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J. Brödel, M. de Leeuw and M. Rosso,
1403.3670

3



A Case for 3+1 Dimensions

Nature prefers Yang-Mills theory in exactly 1+3 dimensions:
Coordinates xµ, momenta pµ. So let us stay there!

Split index µ = 0, 1, 2, 3 into spinorial indices α = 1, 2 and α̇ = 1̇, 2̇ .

Interesting bijection R1,3 → H(2× 2), pµ #→ pαα̇ = pµ (σµ)αα̇ .

Reverse map H(2× 2) → R1,3, pµ #→ 1
2 Tr pαα̇ (σ̄

µ)α̇α .

Here σµ = ( ,#σ) and σ̄µ = ( ,−#σ) with Pauli matrices #σ. Explicitly:

pαα̇ =

(

p0 + p3 p1 − i p2
p1 + i p2 p0 − p3

)

Gluons are labeled by momenta pµ with p2 = pµpµ = det pαα̇ = 0 and
helicity ±1. Momentum factors: pαα̇ = λαλ̃α̇ , shorthand for = |λα〉[λ̃α̇|.
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Super-Spinor-Helicity and Amplitudes

There is a beautiful extension to maximally supersymmetric N = 4 theory:
One introduces for each leg j a Graßmann spinor ηAj where A = 1, 2, 3, 4.

With Pαα̇ =
∑

j λj,αλ̃j,α̇ and QA
α =

∑

j λj,αη
A
j the (color stripped) tree

amplitudes for n particles are the known [ Drummond, Henn ‘08 ] distributions

=
δ4(Pαα̇)δ8(QA

α)

〈12〉〈23〉 . . . 〈n− 1, n〉〈n1〉
Pn({λj, λ̃j, ηj}),

where 〈$m〉 = εαβλ#,αλm,β and [$m] = εα̇β̇λ̃#,α̇λ̃m,β̇.

All external helicity configurations are generated by expansion in the ηAj .

Super-helicity k corresponds to the terms of order η4k.

1

2 n�1

n

· · ·· · ·

· · ·
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Graßmannian Integrals and Amplitudes, I

A Graßmannian space G(k, n) is the set of k-planes intersecting the origin
of an n-dimensional space. k = 1 is ordinary projective space.

“Homogeneous” coordinates are packaged into a k× n matrix C = (cai).
C and A ·C with A ∈ GL(k) correspond to the same “point” in G(k, n).

Build super-twistors WA
j = (µ̃α

j , λ̃
α̇
j , η

A
j ) w. Fourier conjugates λ

α
j → µ̃α

j .

Graßmannian integral formulation of tree-level Nk−2MHVn amplitudes:

∫

dk·nC

vol(GL(k))

δ4k|4k(C · W)

(1 . . . k)(2 . . . k + 1) . . . (n . . . n+ k − 1)

The (i i+ 1...i+ k − 1) are the n cyclic k × k minors.
Integration is along “suitable contours”. [ Arkani-Hamed, Cachazo, Cheung, Kaplan ‘09 ]

6



Graßmannian Integrals and Amplitudes, II

For “most” points on G(k, n) we may use the GL(k) symmetry to write

C =







c1,k+1 c1,k+2 · · · c1,n
Ik×k

... ... . . . ...
ck,k+1 ck,k+2 · · · ck,n







The Graßmannian integral simplifies to

∫

∏k
a=1

∏n
i=k+1 dcai

(1 . . . k)(2 . . . k + 1) . . . (n . . . n+ k − 1)

k
∏

a=1

δ4|4
(

WA
a +

n
∑

i=k+1

caiW
A
i

)

Fourier-transforming back to spinor-helicity space, all tree-level
Nk−2MHVn amplitudes may be obtained.

7



Symmetries

The amplitudes enjoy N = 4 superconformal symmetry (A,B = 1 . . . 8):

JAB ·An,k = 0 , with JAB ∈ psu(2, 2|4)

However, there is also a “non-local” dual superconformal symmetry:

J̃AB · An,k = 0 , with J̃AB ∈ psu(2, 2|4)dual

Commuting J and J̃ , one obtains Yangian symmetry. [ Drummond, Henn, Plefka ‘09 ]

With twistor variables WA
j and the “local” generators JAB

j = WA
j

∂
∂WB

j

,

we can succinctly express it as

JAB =
n
∑

j=1

JAB
j , ĴAB =

∑

i<j

JAC
i JCB

j − (i ↔ j)

This is how integrability first appeared in the planar scattering problem.
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Dual Graßmannian Integrals and Amplitudes

In the dual description one can employ 4|4 super momentum-twistors Zj.

With k̂ = k − 2, there is an equivalent “dual” description on G(k̂, n):

[ Mason, Skinner ‘09; Arkani-Hamed et.al. ‘09 ]

δ4(Pαα̇)δ8(QA
α)

〈12〉〈23〉 . . . 〈n1〉

∫

dk̂·nĈ

vol(GL(k̂))

δ4k̂|4k̂(Ĉ · Z)

(1 . . . k̂) . . . (n . . . k̂ − 1)

Note that the k = 2 MHV part factors out.

The fact that the two formulations are related by a simple change of
variables is due to dual conformal invariance, and thus Yangian invariance.
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Deformed Symmetries

[ Ferro, !Lukowski, Meneghelli, Plefka, MS ‘12 ]

Of particular interest is the central charge generator of gl(4|4):

C =
n
∑

j=1

cj with cj = λα
j

∂

∂λα
j

− λ̃α̇
j

∂

∂λ̃α̇
j

− ηAj
∂

∂ηAj
+ 2

For overall psu(2, 2|4) we have C = 0. So we can relax the “local”
condition cj = 0. This deforms the super helicities hj = 1− 1

2
cj.

This yields something well-known: The Yangian in evaluation representa-
tion. Deforming the cj switches on the parameters vj. More below.

JAB =
n
∑

j=1

JAB
j , ĴAB =

∑

i<j

JAC
i JCB

j − (i ↔ j) +
n
∑

j=1

vj J
AB
j
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Deformed Graßmannian Integrals

[ Ferro, !Lukowski, MS, in preparation ]

One could then ask how the Graßmannian contour formulas are deformed.
The final answer is exceedingly simple, and very natural. With v−j = vj−

cj
2

∫

dk·nC

vol(GL(k))

δ4k|4k(C · W)

(1 ... k)1−v−1 +v−n . . . (n ... k−1)1−v−n +v−n−1

A derivation will be sketched below. With v+j = vj +
cj
2 we can also write

∫

dk·nC

vol(GL(k))

δ4k|4k(C · W)

(1 ... k)1+v+
k
−v+

k+1 . . . (n ... k−1)1+v+
k−1−v+

k

Note that it is not really the Graßmannian space G(k, n) as such that is
deformed, but the integration measure on this space. GL(k) preserved!
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Deformed Dual Graßmannian Integrals

[ Ferro, !Lukowski, MS, in preparation ]

It is equally natural to ask how the dual Graßmannian integrals deform.
Using the parameters v−j , we found

δ4(Pαα̇)δ8(QA
α)

〈12〉1−v−
1−k

+v−n . . . 〈n1〉1−v−
n−k

+v−n−1

×

×
∫

dk̂·nĈ

vol(GL(k̂))

δ4k̂|4k̂(Ĉ · Z)

(1 ... k̂)1−v−n+v−n−1 . . . (n ... k̂ − 1)1−v−n−1
+v−n−2

There is a similar formula in terms of v+j .

Note that both the MHV-prefactor and the contour integral are deformed.
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Why?

Why should we consider this deformation? Here are some of the reasons:

• It is fun!

• As we shall see, it is very natural from the point of view of integrability.

• In fact, constructing amplitudes by integrability (arguably) requires it.

• Amplitudes are related to the spectral problem, where it is indispensable.

• Most importantly: It promises to provide a natural infrared regulator!

The last point was our original motivation. Interestingly, we recently
learned that this deformation had been already studied as an infrared
regulator in twistor theory in the early seventies by Penrose and Hodges.
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Meromorphicity Lost and Gained

Let us take another look at the deformed Graßmannian contour integral:

∫

dk·nC

vol(GL(k))

δ4k|4k(C · W)

(1 ... k)1−v−1 +v−n . . . (n ... k−1)1−v−n +v−n−1

Choosing the parameters v−j to be non-integer, we see that the poles in
the variables cai turn into branch points.

Important point: We can no longer use the BCFW recursion relations, as
they are based on the residue theorem, which does not apply anymore.

Sounds bad?

What we can hope to gain is complete meromorphicity in suitable combi-
nations of the deformation parameters v−j . This should fix the contours.
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A Toy Meromorphicity Experiment

Consider Euler’s first integral, the beta function B(v1, v2).

∫ 1

0
dc

1

c1−v1(1− c)1−v2

For v1, v2 ∈ N Euler derived (v1−1)!(v2−1)!
(v1+v2−1)! . The analytic continuation for

arbitrary v1, v2 ∈ C is Γ(v1)Γ(v2)
Γ(v1+v2)

. Meromorphic in both v1 and v2.

This is not obvious from the integral. This problem was fixed by [ Pochhammer ‘90 ]:

1

(1− e2πiv1)(1− e2πiv2)

∫

C
dc

1

c1−v1(1− c)1−v2

where the contour C goes at least two times through the cut:

[ Wikipedia, the free encyclopedia ]
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Yangian Invariants as Spin Chain States, I

[ Frassek, Kanning, Ko, MS ‘13; Chicherin, Derkachov, Kirschner ‘13 ]

How to construct, generally and systematically, Yangian invariants?
It was recently proposed to identify them as special spin-chain states |Ψ〉.

How does the Yangian appear for spin chains with gl(m|n) symmetry?
Package the “local” generators JAB

j into a Lax operator Lj(u, v′j):

Then build up a monodromy matrix MAB(u, {v′j}):

Here multiplication is both a tensor product and a matrix product.

Monodromy eigenproblem

Alternative way of defining Yangian invariance for inhomogeneous spin chains

MAB(u)| i = �AB| i (?)

The monodromy matrix is defined as

M(u) = L1(u, v1) . . . Ln(u, vn) =
. . .

. . .

sk+1, vk+1s1, v1 sk, vk sn, vn

⇤, u

. . .

. . .

with the Lax operators

Li(u, vi) =

 
(u � vi) +

X

A,B

eAB JAB
i

!
=

s, vi

⇤, u

Expanding the monodromy matrix around u ! 1 we find

MAB(u) = �AB +
1
u

JAB +
1
u2 ĴAB + . . .

Monodromy eigenproblem is equivalent to demanding Yangian invariance: | i is

annihilated by (r) and all higher Yangian generators
Tomasz Łukowski (University of Oxford) 22.04.2014 16 / 28
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Yangian Invariants as Spin Chain States, II

[ Frassek, Kanning, Ko, MS ‘13; Chicherin, Derkachov, Kirschner ‘13 ]

The Yangian generators, see above, appear by expanding at u = ∞:

MAB(u) = δAB +
1

u
JAB +

1

u2
ĴAB + . . .

Note that the deformation of the ĴAB indeed appears naturally.

Yangian invariance is now elegantly encoded as

MAB(u) · |Ψ〉 = δAB|Ψ〉 or even M(u) · |Ψ〉 = |Ψ〉

In usual spin chains we take the trace, and study TrM(u) · |Ψ〉 = t(u)|Ψ〉.

Importantly, the RTT-relation (3.23) is the defining relation of the Yangian algebra
Y(gl(n)) in the QISM language, see e.g. [19]. A formal Laurent expansion of the mon-
odromy elements (3.12) in inverse powers of the spectral parameter u,

M

ab

(u) = M

(0)

ab

+ M

(1)

ab

u

≠1 + M

(2)

ab

u

≠2 + . . . , (3.26)

yields the generators M

(r)

ab

of the Yangian, where one demands

M

(0)

ab

= ”

ab

. (3.27)

Inserting the expansion (3.26) into (3.25), one obtains the commutation relations for these
generators

[M (r)

ab

, M

(s)

cd

] =
min(r,s)ÿ

q=1

1
M

(r+s≠q)

cb

M

(q≠1)

ad

≠ M

(q≠1)

cb

M

(r+s≠q)

ad

2
. (3.28)

The formulation of the algebra in terms of M

(r)

ab

satisfying (3.28) is closely related to
Drinfeld’s first realization of the Yangian [20]. See also [21] for further reviews. Setting
r = s = 1 in (3.28) shows that the ≠M

(1)

ab

generate the gl(n) symmetry, and the generators
with r Ø 2 correspond to its Yangian extension. We also note that the monodromy
elements transform in the adjoint representation of this gl(n) symmetry,

[M (1)

ab

, M

cd

(u)] = M

cb

(u)”
ad

≠ M

ad

(u)”
cb

, (3.29)

as may be seen by expanding (3.25) in only one of the two spectral parameters. Condition
(3.27) is satisfied up to a scalar factor by the monodromy (3.11) built out of the Lax
operators (3.21). We use a normalization of the Lax operators for which (3.27) holds.

Finally, we come to the primary objective of this section, the role of the main equation
(3.20) of section 3.2 from a Yangian perspective. Let us recall (3.20) in the more general
context of the current section. Omitting the bra È–|, the set of eigenvalue equations3

M

ab

(u)|�Í = ”

ab

|�Í (3.30)

may be graphically represented with the help of (3.11) as

⇤, u

a

b

�
1

, v

1

. . .

�
L

, v

L

|�Í
=

⇤, u

a

b

�
1

, v

1

. . .
�

L

, v

L

|�Í
. (3.31)

Expanding in u

≠1, we see that (3.30) is equivalent to

M

(r)

ab

|�Í = 0 (3.32)
3In [22] such a set of equations is shown to be satisfied by the physical vacuum state of integrable

two-dimensional quantum field theories.
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Yangian Invariants and Bethe Ansatz, I

[ Frassek, Kanning, Ko, MS ‘13 ]

Therefore, the machinery of the algebraic Bethe ansatz may be applied.
Already in the simpler case of gl(n) compact reps much of the structure
of the [ Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka ‘12 ] on-shell diagramatics is found.

Let us use “twistor variables” Wj in the fundamental rep of gl(n).

The simplest is the n = 2, k = 1 two-site invariant, with C =
(

1 c12
)

,

Here the contour is circular around zero, and s2 ∈ N is a Dynkin label.
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∮
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12
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C

2

1

B

21

A

21

Figure 2: Two-point Yangian invariant. A) Transposition decomposition; B) wilted on-shell
diagram; C) on-shell diagram with a perfect orientation.

4.2 n=3, k=1

For the three-particle invariant there are two non-trivial values of k. Let us first take the
permutation

�3,1 =

✓
1 2 3
2 3 1

◆
= (13)(12) , (75)

for which k = 1. We specified here the decomposition of this permutation into transpositions.
The invariant (47) is given by

| i3,1 = B12(y1 � y2)B13(y2 � y3)|0i = B12(s2)B13(s3)|0i (76)

/
Z

d↵1d↵2

↵

1+s2
1 ↵

1+s3
2

�

N |M (W1 + ↵1W2 + ↵2W3) (77)

/
Z

dc12dc13

c

1+s2
12 c

1+s3
13

�

N |M (W1 + c12W2 + c13W3) . (78)

This is exactly the deformed three-point MHV amplitude introduced in [7]. See Figure 3 for
the graphical representation of | i3,1.
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Figure 3: Three-point MHV Yangian invariant. A) Transposition decomposition; B) wilted
on-shell diagram; C) on-shell diagram with a perfect orientation.

4.3 n=3, k=2

For the case of the three-particle invariant with k = 2 we have the permutation

�3,2 =

✓
1 2 3
3 1 2

◆
= (23)(12) . (79)
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Yangian Invariants and Bethe Ansatz, II

[ Frassek, Kanning, Ko, MS ‘13 ]

The next simplest cases are the three-site invariants with n = 3.

For k = 1 one gets, with C =
(

1 c12 c13
)

,

while for k = 2 one gets, with C =

(

1 0 c13
0 1 c23

)

,

All contours are closed and encircle zero.
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Figure 2: Two-point Yangian invariant. A) Transposition decomposition; B) wilted on-shell
diagram; C) on-shell diagram with a perfect orientation.
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4.3 n=3, k=2

For the case of the three-particle invariant with k = 2 we have the permutation

�3,2 =

✓
1 2 3
3 1 2

◆
= (23)(12) . (79)
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The invariant is given by

| i3,2 = B12(y1 � y2)B23(y1 � y3)|0i = B12(�s1)B23(s3)|0i (80)

/
Z

d↵1d↵2

↵

1�s1
1 ↵

1+s3
2

�

N |M (W1 + ↵1W2)�N |M (W2 + ↵2W3) (81)

/
Z

dc13dc23

c

1�s1
13 c

1�s2
23

�

N |M (W1 + c13W3)�N |M (W2 + c23W3) . (82)

This is again the deformed three-point MHV amplitude found in [7]. Together with (78) it
is the building block for all deformations of on-shell diagrams, and subsequently all tree-level
deformed amplitudes. For the graphical representation see Figure 4.

A B C

1 2 3 1 2 3

12

3

Figure 4: Three-point MHV Yangian invariant. A) Transposition decomposition; B) wilted
on-shell diagram; C) on-shell diagram with a perfect orientation.

4.4 n=4, k=2

The four-point invariant with k = 2 is the first one which, interestingly, cannot be written
solely by using representation labels. It corresponds to the deformation of the four-point tree
amplitude obtained in [8] and depends on a spectral parameter z. Let us show how it arises in
the context of this paper. The relevant permutation is

�4,2 =

✓
1 2 3 4
3 4 1 2

◆
= (24)(12)(23)(12) . (83)

and the invariant is given by

| i4,2 = B12(y1 � y2)B23(y1 � y3)B12(y2 � y3)B24(y2 � y4)|0i (84)

= B12(z)B23(�s1)B12(�z � s1)B24(�s2)|0i (85)

/
Z

df1df2df3df4

f

1�s1
1 f

1�s1�s2
2 f

1�z�s1
3 f

1�s2
4

�

N |M (W1 + f1f2W3 + (1 + f3)f1f2f4W4) (86)

�

N |M (W2 + f2W3 + f2f4W4) , (87)

where we defined z = y1 � y2. The form (85) of this invariant was already mentioned in
(37). Its integral representation (86) exactly reproduces the four-point deformed amplitude in
the form derived in [7], see also [8]. Note that a somewhat di↵erent looking form involving a
hypergeometric function in the integrand of the harmonic R-matrix was given in [13].
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Bethe Ansatz, Permutations, and Yangian Invariants

Since we solve M(u) · |Ψ〉 = |Ψ〉 and not TrM(u) · |Ψ〉 = t(u)|Ψ〉 the
Bethe ansatz is more constraining. Apart from the Bethe roots, we find

n
∏

j=1

(u− v+j ) =
n
∏

j=1

(u− v−j )

Thus, Yangian invariance requires the existence of a permutation σ with

v+σ(j) = v−j

Exactly the condition of [ Beisert, Broedel, Rosso ‘14 ] for deformed on-shell diagrams.
Showed relation to diagramatics in [ Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka ‘12 ].

Yangian invariance of dressed on-shell diagrams [Beisert, Broedel, Rosso]

Yangian algebra revisited (generalization of (4))

JAB =
nX

i=1

JAB
i , ĴAB =

X

1i<n

JAC
i JCB

j � (i $ j) +
nX

i=1

vi JAB
i (r)

We map the amplitude to an inhomogeneous spin chain. Each site the spin chain is

equipped with its central charge si and inhomogeneity vi. Convenient variables

v±i = vi ± si

2
Demanding Yangian invariance (r) for three-point deformed amplitudes leads to relations

between vi and si. These relations can be recast into a graphical notation
0

BB@

v+1 v+2 v+3
# # #

v�3 v�1 v�2

1

CCA $
1

2 3 2 3

1

$
0

BB@

v+1 v+2 v+3
# # #

v�2 v�3 v�1

1

CCA

One can extract v and s from the diagram as

v =
v+ + v�

2
s = v+ � v�
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Direct Construction of Yangian Invariants

[ Chicherin, Derkachov, Kirschner ‘13 ]

The Bethe ansatz is interesting, but constructing the states is hard.
A more direct method uses an intertwiner, which in twistor variables reads

Bjk(u) =

(

−Wk ·
∂

∂Wj

)u

Note u ∈ C. Representation changing. Satisfies Yang-Baxter. Intertwines:

Lj(u, uj)Lk(u, uk)Bjk(uj − uk) = Bjk(uj − uk)Lj(u, uk)Lk(u, uj)

Graphical Depiction:

Use to make a Bethe-like ansatz to construct the invariants |Ψ〉.
Use intertwining relation to show M(u) · |Ψ〉 = |Ψ〉 iff for “correct” ūk.

Alternative approach [Chicherin, Derkachov, Kirschner]

To prove (⇤) we use the fundamental relation

Li(u, vi)Lj(u, vj)Bij(vi � vj) = Bij(vi � vj)Li(u, vj)Lj(u, vi) (⇤)

which can be depicted as

=
u

u
vi vj

vj vi

Notice that inhomogeneities are exchange on the right hand side of the equation

Repeatedly using formula (⇤) one can commute the monodromy matrix through a chain of

B-operators. The Lax operators L(u, v) act trivially on the vacuum |0i

Tomasz Łukowski (University of Oxford) 22.04.2014 22 / 28
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General Construction

[ Broedel, De Leeuw Rosso; Kanning, !Lukowski, MS ‘13 ]

Every on-shell diagram corresponds to some permutation σ. [ Arkani-Hamed et.al. ‘12 ].

Resolve into “adjacent” transpositions: σ = τ1 . . . τP = (j1k1) . . . (jPkP )

Bethe-like ansatz

|Ψ〉 = Bj1k1(ū1) . . .BjPkP (ūP )|0〉

Bethe-like equations yield ūp = vτp(kp)−vτp(jp) with τp = (j1k1) . . . (jpkp).
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Example

Let us quickly look at n = 4, k = 2:

Permutation:

σ =

(

1 2 3 4
3 4 1 2

)

= (12)(23)(12)(24)

Yangian invariant:

|Ψ4,2〉 = B12(v1 − v2)B23(v1 − v3)B12(v2 − v3)B24(v2 − v4)|0〉

On-Shell diagramatics:

General construction at work [Kanning, TL, Staudacher]

Permutation

�4,2 =

0

@ 1 2 3 4

3 4 1 2

1

A = (12)(23)(12)(24) .

Yangian invariant

| i4,2 = B12(v1 � v2)B23(v1 � v3)B12(v2 � v3)B24(v2 � v4)|0i

Graphical representation

2 1

431 2 3 4 1 2 3 4

�!�!

Tomasz Łukowski (University of Oxford) 22.04.2014 26 / 28
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Contours

As pointed out by [ Chicherin, Derkachov, Kirschner ‘13 ] Bjk(u) acts like a BCFW shift:

Bjk(u) =

(

−Wk ·
∂

∂Wj

)u

"

∫

C

dα

α1+u
eαW

k·∂
Wj

Recall super-twistors ZA
j = (µ̃α

j , λ̃
α̇
j , η

A
j ) w. Fourier conjugates λ

α
j → µ̃α

j .
This is however merely formal, unless the contour C is rigorously specified.

Note that

• a Hankel contour does not work, in general

• for u $= 0 BCFW recursion, based on residue theorem, no longer works
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The Top-Cell

For the top-cell of the Graßmannian with general n, k the permutation
σ is just a cyclic shift by k. This allows to derive the general deformed
Graßmannian integral stated initially. [ Ferro, !Lukowski, MS, in preparation ]

Important: The top-cell is the deformed tree-level amplitude. BCFW-
decomposition breaks down when deforming, as shown in [ Beisert, Broedel, Rosso ‘14 ].
But it is not needed!

[ Figure from arXiv: 1401.7274: Beisert, Broedel, Rosso ‘14 ]
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Figure 8: Codimension-one boundaries of the top-cell of G(3, 6); the removable
edges are highlighted.

3.3 Deformation of the six-point NMHV amplitude

Let us study the simplest nontrivial example: the six-point NMHV amplitude A6,3. The
simplicity of this amplitude originates from the fact that the on-shell graphs represent-
ing the BCFW channels are codimension-one boundaries of the top-cell (as opposed to
boundaries of higher codimension for other amplitudes). The top-cell graph associated
with G(3, 6) and its six codimension-one boundaries are depicted in fig. 8. The two pos-
sible BCFW decompositions of A6,3 are given by adding either the contributions from
graphs 1, 3 and 5 or 2, 4 and 6. In the following we will choose the latter one.

We will now investigate how to deform the on-shell graphs corresponding to A6,3

following the two di↵erent approaches described at the end of subsec. 3.2.

Deformation of the BCFW terms We will follow the first approach and impose
Yangian invariance on the deformed on-shell graphs 2, 4 and 6 of fig. 8 separately, which
amounts to satisfying the conditions implied by the double-line formalism introduced in
subsec. 2.4.

For our choice of graphs, the permutations and their corresponding deformations are
listed in fig. 9. Compatibility between the three channels is achieved by imposing all con-
ditions simultaneously. Doing so, there are three remaining degrees of freedom: choosing
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Outlook

Establish that the deformed Graßmannian is useful for loop calculations.

26


