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1. The tropical limit of string theory = α′ → 0 limit for higher genus
amplitudes

2. Connection with the UV behavior of half-maximal supergravity
theories



Motivation
Conceptually we want to understand better the α′ → 0 limit of string
theory amplitudes; access to both string & field theory.
Technically, we want to be able to extract as much physics as possible
from a closed string theory scattering amplitude in the limit α′ → 0:

I Field theory amplitudes (= graph topologies or integrands),

I Ultraviolet divergences, ...

Technical advantages of string amplitudes

I Compact expressions due to conformal field theory techniques

I Superior organization of the amplitude

I Naturally supersymmetric

Drawbacks

I Severe difficulties to compute explicitly higher genus
amplitudes

However there are on the market some g = 2, 3 amplitudes (see [Mafra’s

talk]) of which very little was known about the field theory limit.



The domain of application: g ≥ 2

The mechanisms by which Feynman graphs are expected to be recovered
from string theory amplitudes are not mysterious. In particular at
one-loop, everything is well understood.

However for genus ≥ 2 a lot of technology is missing and we want to
develop it using tropical geometry.

Applications (d = 10):

I Two and three loops in N = 8 supergravity.

I Exact integrands at two-loop in Heterotic string models giving
N = 4 supergravity;

Tropical geometry also proposes a framework to think globally about the
field theory limit of string theory amplitudes.



Digressive foreword: Target Space tropicalization

[Aharony, Hanany, Kol ’97 Webs of (p,q) Five-Branes]: one of the first use of
tropicalization techniques (prior to standard math. papers).

−→ Brane configurations described by tropical curves in
decompactification limit from 4d to 5d : (p,q) Webs.

M-theory / complex 2-torus τM is dual to Type IIB / circle LB

LB ∼ (Im τM)−1

Target space tropicalization in this case = decouple the Kaluza-Klein
modes of the M-theory extra dimension.



Point-like limit of string theory amplitudes

The outcome of the point-like limiting procedure can be written as:

lim
α′→0

∫
Mg,n

F (α′)
g ,n =

∫
Mtrop

g,n

F trop
g ,n



Tropical Geometry

M trop
g ,n is the moduli space of tropical graphs.
 metric graphs with weighted vertices

1

2

3

4

Genus of a graph = (# of loops) + (
∑

weights)



Examples of Tropical Moduli Spaces: M trop
0,n

Tropical moduli space of genus zero graphs

I M trop
0,3 is just a one-point set.

I M trop
0,4 has more structure:
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I M trop
0,5 is even richer.



Tropical Moduli Space M trop
g ,n [Caporaso et al., Brannetti et al.]

Physically:

M trop
g ,n = {Schwinger proper times graphs + counterterms vertices}.



Point-like limit in string theory: α′ → 0
Genus one bosonic string partition function:

Z (τ1, τ2) = Tr
(

qL0−1/24q̄L̄0−1/24
)
, q = exp(2iπτ), τ = τ1 + iτ2

For strings absolute values are proper times while phases enforce the
level-matching. Two different kind of regions when α′ → 0:

τ2 → ∞: massive states are projected out and the level matching condition
is trivial ⇒ edges of worldline graphs;

τ2 ∼ O(1): massive states do not decouple ⇒ counterterms;

L

fundamental domain

[Green Vanhove 1999]

This splitting was first used in

cut-off:

counterterms

“ Tropical geometry is a way to forget the phases of complex num-
bers”, [Itenberg, Mikhalkin ’11]
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2
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The α′ → 0 limit of string theory amplitudes [PT ’13]

Point-like limit: lim
α′→0

∫
Mg,n

Fg ,n
(α′)

Mg,n: Moduli space of Riemann sur-
faces of genus g with n punctures.

2

(i)

(ii)

Mg,n =
⋃
G

DG

(i) prop. of massive/massles states

(ii)
∫

phases = level-matching

In each DG , the integral descends to
the tropical graph (=Schwinger proper-
time form) of the Feynmann graph G

(i) get a particular Fourier-Jacobi
q-expansion to perform,

(ii) extract the residues.

In type II amplitudes with maximal
supersymmetry, no need to extract
residues. Use simple tools; tropical
one-forms and tropical period matrices.
Final result :

lim
α′→0

∫
Mg,n

Fg,n =
∑

G

∫
Mtrop(G) F

trop
g,n (G)

=

∫
M

trop
g,n

F trop
g,n

−→ field theory amplitude renormalized
by string theory
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Results

Successfully applied to [PT ’13 and unpublished];

X Derived the form of the field theory limit for the four-graviton type II
amplitude from [D’Hoker & Phong]’s written by [Green, J.Russo,

Vanhove (’08)] from the original computation of [Bern et al. ’98]

X Showed that the genus three amplitude of [Gomez and Mafra ’13]

reproduces the set of 12 graph topologies found by Bern et al.
→ Need now to get the actual form of the integrand, no more
technical tools needed there.

Next we discuss a more general example of field theory limit, at 2 loops
in heterotic string. Step (i) alone gives already interesting results.
For further developments (step (ii))

→ Compute the Fourier-Jacobi expansion of the 〈X (z)X (0)〉 propagator

→ understand better in particular tropical theta functions with
characteristics. Define a “tropical prime form” ?

[work in progress]



Restrictions

Schwinger proper time rep’s exist anyway, the question is rather to know
if one should expect some more technical/conceptual understanding to
take this limit.

Genus g ≤ 4 facilitates an explicit parametrization of the decomposition
Mg ,n =

⋃
G DG which is done in terms of period matrices (for g ≥ 5

one faces Schottky problem)

One should start with actual string amplitudes; but there are either
unsolved issues or frightening ones;

I In RNS Witten’s supermoduli space non-projectedness for g ≥ 5

I In Pure Spinors the λ-ghost regulator “everybody is afraid of
[Mafra’s talk]” for g ≥ 5



Connection with an analysis on the UV behavior of
N=4 supergravity



Half-maximal supergravity

Half-maximal supergravities (N = 4 in D = 4) have a richer structure
than maximal supergravity and allows couplings to nv (N = 4) vector
multiplets matter fields.

2 3/2 1 1/2 0
N = 4 supergravity 1 4 6 4 2
N = 4 SYM matter 1 4 6

−→ the pure theory (nv = 0) was expected to diverge at 3 loops due to
an R4 counterterm.

N = 4 supergravity amplitudes from CHL models [PT, Vanhove ’12]

CHL models are ZN orbifolds of the bosonic sector of heterotic string,
produce (4, 0) models with tunable nv = 22, 14, 10, 6, 4 (possibly nv =
2, 0). [Chaudhuri Hockney Lykken ’95]

Conventions: bosonic sector = holomorphic.



Warm-up: one-loop point-like limit
Systematics for one-loop n-point amplitudes: “Bern-Kosower rules” [90’s].

A1−loop
4−graviton = R4

∫
dµg=1ZCHLW bose

Q

I eQ: Koba-Nielsen factor ↔ denominator of the graph

I ZCHL =
1

q
+ (nv + 2) + O(q) is the part. fct, q = e2iπτ → 0

I Wbos = 〈(:∂Xe ikx :)4〉
〈(:e ikx :)4〉 ∼

∑
∂G 4 with G = 〈XX 〉

�
kinematical information ↔ numerator of Feynman graph

Dictionary: (∂G )n ↔ `n

residue extraction: ZCHLWbos −→ (Wbos) |q︸ ︷︷ ︸
`0,`2

+(nv + 2) (Wbos) |q0︸ ︷︷ ︸
`4

+O(q)

Worldline picture: + nv ( : grav., - - - : matt.)



Non-renormalization theorem at two loops [PT, Vanhove ’12]

The four-graviton Heterotic string amplitude of [D’Hoker, Phong] is

A2−loop
4−graviton = R4

∫
dµg=2YsusyZCHLWboseQ

I Wbos ∼
∑

(∂G )4 ∼ `4

I Ysusy = (k1 − k2) · (k3 − k4) ∆(z1, z2)∆(z3, z4) + (2↔ 3) + (2↔ 4)

so the field theory naively looks like

k2R4

∫
d`

`
`4

but the power counting is:

A2−loop
4−gravitons ∼ R4

∫
d`

`
`4 ∼ k2R4

∫
d`

`
`2
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no compensating 1/ki .kj pole because of right-moving SUSY

−→ R4 is not renormalized beyond one-loop in CHL models and D2R4

appears instead [PT, Vanhove ’12]

−→ Explanation from string theory of the observed vanishing of the
3-loop divergence of [Bern Davies Dennen Huang ’12].

D2R4 is a valid counterterm for N = 4 [Bossard Howe Stelle Vanhove ’11],
this naturally suggests a 4-loop divergence with nv = 0.
This divergence and related ones have been found now in [BDDH ’12],
[BDD ’13], [BDD, Smirnov, Smirnov ’13] and [Bern’s talk]

−→ [Bossard Howe Stelle ’12,’13] described the structure of the
counterterm, relation to the anomaly and an argument on the validity of
the theorem at 2− 3− 4 loops and breakdown for ≥ 5 loops.
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Two-loop Fourier-Jacobi expansion (step (i) of α′ → 0 )

ZCHL
2 =

1

q1q2q3
+ 2

∑
1≤i<j≤3

1

qiqj
+ (nv + 2)

3∑
i=1

1

qi
+ 0 + O(qi ) .

→ explicitly checked for N = 1 and N = 2 (from [Dabholkar, Gaiotto ’06])

edges lengths

Vanishing of the constant term in ZCHL −→ at least two powers of ∂G
are soaked up in Wbos . This explains how inner loop momentum is
transmuted to factorized derivatives. Worldsheet point of view on
the D = 5 cancellation described in [Bern’s talk]

Worldline: + nv

(
+

)
+ non-planar

( : gravity, - - - : matter)



Conclusion

The α′ → 0 limit of string theory amplitude defines a renormalized field
theory amplitude written as an integral over the tropical moduli space.

The tropical procedure tells unambiguously where you should look for the
various pieces of your amplitude in the string theory side.

Technology to handle higher genus limit of maximally supersymmetric
amplitudes



Outlook

I Extract the complete tropical limit of [Gomez Mafra]

 Complete step (ii) by obtaining corrections to the tropical limit of

〈X (z)X (w)〉 = G trop(Z ,W ) + O(qi )



Extra slides



Tropical theta characteristics

Theta characteristics:[
1/2
1/2

] [
1/2

0

] [
0

1/2

]



Example of application at genus two

Possible to define a splitting with a hard Schwinger proper time cutoff as
at one loop, which should give an integral over Mtrop

2 as:

1 2

ok ?ok

−→ integral over bounded genus two SP(4,Z) fundamental domain,
difficult to access [D’Hoker, Green, Pioline, R. Russo ’14], even numerically.
[work in progress]



The measure dµbos

There are g independent holomorphic differentials ω1, ..., ωg , normalized
along the aI cycles and defining the period matrix along the bJ cycles:

∫
aI

ωJ = δIJ

∫
bI

ωJ = ΩIJ

Ω is a g × g symmetric matrix with positive-definite imaginary part; it
has g(g + 1)/2 independent coefficients.

g 3g − 3 g(g + 1)/2
1 1 1 X
2 3 3 X
3 6 6 X
4 9 10 X Schottky problem, but solved.
5 12 15 ? Schottky problem.
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