation we have three diagonals and therefore three
cross-ratios. These cross-ratios are independent and can be used to
describe the kinematics up to conformal transformations.
Flipping a diagonal in one of the quadrilaterals transforms one
triangulation to another and also one set of cross-ratios to another.
This is a mutation.

Figure: Mutations for five points. The red diagonal gets flipped.



Cluster algebras of geometric type

We start with a quiver (oriented graph). To each vertex i we
associate cluster A coordinates xi . We also define a
skew-symmetric matrix

bij = (#arrows i → j)− (#arrows j → i).

Since only one of the terms above is nonvanishing, bij = −bji .
A mutation at vertex k is obtained by applying the following
operations on the initial quiver:

I for each path i → k → j we add an arrow i → j

I reverse all the arrows on the edges incident with k

I remove all the two-cycles that may have formed.

It is an involution; when applied twice in succession we obtain the
initial cluster.



Mutation of cluster A coordinates

The mutation at k changes ak to a′k defined by

aka
′
k =

∏
i |bik>0

abiki +
∏

i |bik<0

a−bik
i ,

and leaves the other cluster variables unchanged. (An empty
product is set to one.)
Example: the A2 cluster algebra can be expressed by a quiver
a1 → a2. Then, a mutation at a1 replaces it by a′1 =

1+a2
a1

≡ a3
and reverses the arrow. A mutation at a2 replaces it by
a′2 =

1+a1
a2

≡ a5 and reverses the arrow.



Grassmannian cluster algebras
According to [Gekhtman, Shapiro, Vainshtein], the initial quiver for
the Gk(n) cluster algebra is given by1

f1l · · · f13 f12 f11

f2l · · · f23 f22 f21

...
...

...
...

...

fkl · · · fk3 fk2 fk1

//

��

__?????

// //

��

__?????

//

��

__????

//

��

// //

��
__??????

//

��
__??????

�� ��

__?????
__????? ��

where

fij =

{ 〈i+1,...,k,k+j ,...,i+j+k−1〉
〈1,...,k〉 , i ≤ l − j + 1,

〈1,...,i+j−l−1,i+1,...,k,k+j ,...,n〉
〈1,...,k〉 , i > l − j + 1

.

1Here we are presented a flipped version of the quiver and with the arrows
reversed with respect to the quivers of that ref.



Examples of mutations



X coordinates

x2 →
1

x1x2x4x5x6x7x9
×

(((((x1x3x4x5x6 + x21 x4x
2
6 )x8 + x1x2x

2
4 x6x9)x10)x14+

(x1x2x4x5x9x10x12+((x1x3x4x
2
5+x21 x4x5x6)x10)x13)x15)x16+

((x2x3x4x5x6x7x8 + (((x3x
2
5 x6 + x1x5x

2
6 )x7)x8+

(x1x3x5x6 + x21 x
2
6 )x

2
8 + x1x2x4x6x8x9)x10)x14+

((x22 x4x5x7x9 + ((x2x
2
5 x7 + x1x2x5x8)x9)x10)x12+

(x2x3x4x
2
5 x7 + ((x3x

3
5 + x1x

2
5 x6)x7+

(x1x3x
2
5 + x21 x5x6)x8)x10)x13)x15)x17)



Poisson brackets

The cluster algebra has a Poisson bracket which can be quite
useful.
If two cluster X coordinates xi and xj are in the same cluster and
are linked by an arrow i → j , then their Poisson bracket is
{xi , xj} = xixj . If they are not connected, then {xi , xj} = 0. One
can show that the Poisson bracket is compatible with mutations.
In general the Poisson bracket of two cross-ratios is complicated;
only when they belong to the same cluster we can compute it
easily. But given two cross-ratios, it can be hard to find a cluster
which contains both of them (especially if the cluster algebra is of
infinite type).



Sklyanin brackets

If we arrange the n momentum twistors in a 4× n matrix and if
the first four of them are linearly independent, then we can go to
frame where this matrix reads(

14 yij
)
,

where the y matrix is 4× (n − 4)-dimensional. All the
four-brackets can be written in terms of yij .
We define

{yij , yab} = (sgn(a− i)− sgn(b − j))yibyaj ,

{f (y), g(y)} =
∂f

∂yij
{yij , yab}

∂g

∂yab
.



A Li3 identity . . .

We have found the first 40-term trilogarithm identity of cluster
type:{

−〈125〉〈134〉
〈123〉〈145〉

}
3

+

{
−〈126〉〈145〉
〈124〉〈156〉

}
3

+

{
−〈126〉〈145〉〈234〉
〈123〉〈146〉〈245〉

}
3

+

1

3

{
−〈136〉〈145〉〈235〉
〈123〉〈156〉〈345〉

}
3

+ cyclic− anticyclic = 0.

It is possible to associate {x}3 → function(x) such that the
identity is satisfied. Mathematicians use

L3(z) := <
(
Li3(z)− Li2(z) log |z | −

1

3
log2 |z | log(1− z)

)
, z ∈ C,

which satisfy “clean” functional equations. However, these
functions are only real analytic, not complex analytic. We can find
functions which are complex analytic instead.



. . . and its Poisson portrait

Figure: The oriented graph encoding the Poisson brackets of the 40
arguments of the Li3 identity. There is an arrow between vertices i and j
if the {logXi , logXj} = 1.



Some explicit results
We will use the notation

〈ij |klmn〉 ≡ 〈ijkl〉〈ijmn〉
〈ijlm〉〈ijnk〉

.

At six-point NMHV [Dixon, Drummond, Henn] found a way to
express the two-loop answer in terms of two functions Ω2 and Ω̃2.

Ω̃2|Λ2B2
= −{〈36|1254〉}2∧{〈34|1652〉}2−{〈36|1254〉}2∧{〈16|2543〉}2

− {〈14|2365〉}2 ∧ {〈34|1652〉}2 − {〈14|2365〉}2 ∧ {〈16|2543〉}2
+ {〈25|1634〉}2 ∧ {〈56|1432〉}2 + {〈25|1634〉}2 ∧ {〈23|1456〉}2
+ {〈25|1634〉}2 ∧ {〈12|3654〉}2 + {〈25|1634〉}2 ∧ {〈45|1236〉}2.

Ω̃2|Λ2B2
= {〈36|1254〉}2∧{〈34|1652〉}2+{〈14|2365〉}2∧{〈16|2543〉}2

− {〈25|1634〉}2 ∧ {〈45|1236〉}2 − {〈25|1634〉}2 ∧ {〈56|1432〉}2.



More on Ω and Ω̃

These functions are the first examples of functions with both Λ2B2

and B3 ⊗ C∗ expressible in terms of simple cross-ratios.
There is a construction [Goncharov] of a B3 ⊗ C∗ from a given
Λ2B2 but it doesn’t lead to simple cross-ratios in B3. Therefore,
this example is significant mathematically.
We also have

Ω2+Ω̃2+?Ω̃2 = 4Li4(〈12|3456〉)−Li4(〈14|2356〉)−2 Li4(〈14|2536〉)+
2 Li4(〈14|2563〉) + 4 Li4(〈16|2345〉)− 4 Li4(〈23|1456〉)−
2 Li4(〈25|1346〉)− 2 Li4(〈25|1364〉) + 2 Li4(〈25|1436〉)+
4 Li4(〈34|1256〉)− Li4(〈36|1245〉)− 2 Li4(〈36|1254〉)−

2 Li4(〈36|1425〉)−4 Li4(〈45|1236〉)+4 Li4(〈56|1234〉)+products,

where ? is the parity conjugation.



Some three-loop answers

At three loops (transcendentality six) MHV we have several partial
integrations we can compute: B2 ∧ (B2 ∧ B2), B3 ∧ B3,
(B3 ⊗ C∗)⊗ B2. We use the symbol found by [Dixon, Drummond,
Henn].
• B2 ∧ (B2 ∧ B2) = B2 ⊗ (B2 ∧ B2)− (B2 ∧ B2)⊗ B2. Surprisingly,
the (B2 ∧ B2)⊗ B2 part vanishes. The full answer is very simple{
(23)(56)

(25)(36)

}
2

∧
({

(23)(56)

(25)(36)

}
2

∧
{
−(12)(36)

(16)(23)

}
2

)
+dihedral permutations.



Some three-loop answers
• The B3 ∧ B3 part is

−2

3
(4α2 − 1) {r(1432)}3∧{r(1452)}3+

1

24
(5− 32α2) {r(1432)}3∧{r(1634)}3+

1

48
(7− 32α2) {r(1432)}3∧{r(2635)}3+

1

16
(7− 32α2) {r(1432)}3∧{r(2653)}3−

1

48
(−24α1 − 64α2 + 9) {r(1452)}3∧{r(1524)}3+

1

24
(32α2 − 7) {r(1524)}3∧{r(1632)}3+

1

96
(−24α1 − 64α2 + 9) {r(1634)}3∧{r(1643)}3+

1

6
{r(1423)}3∧{r(1452)}3−

1

6
{r(1423)}3∧{r(1524)}3+

1

12
{r(1423)}3∧{r(1634)}3+

1

12
{r(1432)}3∧{r(1524)}3−

1

4
{r(1452)}3 ∧ {r(1532)}3 −

1

12
{r(1623)}3 ∧ {r(1634)}3+

1

24
{r(1623)}3 ∧ {r(1643)}3 + dihedral permutations,

where α1 and α2 are the constants which have been fixed later
[Caron-Huot, He] α1 = −3

8 , α2 =
7
32 .



Conclusions

I The notion of symbol of a transcendental function is useful in
understanding and simplifying scattering amplitudes.

I Cluster coordinates seem to play an important role, but the
interplay with supersymmetry is not completely understood.

I Transcendentality four functions are poorly understood
mathematically, but explicit answers arising in physics can
help to build and guide mathematical intuition.

I Beyond MHV, not all the cross-ratios are X coordinates of the
same cluster algebra. SUSY generalization of the cluster
algebras?



Thank you!


