Evaluating multiloop Feynman integrals by differential equations

Vladimir A. Smirnov

Nuclear Physics Institute of Moscow State University
in collaboration with Johannes Henn, Alexander Smirnov, Kirill Melnikov, Fabrizio Caola

- Historiographical summary
- Historiographical summary
- General prescriptions and a simple one-loop example
- Historiographical summary
- General prescriptions and a simple one-loop example
- Massless three-loop four-point Feynman integrals on the light cone
- Historiographical summary
- General prescriptions and a simple one-loop example
- Massless three-loop four-point Feynman integrals on the light cone
- Two-loop four-point Feynman integrals for Bhabha scattering
- Historiographical summary
- General prescriptions and a simple one-loop example
- Massless three-loop four-point Feynman integrals on the light cone
- Two-loop four-point Feynman integrals for Bhabha scattering
- Evaluating single-scale diagrams by DE
- Historiographical summary
- General prescriptions and a simple one-loop example
- Massless three-loop four-point Feynman integrals on the light cone
- Two-loop four-point Feynman integrals for Bhabha scattering
- Evaluating single-scale diagrams by DE
- K_{4}
- Historiographical summary
- General prescriptions and a simple one-loop example
- Massless three-loop four-point Feynman integrals on the light cone
- Two-loop four-point Feynman integrals for Bhabha scattering
- Evaluating single-scale diagrams by DE
- K_{4}
- Massless four-point integrals with two off-shell legs
- Historiographical summary
- General prescriptions and a simple one-loop example
- Massless three-loop four-point Feynman integrals on the light cone
- Two-loop four-point Feynman integrals for Bhabha scattering
- Evaluating single-scale diagrams by DE
- K_{4}
- Massless four-point integrals with two off-shell legs
- Conclusion
[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann \& E. Remiddi'00, J. Henn'13]
[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann \& E. Remiddi'00, J. Henn'13]
Gehrmann \& Remiddi: a method to evaluate master integrals.
It is assumed that the problem of reduction to master integrals is solved.
[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann \& E. Remiddi'00, J. Henn'13]
Gehrmann \& Remiddi: a method to evaluate master integrals.
It is assumed that the problem of reduction to master integrals is solved.

Henn: use uniform transcendentality (UT)!

Reduction to master integrals

Evaluating a family of Feynman integrals associated with a given graph with general integer powers of the propagators (indices)

$$
\begin{aligned}
& F_{\Gamma}\left(q_{1}, \ldots, q_{n} ; d ; a_{1}, \ldots, a_{L}\right) \\
& \quad=\int \ldots \int I\left(q_{1}, \ldots, q_{n} ; k_{1}, \ldots, k_{h} ; a_{1}, \ldots, a_{L}\right) \mathbf{d}^{d} k_{1} \mathbf{d}^{d} k_{2} \ldots \mathbf{d}^{d} k_{h} \\
& I\left(q_{1}, \ldots, q_{n} ; k_{1}, \ldots, k_{h} ; a_{1}, \ldots, a_{L}\right)=\frac{1}{\left(p_{1}^{2}-m_{1}^{2}\right)^{a_{1}}\left(p_{2}^{2}-m_{2}^{2}\right)^{a_{2}} \ldots}
\end{aligned}
$$

The old straightforward analytical strategy:
to evaluate, by some methods, every scalar Feynman integral generated by the given graph.

The standard modern strategy:
to derive, without calculation, and then apply IBP identities between the given family of Feynman integrals as recurrence relations.

The standard modern strategy:
to derive, without calculation, and then apply IBP identities between the given family of Feynman integrals as recurrence relations.
Any integral of the given family is expressed as a linear combination of some basic (master) integrals.

The standard modern strategy:
to derive, without calculation, and then apply IBP identities between the given family of Feynman integrals as recurrence relations.
Any integral of the given family is expressed as a linear combination of some basic (master) integrals.
The whole problem of evaluation \rightarrow

- constructing a reduction procedure
- evaluating master integrals

General prescriptions

General prescriptions

- Take some derivatives of given master integrals in masses or/and kinematic invariants

General prescriptions

- Take some derivatives of given master integrals in masses or/and kinematic invariants
- Express them in terms of Feynman integrals of the given family with shifted indices

General prescriptions

- Take some derivatives of given master integrals in masses or/and kinematic invariants
- Express them in terms of Feynman integrals of the given family with shifted indices
- Apply an IBP reduction (using some public or private code) to express these integrals in terms of master integrals to obtain a system of differential equations

General prescriptions

- Take some derivatives of given master integrals in masses or/and kinematic invariants
- Express them in terms of Feynman integrals of the given family with shifted indices
- Apply an IBP reduction (using some public or private code) to express these integrals in terms of master integrals to obtain a system of differential equations
- Solve DE

The crucial point: choose all the master integrals as pure functions of uniform weight, i.e uniform degree of transcendentality

The crucial point:
choose all the master integrals as pure functions of uniform weight, i.e uniform degree of transcendentality
For example, multiple polylogarithms (defined through iterated integrals over logarithmic differential forms) the weight of a function is defined as the number of integrations.

The crucial point:
choose all the master integrals as pure functions of uniform weight, i.e uniform degree of transcendentality
For example, multiple polylogarithms (defined through iterated integrals over logarithmic differential forms) the weight of a function is defined as the number of integrations.
A function is called pure if the weight of its differential is lowered by one unit. Such functions satisfy simple differential equations.

The crucial point:
choose all the master integrals as pure functions of uniform weight, i.e uniform degree of transcendentality
For example, multiple polylogarithms (defined through iterated integrals over logarithmic differential forms) the weight of a function is defined as the number of integrations.
A function is called pure if the weight of its differential is lowered by one unit. Such functions satisfy simple differential equations.

Weight for numbers: n for $\zeta(n), \mathrm{Li}_{n}(1 / 2)$ etc.

When a solution of IBP relations is obtained, with some code, master integrals are not usually UT

When a solution of IBP relations is obtained, with some code, master integrals are not usually UT
A transition to a UT basis is a linear transformation in the space of master integrals and the corresponding matrix is rational with respect to dimension and kinematic invariants.

How to reveal UT master integrals?

How to reveal UT master integrals?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly

How to reveal UT master integrals?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly
- Use Feynman parametrization

How to reveal UT master integrals?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly
- Use Feynman parametrization
- Replace propagators by delta functions and analyze whether the resulting expression UT.

How to reveal UT master integrals?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly
- Use Feynman parametrization
- Replace propagators by delta functions and analyze whether the resulting expression UT.
- Adjust a linear combination of master integrals in a given sector.

How to reveal UT master integrals?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly
- Use Feynman parametrization
- Replace propagators by delta functions and analyze whether the resulting expression UT.
- Adjust a linear combination of master integrals in a given sector.
- An approach using Magnus and Dyson series expansion [M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk,
U. Schubert, L. Tancredi'14]

How to reveal UT master integrals?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly
- Use Feynman parametrization
- Replace propagators by delta functions and analyze whether the resulting expression UT.
- Adjust a linear combination of master integrals in a given sector.
- An approach using Magnus and Dyson series expansion [M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk,
U. Schubert, L. Tancredi'14]

A decisive criterion: if we arrive at canonical DE then we make a proper choice of UT master integrals!

An example: a one-loop massless propagator integral

$$
\begin{gathered}
\int \frac{\mathrm{d}^{d} k}{\left(-k^{2}\right)^{a_{1}}\left[-(q-k)^{2}\right]^{a_{2}}}=\mathrm{i} \pi^{d / 2} \frac{G\left(a_{1}, a_{2}\right)}{\left(-q^{2}\right)^{a_{1}+a_{2}+\epsilon-2}}, \\
G\left(a_{1}, a_{2}\right)=\frac{\Gamma\left(a_{1}+a_{2}+\epsilon-2\right) \Gamma\left(2-\epsilon-a_{1}\right) \Gamma\left(2-\epsilon-a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \Gamma\left(4-a_{1}-a_{2}-2 \epsilon\right)}
\end{gathered}
$$

with $d=4-2 \epsilon$

An example: a one-loop massless propagator integral

$$
\begin{gathered}
\int \frac{\mathrm{d}^{d} k}{\left(-k^{2}\right)^{a_{1}}\left[-(q-k)^{2}\right]^{a_{2}}}=\mathrm{i} \pi^{d / 2} \frac{G\left(a_{1}, a_{2}\right)}{\left(-q^{2}\right)^{a_{1}+a_{2}+\epsilon-2}}, \\
G\left(a_{1}, a_{2}\right)=\frac{\Gamma\left(a_{1}+a_{2}+\epsilon-2\right) \Gamma\left(2-\epsilon-a_{1}\right) \Gamma\left(2-\epsilon-a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \Gamma\left(4-a_{1}-a_{2}-2 \epsilon\right)}
\end{gathered}
$$

with $d=4-2 \epsilon$
$\Gamma(1+k \epsilon), \Gamma(k \epsilon)$ are UT, e.g.

$$
\Gamma(1+\epsilon)=e^{-\gamma_{\mathrm{E}} \epsilon}\left(1+\frac{\pi^{2} \epsilon^{2}}{12}-\frac{\epsilon^{3} \zeta(3)}{3}+\ldots\right)
$$

$\Gamma(2-2 \epsilon) \equiv(1-2 \epsilon) \Gamma(1-2 \epsilon)$ is not UT

$$
G(1,1)=\frac{\Gamma(1-\epsilon)^{2} \Gamma(\epsilon)}{\Gamma(2-2 \epsilon)} \text { is not UT }
$$

$G(1,1)=\frac{\Gamma(1-\epsilon)^{2} \Gamma(\epsilon)}{\Gamma(2-2 \epsilon)}$ is not UT
$G(2,1)=\frac{\Gamma(1-\epsilon) \Gamma(-\epsilon) \Gamma(\epsilon+1)}{\Gamma(1-2 \epsilon)}$ is UT

One can use Feynman parameters. For example,

$$
\int \frac{\mathrm{d}^{d} k}{\left(-k^{2}+m^{2}\right)^{a_{1}}\left[-(q-k)^{2}\right]^{a_{2}}} \sim \int_{0}^{1} \frac{\alpha^{a_{2}-1}(1-\alpha)^{1-a_{2}-\epsilon}}{[1+x \alpha]^{a_{1}+a_{2}+\epsilon-2}}
$$

One can use Feynman parameters. For example,

$$
\int \frac{\mathrm{d}^{d} k}{\left(-k^{2}+m^{2}\right)^{a_{1}}\left[-(q-k)^{2}\right]^{a_{2}}} \sim \int_{0}^{1} \frac{\alpha^{a_{2}-1}(1-\alpha)^{1-a_{2}-\epsilon}}{[1+x \alpha]^{a_{1}+a_{2}+\epsilon-2}}
$$

The good choice is $a_{1}=2, a_{2}=1$

$$
\int_{0}^{1} \frac{(1-\alpha)^{-\epsilon}}{[1+x \alpha]^{1+\epsilon}}
$$

One can use Feynman parameters. For example,

$$
\int \frac{\mathrm{d}^{d} k}{\left(-k^{2}+m^{2}\right)^{a_{1}}\left[-(q-k)^{2}\right]^{a_{2}}} \sim \int_{0}^{1} \frac{\alpha^{a_{2}-1}(1-\alpha)^{1-a_{2}-\epsilon}}{[1+x \alpha]^{a_{1}+a_{2}+\epsilon-2}}
$$

The good choice is $a_{1}=2, a_{2}=1$

$$
\int_{0}^{1} \frac{(1-\alpha)^{-\epsilon}}{[1+x \alpha]^{1+\epsilon}}
$$

A general rule: factors like $(1-\alpha)^{ \pm \epsilon}$ or $\alpha^{ \pm \epsilon}$ do not spoil UT

Replace propagators by delta functions. An example: the on-shell box with $p_{i}^{2}=0$ and $s=\left(p_{1}+p_{2}\right)^{2}$ and $t=\left(p_{1}+p_{3}\right)^{2}$

Replace propagators by delta functions. An example: the on-shell box with $p_{i}^{2}=0$ and $s=\left(p_{1}+p_{2}\right)^{2}$ and $t=\left(p_{1}+p_{3}\right)^{2}$

$$
\begin{gathered}
\int \frac{\mathrm{d}^{d} k}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}\left(k-p_{3}\right)^{2}} \rightarrow \\
\int \mathrm{~d}^{4} k \delta\left(k^{2}\right) \delta\left(\left(k+p_{1}\right)^{2}\right) \delta\left(\left(k+p_{1}+p_{2}\right)^{2}\right) \delta\left(\left(k-p_{3}\right)^{2}\right) \sim \frac{1}{s t}
\end{gathered}
$$

Replace propagators by delta functions. An example: the on-shell box with $p_{i}^{2}=0$ and $s=\left(p_{1}+p_{2}\right)^{2}$ and $t=\left(p_{1}+p_{3}\right)^{2}$

$$
\begin{gathered}
\int \frac{\mathrm{d}^{d} k}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}\left(k-p_{3}\right)^{2}} \rightarrow \\
\int \mathrm{~d}^{4} k \delta\left(k^{2}\right) \delta\left(\left(k+p_{1}\right)^{2}\right) \delta\left(\left(k+p_{1}+p_{2}\right)^{2}\right) \delta\left(\left(k-p_{3}\right)^{2}\right) \sim \frac{1}{s t}
\end{gathered}
$$

This gives the hint that after the multiplication by st we should obtain a UT Feynman integral.

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be kinematical variables and $f=\left(f_{1}, \ldots, f_{N}\right)$ be a set of primary master integrals.

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be kinematical variables and $f=\left(f_{1}, \ldots, f_{N}\right)$ be a set of primary master integrals.
DE:

$$
\partial_{i} f(\epsilon, x)=A_{i}(\epsilon, x) f(\epsilon, x),
$$

where $\partial_{i}=\frac{\partial}{\partial x_{i}}$, and each A_{i} is an $N \times N$ matrix.

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be kinematical variables and $f=\left(f_{1}, \ldots, f_{N}\right)$ be a set of primary master integrals.
DE:

$$
\partial_{i} f(\epsilon, x)=A_{i}(\epsilon, x) f(\epsilon, x),
$$

where $\partial_{i}=\frac{\partial}{\partial x_{i}}$, and each A_{i} is an $N \times N$ matrix. Conjecture: one can turn to a new basis by a linear transformation $f \rightarrow B f$
(resulting in $A_{m} \rightarrow B^{-1} A_{m} B-B^{-1}\left(\partial_{m} B\right)$)
such that the DE will take the following canonical form

$$
\partial_{i} f(\epsilon, x)=\epsilon A_{i}(x) f(\epsilon, x)
$$

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be kinematical variables and $f=\left(f_{1}, \ldots, f_{N}\right)$ be a set of primary master integrals.
DE:

$$
\partial_{i} f(\epsilon, x)=A_{i}(\epsilon, x) f(\epsilon, x),
$$

where $\partial_{i}=\frac{\partial}{\partial x_{i}}$, and each A_{i} is an $N \times N$ matrix. Conjecture: one can turn to a new basis by a linear transformation $f \rightarrow B f$
(resulting in $A_{m} \rightarrow B^{-1} A_{m} B-B^{-1}\left(\partial_{m} B\right)$) such that the DE will take the following canonical form

$$
\partial_{i} f(\epsilon, x)=\epsilon A_{i}(x) f(\epsilon, x) .
$$

How to prove it? (A good mathematical problem.)

An example: the massless on-shell box diagram, i.e. with $p_{i}^{2}=0, i=1,2,3,4$

An example: the massless on-shell box diagram, i.e. with $p_{i}^{2}=0, i=1,2,3,4$

$$
\begin{aligned}
& F_{\Gamma}\left(s, t ; a_{1}, a_{2}, a_{3}, a_{4}, d\right) \\
= & \int \frac{\mathrm{d}^{d} k}{\left(-k^{2}\right)^{a_{1}}\left[-\left(k+p_{1}\right)^{2}\right]^{a_{2}}\left[-\left(k+p_{1}+p_{2}\right)^{2}\right]^{a_{3}}\left[-\left(k-p_{3}\right)^{2}\right]^{a_{4}}}
\end{aligned}
$$

where $s=\left(p_{1}+p_{2}\right)^{2}$ and $t=\left(p_{1}+p_{3}\right)^{2}$

Three master integrals $F(0,1,0,1), F(1,0,1,0), F(1,1,1,1)$.

Three master integrals $F(0,1,0,1), F(1,0,1,0), F(1,1,1,1)$. The first two of them are given in terms of gamma functions.
Choose them proportional to $G(2,1)=\frac{\Gamma(1-\epsilon) \Gamma(-\epsilon) \Gamma(\epsilon+1)}{\Gamma(1-2 \epsilon)}$

Three master integrals $F(0,1,0,1), F(1,0,1,0), F(1,1,1,1)$.
The first two of them are given in terms of gamma functions.
Choose them proportional to $G(2,1)=\frac{\Gamma(1-\epsilon) \Gamma(-\epsilon) \Gamma(\epsilon+1)}{\Gamma(1-2 \epsilon)}$ Turn to a UT basis:

$$
\begin{aligned}
& \quad f=(-s)^{\epsilon}\left\{\epsilon t F(0,1,0,2), \epsilon s F(1,0,2,0), \epsilon^{2} s t F(1,1,1,1)\right\} \\
& \equiv\left\{f_{1}, f_{2}, f_{3}\right\} \\
& \text { with } x=t / s, s=-1
\end{aligned}
$$

DE in the new basis

$$
f^{\prime}(\epsilon, x)=\epsilon A(x) f(\epsilon, x)
$$

DE in the new basis

$$
f^{\prime}(\epsilon, x)=\epsilon A(x) f(\epsilon, x)
$$

where

$$
A(x)=\left(\begin{array}{ccc}
-\frac{1}{x} & 0 & 0 \\
0 & 0 & 0 \\
\frac{2}{x+1}-\frac{2}{x} & \frac{2}{x+1} & \frac{1}{x+1}-\frac{1}{x}
\end{array}\right)
$$

DE in the new basis

$$
f^{\prime}(\epsilon, x)=\epsilon A(x) f(\epsilon, x)
$$

where

$$
A(x)=\left(\begin{array}{ccc}
-\frac{1}{x} & 0 & 0 \\
0 & 0 & 0 \\
\frac{2}{x+1}-\frac{2}{x} & \frac{2}{x+1} & \frac{1}{x+1}-\frac{1}{x}
\end{array}\right)
$$

Solving DE in the ϵ-expansion, $f=\sum_{n=0} f^{(n)} \epsilon^{n}$

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f^{(n)}(x)=A(x) f^{(n-1)}(x) .
$$

DE in the new basis

$$
f^{\prime}(\epsilon, x)=\epsilon A(x) f(\epsilon, x)
$$

where

$$
A(x)=\left(\begin{array}{ccc}
-\frac{1}{x} & 0 & 0 \\
0 & 0 & 0 \\
\frac{2}{x+1}-\frac{2}{x} & \frac{2}{x+1} & \frac{1}{x+1}-\frac{1}{x}
\end{array}\right)
$$

Solving DE in the ϵ-expansion, $f=\sum_{n=0} f^{(n)} \epsilon^{n}$

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x} f^{(n)}(x)=A(x) f^{(n-1)}(x) . \\
f^{(n)}(x)=\int_{0}^{x} \mathrm{~d} x^{\prime} A\left(x^{\prime}\right) f^{(n-1)}\left(x^{\prime}\right)+g^{(n)} .
\end{gathered}
$$

The boundary conditions $g^{(n)}$ are fixed at the point $x=-1$ (i.e. $s+t \equiv-u=0$) where the given integral is not singular.

The boundary conditions $g^{(n)}$ are fixed at the point $x=-1$ (i.e. $s+t \equiv-u=0$) where the given integral is not singular. In every order of the ϵ-expansion, one obtains a linear combination of integrals

$$
\int_{0 \leq x_{1} \leq \ldots x_{k} \leq x} \frac{\mathrm{~d} x_{k}}{x_{k}+a_{k}} \cdots \frac{\mathrm{~d} x_{1}}{x_{1}+a_{1}}
$$

where $a_{i}=0$ or 1 .

The boundary conditions $g^{(n)}$ are fixed at the point $x=-1$ (i.e. $s+t \equiv-u=0$) where the given integral is not singular. In every order of the ϵ-expansion, one obtains a linear combination of integrals

$$
\int_{0 \leq x_{1} \leq \ldots x_{k} \leq x} \frac{\mathrm{~d} x_{k}}{x_{k}+a_{k}} \cdots \frac{\mathrm{~d} x_{1}}{x_{1}+a_{1}}
$$

where $a_{i}=0$ or 1 .
HPLs

$$
H\left(a_{1}, a_{2}, \ldots, a_{n} ; x\right)=\int_{0}^{x} f\left(a_{1} ; t\right) H\left(a_{2}, \ldots, a_{n} ; t\right) \mathrm{d} t
$$

where $f(\pm 1 ; t)=1 /(1 \mp t), \quad f(0 ; t)=1 / t$

The result is $f_{3}=\sum_{j=0} c_{j}(x, L) \epsilon^{j}$, with

$$
\begin{aligned}
c_{0}= & 4 \quad c_{1}=2 L, \quad c_{2}=-\frac{4}{3} \pi^{2}, \\
c_{3}= & \pi^{2} H_{1}(x)+2 H_{0,0,1}(x)-\frac{7}{6} \pi^{2} L+2 H_{0,1}(x) L+H_{1}(x) L^{2}-\frac{1}{3} L^{3}-\frac{34}{3} \zeta_{3}, \\
c_{4}= & -2 H_{1,0,0,1}(x)-2 H_{0,0,1,1}(x)-2 H_{0,1,0,1}(x)-2 H_{0,0,0,1}(x)-2 H_{0,1,1}(x) L \\
& -2 H_{1,0,1}(x) L+H_{0,1}(x) L^{2}-H_{1,1}(x) L^{2}+\frac{2}{3} H_{1}(x) L^{3}-\frac{1}{6} L^{4} \\
& -\pi^{2} H_{1,1}(x)+\pi^{2} H_{1}(x) L-\frac{1}{2} \pi^{2} L^{2}+2 H_{1}(x) \zeta_{3}-\frac{20}{3} L \zeta_{3}-\frac{41}{360} \pi^{4}+\cdots
\end{aligned}
$$

with $L=\log x$.

Massless three-loop four-point Feynman integrals on the light cone

(A)

(E)

$$
\begin{aligned}
& F_{a_{1}, \ldots, a_{15}}^{A}(s, t ; D)=\iiint \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \mathrm{~d}^{D} k_{3}}{\left(-k_{1}^{2}\right)^{a_{1}}\left[-\left(p_{1}+p_{2}+k_{1}\right)^{2}\right]^{a_{2}}\left(-k_{2}^{2}\right)^{a_{3}}} \\
& \times \frac{\left[-\left(k_{1}-p_{3}\right)^{2}\right]^{-a_{11}}\left[-\left(p_{1}+k_{2}\right)^{2}\right]^{-a_{12}}\left[-\left(k_{2}-p_{3}\right)^{2}\right]^{-a_{13}}}{\left[-\left(p_{1}+p_{2}+k_{2}\right)^{2}\right]^{a_{4}}\left(-k_{3}^{2}\right)^{a_{5}}\left[-\left(p_{1}+p_{2}+k_{3}\right)^{2}\right]^{a_{6}}\left[-\left(p_{1}+k_{1}\right)^{2}\right]^{a_{7}}} \\
& \times \frac{\left[-\left(p_{1}+k_{3}\right)^{2}\right]^{-a_{14}}\left[-\left(k_{1}-k_{3}\right)^{2}\right]^{-a_{15}}}{\left[-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{8}}\left[-\left(k_{2}-k_{3}\right)^{2}\right]^{a_{9}}\left[-\left(k_{3}-p_{3}\right)^{2}\right]_{10}^{a_{10}}}, \\
& \times \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \mathrm{~d}^{D} k_{3}}{F_{a_{1}, \ldots, a_{15}}^{E}(s, t ; D)=\iiint \frac{\left[-\left(k_{1}-k_{3}\right)^{2}\right]^{a_{1}}\left[-\left(p_{1}+k_{1}\right)^{2}\right]^{a_{2}}}{\left[-\left(p_{1}+p_{2}+k_{1}\right)^{2}\right]^{a_{3}}\left[-\left(p_{1}+p_{2}+k_{2}\right)^{2}\right]^{a_{4}}\left[-\left(k_{2}-p_{3}\right)^{2}\right]^{a_{5}}\left[-\left(k_{2}-k_{3}\right)^{2}\right]^{a}}} \begin{array}{c}
\left(-k_{1}^{2}\right)^{-a_{14}}\left(-k_{2}^{2}\right)^{-a_{15}} \\
\times \frac{\left(-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{7}}\left(-k_{3}^{2}\right)^{a_{8}\left[-\left(p_{1}+k_{3}\right)^{2}\right]^{a_{9}}\left[-\left(k_{3}-p_{3}\right)^{2}\right]^{a_{10}}} .}{\left[-p_{11}\left[-\left(p_{1}+k_{2}\right]^{-a_{12}}\left[-\left(k_{1} p_{3}^{2} a_{13}\right.\right.\right.\right.}
\end{array} .
\end{aligned}
$$

(1)
(2)
(3)
(4)

(6)
(7)
(8)
(9), (14)*

(12)
(13)

(18)*, (19)
(5)*

(10)

(22), (23)*

$$
f_{i}^{A}=\epsilon^{3}(-s)^{3 \epsilon} \frac{e^{3 \epsilon \gamma_{\mathrm{E}}}}{\left(i \pi^{D / 2}\right)^{3}} g_{i}^{A} .
$$

The factor $(-s)^{3 \epsilon}$ is to make the basis functions f_{i}^{A} dimensionless.
The factor ϵ^{3} ensures that all basis functions admit a Taylor expansion around $\epsilon=0$.

$$
\begin{aligned}
& g_{1}^{A}=t F_{0,0,0,0,0,0,2,2,2,1,0,0,0,0,0}^{A}, \quad g_{2}^{A}=s F_{0,2,0,0,1,0,0,2,2,0,0,0,0,0,0}^{A} \\
& g_{3}^{A}=\epsilon s F_{0,0,0,0,1,1,2,2,1,0,0,0,0,0,0}^{A}, \quad g_{4}^{A}=\epsilon s F_{0,0,0,1,2,0,2,1,1,0,0,0,0,0,0}^{A}, \\
& g_{5}^{A}=s F_{0,1,2,-1,0,1,0,2,2,0,0,0,0,0,0}^{A} \quad g_{6}^{A}=s^{2} F_{0,2,2,0,2,1,0,1,0,0,0,0,0,0,0}^{A}, \\
& g_{7}^{A}=\epsilon \operatorname{st} F_{0,0,0,0,1,1,2,2,1,1,0,0,0,0,0}^{A}, \quad g_{8}^{A}=\epsilon^{2}(s+t) F_{0,0,0,1,1,0,2,1,1,1,0,0,0,0,0}^{A}, \\
& g_{9}^{A}=\epsilon \operatorname{st} F_{0,0,1,1,0,0,2,1,1,2,0,0,0,0,0}^{A}, \quad g_{10}^{A}=\epsilon s^{2} F_{0,0,1,1,2,1,2,1,0,0,0,0,0,0,0}^{A}, \\
& g_{11}^{A}=\epsilon^{2}(s+t) F_{0,1,0,0,1,0,1,1,2,1,0,0,0,0,0}^{A}, \quad g_{12}^{A}=-\epsilon(2 \epsilon-1) s F_{1,1,0,0,1,1,0,2,1,0,0,0,0,0,0}^{A}, \\
& g_{13}^{A}=s^{3} F_{2,1,2,1,2,1,0,0,0,0,0,0,0,0,0}^{A}, \quad g_{14}^{A}=\epsilon s F_{0,0,1,1,0,0,2,1,1,2,0,0,-1,0,0}^{A}, \\
& g_{15}^{A}=\epsilon^{3} t{ }_{0,1,1,0,0,1,1,1,1,1,0,0,0,0,0}^{A}, \quad g_{16}^{A}=\epsilon^{2} s^{2} F_{0,1,2,0,0,1,1,1,1,1,0,0,0,0,0}^{A}, \\
& g_{17}^{A}=\epsilon^{3}{ }_{s} F_{0,1,1,0,1,1,1,1,1,0,0,0,0,0,0}^{A}, \quad g_{18}^{A}=\epsilon^{2} s^{2}{ }_{F} F_{0,0,1,1,1,1,2,1,1,1,0,0,-1,0,0}^{A}, \\
& g_{19}^{A}=\epsilon^{2} s^{2} t F_{0,0,1,1,1,1,2,1,1,1,0,0,0,0,0}^{A}, \quad g_{20}^{A}=\epsilon_{s(s+t) F_{0,1,1,0,1,1,1,1,1,1,0,0,0,0,0}^{A}, ~}^{\text {s }} \\
& g_{21}^{A}=\epsilon^{2} s^{2} t F_{0,1,1,0,1,1,1,2,1,1,0,0,0,0,0}^{A}, \quad g_{22}^{A}=\epsilon^{2} s^{2} t F_{1,1,0,0,1,1,1,2,1,1,0,0,0,0,0}^{A}, \\
& g_{23}^{A}=\epsilon^{2} s^{2} F_{1,1,0,0,1,1,1,2,1,1,-1,0,0,0,0}^{A}, \quad g_{24}^{A}=\epsilon_{s}^{3}{ }^{3}{ }_{t} F_{1,1,1,1,1,1,1,1,1,1,0,0,0,0,0}^{A}, \\
& g_{25}^{A}=\epsilon^{3}{ }_{s}^{3} F_{1,1,1,1,1,1,1,1,1,1,-1,0,0,0,0}^{A}, \quad g_{26}^{A}=\epsilon_{s}^{3}{ }_{s}^{3} F_{1,1,1,1,1,1,1,1,1,1,0,0,-1,0,0}^{A}
\end{aligned}
$$

With the variable $x=t / s$, the differential equations take the following form,

$$
\partial_{x} f(x, \epsilon)=\epsilon\left(\frac{a}{x}+\frac{b}{1+x}\right) f(x, \epsilon) .
$$

where a and b are $N \times N$ matrices with constant indices, with $N=26$ and $N=41$, respectively for cases A and E.

With the variable $x=t / s$, the differential equations take the following form,

$$
\partial_{x} f(x, \epsilon)=\epsilon\left(\frac{a}{x}+\frac{b}{1+x}\right) f(x, \epsilon) .
$$

where a and b are $N \times N$ matrices with constant indices, with $N=26$ and $N=41$, respectively for cases A and E. A particular case of the Knizhnik-Zamolodchikov equation.

With the variable $x=t / s$, the differential equations take the following form,

$$
\partial_{x} f(x, \epsilon)=\epsilon\left(\frac{a}{x}+\frac{b}{1+x}\right) f(x, \epsilon) .
$$

where a and b are $N \times N$ matrices with constant indices, with $N=26$ and $N=41$, respectively for cases A and E. A particular case of the Knizhnik-Zamolodchikov equation.
The matrices a and b for case A are on the next slide.

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 & 2 & 0 \\
\frac{1}{6} & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{12} & 0 & 0 & -2 & -\frac{2}{3} & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -4 & \frac{16}{3} & 0 & 0 & 0 & 0 \\
-\frac{23}{27} & -\frac{17}{54} & \frac{1}{6} & \frac{56}{9} & \frac{14}{9} & -\frac{1}{6} & 1 & \frac{20}{3} \\
\frac{28}{9} & -\frac{1}{9} & -7 & -\frac{40}{3} & -4 & -2 & -3 & -16 \\
0 & -\frac{1}{3} & -6 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{17}{9} & -7 & \frac{40}{3} & \frac{28}{9} & 7 & 0 & 0 \\
-\frac{28}{9} & -\frac{16}{9} & 6 & \frac{32}{3} & \frac{8}{9} & -5 & 3 & 16 \\
0 & 0 & 0 & 0 & 0 & -3 & 0 & 0
\end{array}\right. \\
& 00000000000000000 r 00000000 \\
& \begin{array}{lll}
1 \\
1 \\
0 & 00000 & 1 \\
N
\end{array} 00000000000000000 \\
& \text { N N N O } \frac{\text { L }}{\text { N }} N 0000000000000000000 \\
& 0 \omega_{\omega}^{1} \omega 000000000000000000000 \\
& \begin{array}{l}
1 \\
\text { N N N N O }
\end{array} \\
& 000000000000 \vdash 0000 \stackrel{1}{\Perp} 00000000 \\
& 0 \wedge 000 \underset{\perp}{\|} 0000 \stackrel{\perp}{\perp} 00000000000000
\end{aligned}
$$

$$
\begin{aligned}
& 0 \frac{1}{0} 00000 \frac{1}{\omega} 000000000000000000 \\
& 0000000 \vdash 000000000000000000 \\
& 0 \stackrel{\text { N }}{\text { N }} 000 \frac{\text { N }}{N} \text { N } 0000000000000000000 \\
& 01_{N} 000 N_{N H}^{1} 0000000000000000000 \\
& 00000000000000000000000000 \\
& 000-\frac{1}{\omega} 000000000000000000000 \\
& 00000000000000000000000000 \\
& \begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-2 \\
0 \\
0
\end{array} \\
& \left.\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-2 \\
2 \\
0
\end{array}\right)
\end{aligned}
$$

Three singularities, at $x=0, x=-1$, and $x=\infty$ corresponding to the limits $s=0, u=0$, and $t=0$, respectively.

Three singularities, at $x=0, x=-1$, and $x=\infty$ corresponding to the limits $s=0, u=0$, and $t=0$, respectively.
A solution near $D=4$ dimensions, so we parametrize, e.g. for family A,

$$
f_{i}^{A}(x, \epsilon)=\sum_{j=0}^{6} \epsilon^{j} f_{i}^{A, j}(x)+\mathcal{O}\left(\epsilon^{7}\right) .
$$

Three singularities, at $x=0, x=-1$, and $x=\infty$ corresponding to the limits $s=0, u=0$, and $t=0$, respectively.
A solution near $D=4$ dimensions, so we parametrize, e.g. for family A,

$$
f_{i}^{A}(x, \epsilon)=\sum_{j=0}^{6} \epsilon^{j} f_{i}^{A, j}(x)+\mathcal{O}\left(\epsilon^{7}\right)
$$

The iterative solution in ϵ for all functions f_{i} can be expressed in terms of harmonic polylogarithms of argument x and with indices drawn from $0,-1$, up to boundary constants.

For planar graphs we expect the limit $u \rightarrow 0$, i.e. $x \rightarrow-1$ to be finite. The solution should be real for $x>0$, i.e. when s and t have the same sign.

For planar graphs we expect the limit $u \rightarrow 0$, i.e. $x \rightarrow-1$ to be finite.
The solution should be real for $x>0$, i.e. when s and t have the same sign.
These conditions fix almost everything: the only additional information needed can easily be obtained from f_{1} :

$$
\begin{aligned}
f_{1}^{A}= & e^{3 \epsilon \gamma_{\Xi}} \Gamma^{4}(1-\epsilon) \Gamma(1+3 \epsilon) / \Gamma(1-4 \epsilon) \\
= & 1-\epsilon^{2} \frac{\pi^{2}}{4}-29 \epsilon^{3} \zeta_{3}-\epsilon^{4} \frac{71}{160} \pi^{4}+\epsilon^{5}\left(\frac{29}{4} \pi^{2} \zeta_{3}-\frac{1263}{5} \zeta_{5}\right) \\
& +\epsilon^{6}\left(-\frac{11539}{24192} \pi^{6}+\frac{841}{2} \zeta_{3}^{2}\right)+\mathcal{O}\left(\epsilon^{7}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& f_{26}^{A}(x, \epsilon)=-\frac{4}{9}+\frac{13 \pi^{2} \epsilon^{2}}{36}+\frac{1}{2} \epsilon H_{\{0\}}(x) \\
& +\epsilon^{3}\left(\frac{9}{4} \pi^{2} H_{\{-1\}}(x)-\frac{15}{8} \pi^{2} H_{\{0\}}(x)+\frac{9}{2} H_{\{-1,0,0\}}(x)\right. \\
& \left.-\frac{9}{2} H_{\{0,0,0\}}(x)-\frac{71 \zeta_{3}}{18}\right) \\
& +\epsilon^{4}\left(\frac{61 \pi^{4}}{720}+\frac{21}{4} \pi^{2} H_{\{-1,-1\}}(x)-\frac{25}{4} \pi^{2} H_{\{-1,0\}}(x)\right. \\
& -\frac{21}{4} \pi^{2} H_{\{0,-1\}}(x)+\frac{25}{4} \pi^{2} H_{\{0,0\}}(x) \\
& +\frac{21}{2} H_{\{-1,-1,0,0\}}(x)-27 H_{\{-1,0,0,0\}}(x) \\
& -\frac{21}{2} H_{\{0,-1,0,0\}}(x)+27 H_{\{0,0,0,0\}}(x)+\frac{21}{2} H_{\{-1\}}(x) \zeta_{3} \\
& \left.-2 H_{\{0\}}(x) \zeta_{3}\right)+\ldots
\end{aligned}
$$

Two-loop four-point Feynman integrals for Bhabha scattering

(1)

(2a)

Two-loop four-point Feynman integrals for Bhabha scattering

(1)

(2a)

$$
\begin{aligned}
& G_{a_{1}, \ldots, a_{4}}\left(s, t, m^{2} ; D\right) \\
& =\int \frac{\mathrm{d}^{D} k}{\left[-k^{2}+m^{2}\right]^{a_{1}}\left[-\left(k+p_{1}\right)^{2}\right]^{a_{2}}\left[-\left(k+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{3}}\left[-\left(k-p_{3}\right)^{2}\right]^{a_{4}}},
\end{aligned}
$$

$$
\begin{gathered}
G_{a_{1}, a_{2}, \ldots, a_{9}}\left(s, t, m^{2} ; D\right)=\iint \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2}}{\left(-k_{1}^{2}+m^{2}\right)^{a_{1}}\left[-\left(k_{1}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{2}}} \\
\times \frac{\left[-\left(k_{2}+p_{1}\right)^{2}\right]^{-a_{8}}\left[-\left(k_{1}-p_{3}\right)^{2}\right]^{-a_{9}}}{\left[-k_{2}^{2}+m^{2}\right]^{a_{3}}\left[-\left(k_{2}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{4}}\left[-\left(k_{1}+p_{1}\right)^{2}\right]^{a_{5}}\left[-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{6}}\left[-\left(k_{2}-p_{3}\right)\right.}
\end{gathered}
$$

$$
\begin{gathered}
G_{a_{1}, a_{2}, \ldots, a_{9}}\left(s, t, m^{2} ; D\right)=\iint \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2}}{\left(-k_{1}^{2}+m^{2}\right)^{a_{1}}\left[-\left(k_{1}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{2}}} \\
\times \frac{\left[-\left(k_{2}+p_{1}\right)^{2}\right]^{-a_{8}}\left[-\left(k_{1}-p_{3}\right)^{2}\right]^{-a_{9}}}{\left[-k_{2}^{2}+m^{2}\right]^{a_{3}}\left[-\left(k_{2}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{4}}\left[-\left(k_{1}+p_{1}\right)^{2}\right]^{a_{5}}\left[-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{6}}\left[-\left(k_{2}-p_{3}\right)\right.}
\end{gathered}
$$

Results for some of the master integrals for 2 a
[VS'02, G. Heinrich \& VS'04, M. Czakon, J. Gluza \& T. Riemann'04-06]

$$
\begin{gathered}
G_{a_{1}, a_{2}, \ldots, a_{9}}\left(s, t, m^{2} ; D\right)=\iint \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2}}{\left(-k_{1}^{2}+m^{2}\right)^{a_{1}}\left[-\left(k_{1}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{2}}} \\
\times \frac{\left[-\left(k_{2}+p_{1}\right)^{2}\right]^{-a_{8}}\left[-\left(k_{1}-p_{3}\right)^{2}\right]^{-a_{9}}}{\left[-k_{2}^{2}+m^{2}\right]^{a_{3}}\left[-\left(k_{2}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{4}}\left[-\left(k_{1}+p_{1}\right)^{2}\right]^{a_{5}}\left[-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{6}}\left[-\left(k_{2}-p_{3}\right)\right.}
\end{gathered}
$$

Results for some of the master integrals for 2 a
[VS'02, G. Heinrich \& VS'04, M. Czakon, J. Gluza \& T. Riemann'04-06]

$$
\frac{-s}{m^{2}}=\frac{(1-x)^{2}}{x}, \quad \frac{-t}{m^{2}}=\frac{(1-y)^{2}}{y}
$$

$$
\begin{gathered}
G_{a_{1}, a_{2}, \ldots, a_{9}}\left(s, t, m^{2} ; D\right)=\iint \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2}}{\left(-k_{1}^{2}+m^{2}\right)^{a_{1}}\left[-\left(k_{1}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{2}}} \\
\times \frac{\left[-\left(k_{2}+p_{1}\right)^{2}\right]^{-a_{8}}\left[-\left(k_{1}-p_{3}\right)^{2}\right]^{-a_{9}}}{\left[-k_{2}^{2}+m^{2}\right]^{a_{3}}\left[-\left(k_{2}+p_{1}+p_{2}\right)^{2}+m^{2}\right]^{a_{4}}\left[-\left(k_{1}+p_{1}\right)^{2}\right]^{a_{5}}\left[-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{6}}\left[-\left(k_{2}-p_{3}\right)\right.}
\end{gathered}
$$

Results for some of the master integrals for 2 a
[VS'02, G. Heinrich \& VS'04, M. Czakon, J. Gluza \& T. Riemann'04-06]

$$
\frac{-s}{m^{2}}=\frac{(1-x)^{2}}{x}, \quad \frac{-t}{m^{2}}=\frac{(1-y)^{2}}{y}
$$

Due to invariance under inversions of x and y, it is sufficient to consider $|x|<1,|y|<1$.

Singular points

$x=0 \leftrightarrow s=\infty, \quad x=1 \leftrightarrow s=0 \quad x=-1 \leftrightarrow s=4 m^{2}$
A branch cut in the s-channel starting at $s=4 m^{2}$ and a branch cut in the t-channel starting at $t=0$

Singular points
$x=0 \leftrightarrow s=\infty, \quad x=1 \leftrightarrow s=0 \quad x=-1 \leftrightarrow s=4 m^{2}$
A branch cut in the s-channel starting at $s=4 m^{2}$ and a branch cut in the t-channel starting at $t=0$
No branch cuts at $u=0$, where $s+t+u=4 m^{2}$, and hence
$x=-y$.
No singularity at $s=0$

Singular points
$x=0 \leftrightarrow s=\infty, \quad x=1 \leftrightarrow s=0 \quad x=-1 \leftrightarrow s=4 m^{2}$
A branch cut in the s-channel starting at $s=4 m^{2}$ and a branch cut in the t-channel starting at $t=0$
No branch cuts at $u=0$, where $s+t+u=4 m^{2}$, and hence
$x=-y$.
No singularity at $s=0$
The analytic result should be real-valued in the $s<0, t<0$, i.e. $0<x<1,0<y<1$.

(b) (1)
(b) (2)
(b) (3)
(b) (4)
(b) (5)

$$
f_{i}=\left(m^{2}\right)^{\epsilon} e^{2 \epsilon \gamma_{\mathrm{E}}} g_{i}
$$

with

$$
\begin{aligned}
& g_{1}=\epsilon G_{2,0,0,0} \\
& g_{2}=\epsilon t G_{0,2,0,1} \\
& g_{3}=\epsilon \sqrt{(-s)\left(4 m^{2}-s\right)} G_{2,0,1,0} \\
& g_{4}=-2 \epsilon^{2}\left(4 m^{2}-t\right)(-t) G_{1,1,0,1} \\
& g_{5}=-2 \epsilon^{2} \sqrt{(-s)\left(4 m^{2}-s\right)} t G_{1,1,1,1}
\end{aligned}
$$

The normalization is such that

$$
f_{i}=\sum_{k \geq 0} \epsilon^{k} f_{i}^{(k)}
$$

The normalization is such that

$$
f_{i}=\sum_{k \geq 0} \epsilon^{k} f_{i}^{(k)}
$$

$$
f_{1}=\epsilon \Gamma(\epsilon) e^{\epsilon \gamma_{\mathrm{E}}}
$$

$$
f_{2}=-\epsilon \frac{\Gamma(1-\epsilon) \Gamma(-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)}\left(\frac{y}{(1-y)^{2}}\right)^{\epsilon} e^{\epsilon \gamma_{\mathrm{E}}}
$$

The normalization is such that

$$
\begin{gathered}
f_{i}=\sum_{k \geq 0} \epsilon^{k} f_{i}^{(k)} . \\
f_{1}=\epsilon \Gamma(\epsilon) e^{\epsilon \gamma_{\mathrm{E}}}, \\
f_{2}=-\epsilon \frac{\Gamma(1-\epsilon) \Gamma(-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)}\left(\frac{y}{(1-y)^{2}}\right)^{\epsilon} e^{\epsilon \gamma_{\mathrm{E}}} .
\end{gathered}
$$

We obtain

$$
\mathbf{d} f=\epsilon \mathbf{d} \tilde{A} f
$$

$$
\begin{aligned}
& \tilde{A}=\left[\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0
\end{array}\right) \log x+\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -8 & 0 & -2
\end{array}\right) \log (1+x)+\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 & 0 \\
0 & -4 & 0 & 0
\end{array}\right) \log y\right. \\
& +\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \log (1+y)+\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right) \log (1-y)+ \\
& \left.+\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 1
\end{array}\right) \log (x+y)+\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & -2 & 1
\end{array}\right) \log (1+x y)\right] .
\end{aligned}
$$

A solution in terms of Chen iterated integrals

$$
f(x, y, \epsilon)=\mathbb{P} e^{\epsilon \int_{C} d \tilde{A}} g(\epsilon),
$$

which can be evaluated in terms of multiple polylogarithms. For example,

A solution in terms of Chen iterated integrals

$$
f(x, y, \epsilon)=\mathbb{P} e^{\epsilon \int_{C} d \tilde{A}} g(\epsilon),
$$

which can be evaluated in terms of multiple polylogarithms. For example,

$$
\begin{aligned}
f_{5}= & {\left[4 H_{0}(x)\right]+\epsilon^{2}\left[4 G_{0}(y) H_{0}(x)-8 G_{1}(y) H_{0}(x)\right] } \\
& +\epsilon^{3}\left[-8 G_{0}(y) H_{-1,0}(x)+4 G_{0}(y) H_{0,0}(x)-8 H_{0}(x) G_{1,0}(y)+16 H_{0}(x) G_{1,1}(y)\right. \\
& +4 H_{0}(x) G_{-\frac{1}{x}, 0}(y)-8 H_{0}(x) G_{-\frac{1}{x}, 1}(y)+4 H_{0}(x) G_{-x, 0}(y)-8 H_{0}(x) G_{-x, 1}(y) \\
& +8 H_{-1,0}(x) G_{-\frac{1}{x}}(y)+8 H_{-1,0}(x) G_{-x}(y)-4 H_{0,0}(x) G_{-\frac{1}{x}}(y)-4 H_{0,0}(x) G_{-x}(y) \\
& +4 G_{-\frac{1}{x}, 0,0}(y)-8 G_{-\frac{1}{x}, 0,1}(y)-4 G_{-x, 0,0}(y)+8 G_{-x, 0,1}(y)+8 H_{-2,0}(x) \\
& -16 H_{-1,-1,0}(x)+8 H_{-1,0,0}(x)-4 H_{0,0,0}(x)+\frac{10}{3} \pi^{2} G_{-\frac{1}{x}}(y)-2 \pi^{2} G_{-x}(y) \\
& \left.-\frac{2}{3} \pi^{2} G_{0}(y)-\frac{4}{3} \pi^{2} H_{-1}(x)-\frac{7}{3} \pi^{2} H_{0}(x)+8 \zeta_{3}\right]+\mathcal{O}\left(\epsilon^{4}\right) .
\end{aligned}
$$

$$
G\left(a_{1}, \ldots a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)
$$

with

$$
G\left(a_{1} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}}, \quad a_{1} \neq 0
$$

For $a_{1}=0$, we have $G\left(\overrightarrow{0}_{n} ; x\right)=\frac{1}{n!} \log ^{n}(x)$.
(1)
(2)
(3)
(4)
$(5)^{\dagger}$

(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
$(14)^{\dagger}$
(15), $(16)^{\dagger}$
$(17),(18)^{\dagger}$

(20), (21) ${ }^{\dagger}$

$$
\mathbf{d} f=\epsilon \mathbf{d} \tilde{A} f
$$

with

$$
\mathbf{d} f=\epsilon \mathbf{d} \tilde{A} f
$$

with

$$
\begin{aligned}
\tilde{A}= & B_{1} \log (x)+B_{2} \log (1+x)+B_{3} \log (1-x)+B_{4} \log (y)+B_{5} \log (1+y) \\
& +B_{6} \log (1-y)+B_{7} \log (x+y)+B_{8} \log (1+x y) \\
& +B_{9} \log \left(x+y-4 x y+x^{2} y+x y^{2}\right)+B_{10} \log \left(\frac{1+Q}{1-Q}\right) \\
& +B_{11} \log \left(\frac{(1+x)+(1-x) Q}{(1+x)-(1-x) Q}\right)+B_{12} \log \left(\frac{(1+y)+(1-y) Q}{(1+y)-(1-y) Q}\right)
\end{aligned}
$$

$$
\mathbf{d} f=\epsilon \mathbf{d} \tilde{A} f
$$

with

$$
\begin{aligned}
\tilde{A}= & B_{1} \log (x)+B_{2} \log (1+x)+B_{3} \log (1-x)+B_{4} \log (y)+B_{5} \log (1+y) \\
& +B_{6} \log (1-y)+B_{7} \log (x+y)+B_{8} \log (1+x y) \\
& +B_{9} \log \left(x+y-4 x y+x^{2} y+x y^{2}\right)+B_{10} \log \left(\frac{1+Q}{1-Q}\right) \\
& +B_{11} \log \left(\frac{(1+x)+(1-x) Q}{(1+x)-(1-x) Q}\right)+B_{12} \log \left(\frac{(1+y)+(1-y) Q}{(1+y)-(1-y) Q}\right)
\end{aligned}
$$

$$
Q=\sqrt{\frac{(x+y)(1+x y)}{x+y-4 x y+x^{2} y+x y^{2}}}
$$

- At order ϵ, ϵ^{2} and ϵ^{3}, the arguments of the logarithms in \tilde{A} are the same as at one loop.
- At order ϵ^{4} all basis functions except f_{11} have arguments as at one loop.
- At order ϵ, ϵ^{2} and ϵ^{3}, the arguments of the logarithms in \tilde{A} are the same as at one loop.
- At order ϵ^{4} all basis functions except f_{11} have arguments as at one loop.

For example,

$$
\begin{aligned}
f_{23}= & \epsilon^{2}\left[-12 H_{0,0}(x)\right]+\epsilon^{3}\left[-16 G_{0}(y) H_{0,0}(x)+32 G_{1}(y) H_{0,0}(x)+8 H_{2,0}(x)\right. \\
& \left.+16 H_{-1,0,0}(x)-4 H_{0,0,0}(x)+\frac{4}{3} \pi^{2} H_{0}(x)+4 \zeta_{3}\right]+\epsilon^{4}\left[32 G_{0}(y) H_{-2,0}(x)\right. \\
& -32 H_{-2,0}(x) G_{-\frac{1}{x}}(y)-32 H_{-2,0}(x) G_{-x}(y)+64 G_{1,0}(y) H_{0,0}(x)-128 G_{1,1}(y) H_{0,0}(x) \\
& -32 H_{0,0}(x) G_{-\frac{1}{x}, 0}(y)+64 H_{0,0}(x) G_{-\frac{1}{x}, 1}(y)-32 H_{0,0}(x) G_{-x, 0}(y) \\
& +64 H_{0,0}(x) G_{-x, 1}(y)-16 H_{0}(x) G_{-\frac{1}{x}, 0,0}(y)+32 H_{0}(x) G_{-\frac{1}{x}, 0,1}(y) \\
& +16 H_{0}(x) G_{-x, 0,0}(y)-32 H_{0}(x) G_{-x, 0,1}(y)+64 G_{0}(y) H_{-1,0,0}(x) \\
& -64 H_{-1,0,0}(x) G_{-\frac{1}{x}}(y)-64 H_{-1,0,0}(x) G_{-x}(y) \\
& -48 G_{0}(y) H_{0,0,0}(x)+48 H_{0,0,0}(x) G_{-\frac{1}{x}}(y)+48 H_{0,0,0}(x) G_{-x}(y)-120 H_{-3,0}(x) \\
& +\frac{52}{3} \pi^{2} H_{0,0}(x)+48 H_{3,0}(x)+128 H_{-2,-1,0}(x)-120 H_{-2,0,0}(x)-48 H_{-2,1,0}(x) \\
& +64 H_{-1,-2,0}(x)-32 H_{-1,2,0}(x)-48 H_{2,-1,0}(x)+32 H_{2,0,0}(x)+16 H_{2,1,0}(x) \\
& +64 H_{-1,-1,0,0}(x)-80 H_{-1,0,0,0}(x)+76 H_{0,0,0,0}(x)+\frac{8}{3} \pi^{2} G_{0}(y) H_{0}(x) \\
& -\frac{40}{3} \pi^{2} H_{0}(x) G_{-} \frac{1}{x}(y)+8 \pi^{2} H_{0}(x) G_{-x}(y)-16 \zeta_{3} H_{-1}(x)-28 \zeta_{3} H_{0}(x) \\
& \left.+\frac{8}{3} \pi^{2} H_{-2}(x)-\frac{4}{3} \pi^{2} H_{2}(x)-\frac{4 \pi^{4}}{15}\right]+\mathcal{O}_{\left(\epsilon^{5}\right)}
\end{aligned}
$$

Evaluating single-scale diagrams by DE

Evaluating single-scale diagrams by DE

A three-loop form-factor integral called A_{92}.
[J.M. Henn, A. Smirnov \& V.S.'13]

Evaluating single-scale diagrams by DE

A three-loop form-factor integral called A_{92}.
[J.M. Henn, A. Smirnov \& V.S.'13]
$p_{2}^{2}=0 \rightarrow p_{2}^{2} \neq 0$, with $x=p_{2}^{2} / q^{2}$.

$$
K_{4}
$$

A straightforward strategy to evaluate Feynman integrals: integrate consecutively over Feynman parameters
[F. Brown'09]

A straightforward strategy to evaluate Feynman integrals: integrate consecutively over Feynman parameters
[F. Brown'09]
Results obtained within this scenario
[E. Panzer'13]

A straightforward strategy to evaluate Feynman integrals: integrate consecutively over Feynman parameters
[F. Brown'09]
Results obtained within this scenario
[E. Panzer'13]
Computer codes to perform such parametric integration
[C. Duhr, E. Panzer]

A straightforward strategy to evaluate Feynman integrals: integrate consecutively over Feynman parameters
[F. Brown'09]
Results obtained within this scenario
[E. Panzer'13]
Computer codes to perform such parametric integration
[C. Duhr, E. Panzer]
An attempt to evaluate K_{4} with all the external momenta on the light cone
[C. Bogner \& M. Lüders'13]

$$
\begin{aligned}
& F_{a_{1}, \ldots, a_{15}}^{C}(s, t ; D)=\frac{1}{\left(i \pi^{D / 2}\right)^{3}} \iiint \frac{\mathrm{~d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \mathrm{~d}^{D} k_{3}}{\left(-k_{1}^{2}\right)^{a_{1}}\left[-\left(p_{1}+p_{2}+k_{1}\right)^{2}\right]^{a_{2}}\left[-\left(k_{1}+k_{3}\right)^{2}\right]^{a_{3}}} \\
& \quad \times \frac{\left[-\left(k_{1}+k_{2}\right)^{2}\right]^{-a_{11}}\left[-\left(p_{1}+k_{3}\right)^{2}\right]^{-a_{12}}\left[-\left(p_{1}+k_{2}\right)^{2}\right]^{-a_{13}}}{\left[-\left(p_{1}+p_{2}+k_{1}+k_{2}\right)^{2}\right]^{a_{4}}\left[-\left(k_{1}+k_{2}+k_{3}\right)^{2}\right]^{a_{5}}\left[-\left(p_{1}+p_{2}+k_{1}+k_{2}+k_{3}\right)^{2} a_{6}\right.} \\
& \quad \times \frac{\left[-\left(p_{3}+k_{1}\right)^{2}\right]^{-a_{14}}\left[-\left(p_{3}+k_{3}\right)^{2}\right]^{-a_{15}}}{\left(-k_{3}^{2}\right)^{a_{7}}\left(-k_{2}^{2}\right)^{a_{8}}\left[-\left(p_{1}+k_{1}\right)^{2}\right]^{a_{9}}\left[-\left(k_{1}+k_{2}+k_{3}-p_{3}\right)^{2}\right]^{a_{10}}} .
\end{aligned}
$$

$$
\begin{aligned}
& F_{a_{1}, \ldots, a_{15}}^{C}(s, t ; D)=\frac{1}{\left(i \pi^{D / 2}\right)^{3}} \iiint \frac{\mathrm{~d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \mathrm{~d}^{D} k_{3}}{\left(-k_{1}^{2}\right)^{a_{1}}\left[-\left(p_{1}+p_{2}+k_{1}\right)^{2}\right]^{a_{2}}\left[-\left(k_{1}+k_{3}\right)^{2}\right]^{a_{3}}} \\
& \quad \times \frac{\left[-\left(k_{1}+k_{2}\right)^{2}\right]^{-a_{11}}\left[-\left(p_{1}+k_{3}\right)^{2}\right]^{-a_{12}}\left[-\left(p_{1}+k_{2}\right)^{2}\right]^{-a_{13}}}{\left[-\left(p_{1}+p_{2}+k_{1}+k_{2}\right)^{2}\right]^{a_{4}}\left[-\left(k_{1}+k_{2}+k_{3}\right)^{2}\right]^{a_{5}}\left[-\left(p_{1}+p_{2}+k_{1}+k_{2}+k_{3}\right)^{2}\right]^{a_{6}}} \\
& \quad \times \frac{\left[-\left(p_{3}+k_{1}\right)^{2}\right]^{-a_{14}}\left[-\left(p_{3}+k_{3}\right)^{2}\right]^{-a_{15}}}{\left(-k_{3}^{2}\right)^{a_{7}}\left(-k_{2}^{2}\right)^{a_{8}}\left[-\left(p_{1}+k_{1}\right)^{2}\right]^{a_{9}}\left[-\left(k_{1}+k_{2}+k_{3}-p_{3}\right)^{2}\right]^{a_{10}}} .
\end{aligned}
$$

$$
K_{a_{1}, a_{2}, \ldots, a_{6}}=F_{0,0, a_{1}, a_{2}, 0,0, a_{3}, a_{4}, a_{5}, a_{6}, 0, \ldots, 0}^{C}
$$

$$
\hat{K}_{a_{1}, a_{2}, \ldots, a_{6}, a^{\prime}}=F_{0, a^{\prime}, a_{1}, a_{2}, 0,0, a_{3}, a_{4}, a_{5}, a_{6}, 0, \ldots, 0}^{C}
$$

where $a^{\prime} \leq 0$.

We choose a UT basis

$$
f=e^{3 \epsilon \gamma_{E}}(-s)^{-3 \epsilon} g=\left(f_{1}, f_{2}, \ldots, f_{10}\right)
$$

$$
\begin{array}{ll}
g_{1}=\epsilon^{3} t K_{0,0,1,2,2,2}, & g_{2}=\epsilon^{3}(s+t) K_{1,2,0,0,2,2}, \\
g_{3}=\epsilon^{3} s K_{1,2,2,2,0,0}, & g_{4}=2 \epsilon^{4}(s+t) \hat{K}_{1,2,1,1,2,1,-1}+2 \epsilon^{5} s K_{2,1,1,1,1,1}, \\
g_{5}=4 \epsilon^{5} t K_{2,1,1,1,1,1}, & g_{6}=4 \epsilon^{5}(s+t) K_{1,1,2,1,1,1}, \\
g_{7}=4 \epsilon^{5} s K_{1,1,1,1,2,1}, & g_{8}=-2 \epsilon^{4} s(s+t) K_{2,2,1,1,1,1}, \\
g_{9}=-2 \epsilon^{4} s t K_{1,1,2,2,1,1}, \quad g_{10}=-2 \epsilon^{4}(s+t) t K_{1,1,1,1,2,2},
\end{array}
$$

We choose a UT basis

$$
f=e^{3 \epsilon \gamma_{E}}(-s)^{-3 \epsilon} g=\left(f_{1}, f_{2}, \ldots, f_{10}\right)
$$

$g_{1}=\epsilon^{3} t K_{0,0,1,2,2,2}, \quad g_{2}=\epsilon^{3}(s+t) K_{1,2,0,0,2,2}$,
$g_{3}=\epsilon^{3} s K_{1,2,2,2,0,0}, \quad g_{4}=2 \epsilon^{4}(s+t) \hat{K}_{1,2,1,1,2,1,-1}+2 \epsilon^{5} s K_{2,1,1,1,1,1}$,
$g_{5}=4 \epsilon^{5} t K_{2,1,1,1,1,1}, \quad g_{6}=4 \epsilon^{5}(s+t) K_{1,1,2,1,1,1,}$,
$g_{7}=4 \epsilon^{5} s K_{1,1,1,1,2,1}, \quad g_{8}=-2 \epsilon^{4} s(s+t) K_{2,2,1,1,1,1}$,
$g_{9}=-2 \epsilon^{4} s t K_{1,1,2,2,1,1}, \quad g_{10}=-2 \epsilon^{4}(s+t) t K_{1,1,1,1,2,2}$,
DE

$$
\partial_{x} f(x, \epsilon)=\epsilon\left[\frac{A}{x}+\frac{B}{1+x}\right] f(x, \epsilon) .
$$

$$
A=\left(\begin{array}{cccccccccc}
-3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{2}{3} & \frac{2}{3} & -\frac{1}{6} & 1 & \frac{1}{3} & -\frac{1}{3} & -\frac{7}{6} & \frac{1}{12} & -\frac{1}{12} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & 4 & 5 & -3 & -3 & -\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{5}{3} & \frac{1}{3} & 4 & \frac{7}{3} & -\frac{7}{3} & -\frac{11}{3} & -\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
-\frac{4}{3} & \frac{10}{3} & -\frac{10}{3} & 0 & \frac{20}{3} & \frac{10}{3} & -\frac{10}{3} & \frac{5}{3} & -\frac{2}{3} & \frac{2}{3} \\
-\frac{14}{3} & \frac{8}{3} & \frac{4}{3} & 8 & \frac{22}{3} & -\frac{16}{3} & -\frac{20}{3} & -\frac{2}{3} & -\frac{7}{3} & \frac{4}{3} \\
\frac{10}{3} & \frac{8}{3} & \frac{4}{3} & 8 & \frac{22}{3} & -\frac{16}{3} & -\frac{20}{3} & -\frac{2}{3} & \frac{2}{3} & -\frac{5}{3}
\end{array}\right),
$$

The first three integrals can be expressed in terms of gamma functions.

The first three integrals can be expressed in terms of gamma functions.
Using the limit $x \rightarrow 0$ to fix boundary conditions.
An interplay with expansion by regions which gives contributions with $x^{0 \epsilon}$ ($\mathrm{h}-\mathrm{h}-\mathrm{h}$) and $x^{-3 \epsilon}$ ($\mathrm{c}-\mathrm{c}-\mathrm{c}$).

The first three integrals can be expressed in terms of gamma functions.
Using the limit $x \rightarrow 0$ to fix boundary conditions.
An interplay with expansion by regions which gives contributions with $x^{0 \epsilon}$ ($\mathrm{h}-\mathrm{h}-\mathrm{h}$) and $x^{-3 \epsilon}$ (c-c-c).
Terms with $x^{k \epsilon}$ at $k>0$ are absent!
It was possible to evaluate the LO (c-c-c) terms analytically. For example, for $K_{2,2,1,1,1,1}$:
$x^{-3 \epsilon}\left[-\frac{421}{5} \zeta_{5} \log (x)+\frac{29}{12} \pi^{2} \zeta_{3} \log (x)-\frac{421 i \pi \zeta_{5}}{10}+\frac{5597 \zeta(3)^{2}}{36}\right.$

$$
\left.+\frac{29}{24} i \pi^{3} \zeta_{3}+\frac{31601 \pi^{6}}{2177280}+O(x)\right]
$$

An example of result

$$
K^{(0)}(x, \epsilon)=e^{3 \epsilon \gamma_{E}}(-s)^{-3 \epsilon}(1-4 \epsilon)(1-5 \epsilon) \epsilon^{4} K_{1,1,1,1,1,1}(x, \epsilon)
$$

An example of result

$$
K^{(0)}(x, \epsilon)=e^{3 \epsilon \gamma_{E}}(-s)^{-3 \epsilon}(1-4 \epsilon)(1-5 \epsilon) \epsilon^{4} K_{1,1,1,1,1,1}(x, \epsilon)
$$

$$
\begin{aligned}
& K^{(0)}(x, \epsilon)=2 \zeta_{3} \epsilon^{3} \\
& \quad+\epsilon^{4}\left[3 i \pi \zeta_{3}+\frac{3 \pi^{4}}{20}+2 i \pi H_{-3}(x)+\frac{1}{2} \pi^{2} H_{-2}(x)-\frac{1}{2} i \pi^{3} H_{-1}(x)-3 H_{-1}(x) \zeta_{3}\right. \\
& -2 H_{-3,-1}(x)+H_{-2,-2}(x)-i \pi H_{-2,0}(x)+H_{-1,-3}(x)-\pi^{2} H_{-1,-1}(x) \\
& \left.+\frac{1}{2} \pi^{2} H_{-1,0}(x)+H_{-2,-1,0}(x)+H_{-1,-2,0}(x)-i \pi H_{-1,0,0}(x)-2 H_{-1,-1,0,0}(x)\right] \\
& +\mathcal{O}\left(\epsilon^{5}\right) .
\end{aligned}
$$

Massless four-point integrals with two off-shell legs

Massless four-point integrals with two off-shell legs

NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions.

Massless four-point integrals with two off-shell legs

NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. Planar diagrams

Massless four-point integrals with two off-shell legs

NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. Planar diagrams

Massless four-point integrals with two off-shell legs

NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. Planar diagrams

- $P_{12}: p_{1}=-q_{3}, p_{2}=-q_{4}, p_{3}=q_{1}, p_{4}=q_{2}$;
- $P_{13}: p_{1}=-q_{3}, p_{2}=q_{1}, p_{3}=-q_{4}, p_{4}=q_{2}$;
- $P_{23}: p_{1}=q_{2}, p_{2}=-q_{4}, p_{3}=-q_{3}, p_{4}=q_{1}$.
where $q_{1}^{2}=0, q_{2}^{2}=0$ and $q_{3}^{2}=M_{3}^{2}, q_{4}^{2}=M_{4}^{2}$

Nonplanar diagrams

Nonplanar diagrams

Nonplanar diagrams

- $N_{12}: p_{1}=-q_{4}, p_{2}=-q_{3}, p_{3}=q_{2}, p_{4}=q_{1}$;
- $N_{13}: p_{1}=-q_{4}, p_{2}=q_{2}, p_{3}=-q_{3}, p_{4}=q_{1}$;
- $N_{34}: p_{1}=q_{1}, p_{2}=q_{2}, p_{3}=-q_{3}, p_{4}=-q_{4}$.

Evaluation of the planar diagrams in the equal mass case

[T. Gehrmann, L. Tancredi \& E. Weihs'13]

Evaluation of the planar diagrams in the equal mass case
[T. Gehrmann, L. Tancredi \& E. Weihs'13]
For general M_{3}^{2}, M_{4}^{2}
[J.M. Henn, K. Melnikov \& V.A. Smirnov'14]

Evaluation of the planar diagrams in the equal mass case
[T. Gehrmann, L. Tancredi \& E. Weihs'13]
For general M_{3}^{2}, M_{4}^{2}
[J.M. Henn, K. Melnikov \& V.A. Smirnov'14]
Non-planar diagrams in the equal mass case
[T. Gehrmann, A. von Manteuffel, L. Tancredi \& E. Weihs'14]

Evaluation of the planar diagrams in the equal mass case
[T. Gehrmann, L. Tancredi \& E. Weihs'13]
For general M_{3}^{2}, M_{4}^{2}
[J.M. Henn, K. Melnikov \& V.A. Smirnov'14]
Non-planar diagrams in the equal mass case
[T. Gehrmann, A. von Manteuffel, L. Tancredi \& E. Weihs'14]
For general $M_{3}^{2}, M_{4}^{2} \quad$ [F. Caola, J.M. Henn, K. Melnikov \& V.A. Smirnov'14]

Get rid of a square root:

$$
\frac{S}{M_{3}^{2}}=(1+x)(1+x y), \quad \frac{T}{M_{3}^{2}}=-x z, \quad \frac{M_{4}^{2}}{M_{3}^{2}}=x^{2} y .
$$

Get rid of a square root:

$$
\frac{S}{M_{3}^{2}}=(1+x)(1+x y), \quad \frac{T}{M_{3}^{2}}=-x z, \quad \frac{M_{4}^{2}}{M_{3}^{2}}=x^{2} y .
$$

Then

$$
\sqrt{S^{2}-2 S\left(M_{3}^{2}+M_{4}^{2}\right)+\left(M_{3}^{2}-M_{4}^{2}\right)^{2}}=M_{3}^{2} x(1-y) .
$$

Get rid of a square root:

$$
\frac{S}{M_{3}^{2}}=(1+x)(1+x y), \quad \frac{T}{M_{3}^{2}}=-x z, \quad \frac{M_{4}^{2}}{M_{3}^{2}}=x^{2} y .
$$

Then

$$
\sqrt{S^{2}-2 S\left(M_{3}^{2}+M_{4}^{2}\right)+\left(M_{3}^{2}-M_{4}^{2}\right)^{2}}=M_{3}^{2} x(1-y) .
$$

In terms of x, y, z, the physical region is

$$
x>0, \quad y>0, \quad y<z<1 .
$$

$$
\begin{aligned}
G_{a_{1}, \ldots, a_{9}}=\iint & \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2}}{\left[-k_{1}^{2}\right]^{a_{1}}\left[-\left(k_{1}+p_{1}+p_{2}\right)^{2}\right]^{a_{2}}\left[-k_{2}^{2}\right]^{a_{3}}\left[-\left(k_{2}+p_{1}+p_{2}\right)^{2}\right]^{a_{4}}} \\
& \times \frac{\left[-\left(k_{2}+p_{1}\right)^{2}\right]^{-a_{8}}\left[-\left(k_{1}-p_{3}\right)^{2}\right]^{-a_{9}}}{\left[-\left(k_{1}+p_{1}\right)^{2}\right]^{a_{5}}\left[-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{6}}\left[-\left(k_{2}-p_{3}\right)^{2}\right]^{a_{7}}}
\end{aligned}
$$

$$
\begin{aligned}
G_{a_{1}, \ldots, a_{9}}=\iint & \frac{\mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2}}{\left[-k_{1}^{2}\right]^{a_{1}}\left[-\left(k_{1}+p_{1}+p_{2}\right)^{2}\right]^{a_{2}}\left[-k_{2}^{2}\right]^{a_{3}}\left[-\left(k_{2}+p_{1}+p_{2}\right)^{2}\right]^{a_{4}}} \\
& \times \frac{\left[-\left(k_{2}+p_{1}\right)^{2}\right]^{-a_{8}}\left[-\left(k_{1}-p_{3}\right)^{2}\right]^{-a_{9}}}{\left[-\left(k_{1}+p_{1}\right)^{2}\right]^{a_{5}}\left[-\left(k_{1}-k_{2}\right)^{2}\right]^{a_{6}}\left[-\left(k_{2}-p_{3}\right)^{2}\right]^{a_{7}}}
\end{aligned}
$$

DE

$$
\partial_{\xi} f=\epsilon A_{\xi} f,
$$

where $\xi=x, y$ or z.

DE

$$
\partial_{\xi} f=\epsilon A_{\xi} f,
$$

where $\xi=x, y$ or z. In differential form

$$
d f(x, y, z ; \epsilon)=\epsilon(d \tilde{A}(x, y, z)) f(x, y, z ; \epsilon),
$$

where the differential d acts on x, y and z.

DE

$$
\partial_{\xi} f=\epsilon A_{\xi} f,
$$

where $\xi=x, y$ or z. In differential form

$$
d f(x, y, z ; \epsilon)=\epsilon(d \tilde{A}(x, y, z)) f(x, y, z ; \epsilon),
$$

where the differential d acts on x, y and z.

$$
\tilde{A}=\sum_{i=1}^{15} \tilde{A}_{\alpha_{i}} \log \left(\alpha_{i}\right),
$$

where the $\tilde{A}_{\alpha_{i}}$ are constant matrices.

In the planar case, the arguments of the logarithms α_{i} (letters) are

$$
\begin{aligned}
\alpha= & \{x, y, z, 1+x, 1-y, 1-z, 1+x y, z-y, \\
& 1+y(1+x)-z, x y+z, 1+x(1+y-z), 1+x z, 1+y-z, \\
& z+x(z-y)+x y z, z-y+y z+x y z\}
\end{aligned}
$$

with only a linear dependence on x, y, z.

In the planar case, the arguments of the logarithms α_{i} (letters) are

$$
\begin{aligned}
\alpha= & \{x, y, z, 1+x, 1-y, 1-z, 1+x y, z-y, \\
& 1+y(1+x)-z, x y+z, 1+x(1+y-z), 1+x z, 1+y-z, \\
& z+x(z-y)+x y z, z-y+y z+x y z\}
\end{aligned}
$$

with only a linear dependence on x, y, z.
Solving DE iteratively order-by-order in ϵ

$$
f=\sum_{n=0}^{4} f^{(n)} \epsilon^{n}+\mathcal{O}\left(\epsilon^{5}\right)
$$

In the planar case, the arguments of the logarithms α_{i} (letters) are

$$
\begin{aligned}
\alpha= & \{x, y, z, 1+x, 1-y, 1-z, 1+x y, z-y, \\
& 1+y(1+x)-z, x y+z, 1+x(1+y-z), 1+x z, 1+y-z, \\
& z+x(z-y)+x y z, z-y+y z+x y z\}
\end{aligned}
$$

with only a linear dependence on x, y, z.
Solving DE iteratively order-by-order in ϵ

$$
f=\sum_{n=0}^{4} f^{(n)} \epsilon^{n}+\mathcal{O}\left(\epsilon^{5}\right)
$$

Integrate first in x, then in y, then in z.

We have decided to obtain results directly in the physical region $x>0, y>0, y<z<1$ because it is difficult to perform an analytic continuation from a Euclidean region due to complicated dependence of x, y, z on the kinematic invariants.

We have decided to obtain results directly in the physical region $x>0, y>0, y<z<1$ because it is difficult to perform an analytic continuation from a Euclidean region due to complicated dependence of x, y, z on the kinematic invariants.
Boundary conditions: LO asymptotics in the limit $x \rightarrow 0, z \rightarrow 1, y \rightarrow 1$

We have decided to obtain results directly in the physical region $x>0, y>0, y<z<1$ because it is difficult to perform an analytic continuation from a Euclidean region due to complicated dependence of x, y, z on the kinematic invariants.
Boundary conditions: LO asymptotics in the limit $x \rightarrow 0, z \rightarrow 1, y \rightarrow 1$
For P_{12} and P_{13} one can immediately set $y=z=1$ and a typical behaviour in this limit is $f \sim f_{a} x^{-n_{a} \epsilon}$

We have decided to obtain results directly in the physical region $x>0, y>0, y<z<1$ because it is difficult to perform an analytic continuation from a Euclidean region due to complicated dependence of x, y, z on the kinematic invariants.
Boundary conditions: LO asymptotics in the limit $x \rightarrow 0, z \rightarrow 1, y \rightarrow 1$
For P_{12} and P_{13} one can immediately set $y=z=1$ and a typical behaviour in this limit is $f \sim f_{a} x^{-n_{a} \epsilon}$
For P_{23} (and for all non-planar families) the limit $y, z \rightarrow 1$ is singular, with a typical behaviour

$$
f \sim f_{a} x^{-n_{1} \epsilon}+f_{b} x^{-n_{2} \epsilon}[(z-y)(1-z)]^{-n_{3} \epsilon}
$$

To evaluate the LO asymptotics in the limit $x \rightarrow 0, z \rightarrow 1$, $y \rightarrow 1$ we applied expansion by regions
[M. Beneke \& V.S.'98]
implemented in the open computer code asy.m
[A. Pak \& A. Smirnov'11, B. Jantzen, A. Smirnov \& VS'12] which provides contributions to the expansion in a given limit in terms of Feynman-parametric integrals.

To evaluate the LO asymptotics in the limit $x \rightarrow 0, z \rightarrow 1$, $y \rightarrow 1$ we applied expansion by regions
[M. Beneke \& V.S.'98]
implemented in the open computer code asy.m
[A. Pak \& A. Smirnov'11, B. Jantzen, A. Smirnov \& VS'12] which provides contributions to the expansion in a given limit in terms of Feynman-parametric integrals.
Evaluating these integrals by Mellin-Barnes representation.

To evaluate the LO asymptotics in the limit $x \rightarrow 0, z \rightarrow 1$, $y \rightarrow 1$ we applied expansion by regions
[M. Beneke \& V.S.'98]
implemented in the open computer code asy.m
[A. Pak \& A. Smirnov'11, B. Jantzen, A. Smirnov \& VS'12] which provides contributions to the expansion in a given limit in terms of Feynman-parametric integrals.
Evaluating these integrals by Mellin-Barnes representation.
Obtaining the boundary conditions also from the consistency of DE.

Because of a linear dependence of the letters on x, y, z, results can be expressed in terms of multiple (Goncharov) polylogarithms

$$
G\left(a_{1}, \ldots a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)
$$

with

$$
G\left(a_{1} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}}, \quad a_{1} \neq 0 .
$$

For $a_{1}=0$, we have $G\left(\overrightarrow{0}_{n} ; x\right)=\frac{1}{n!} \log ^{n}(x)$.

```
        g}\mp@subsup{g}{28}{\textrm{P}23}=\mp@subsup{\epsilon}{}{2}(2\epsilon\mp@subsup{p}{2}{2}(\mp@subsup{p}{3}{2}-s)\mp@subsup{G}{1,0,0,1,1,2,1,0,0}{}-4\epsilon\mp@subsup{p}{2}{2}(\mp@subsup{p}{3}{2}-s)\mp@subsup{G}{1,1,0,0,1,1,2,0,0}{
    + 4\epsilon's(-p 2}+s)\mp@subsup{G}{1,1,1,1,1,1,1,-1,0}{2})
```

```
-(ep^2*(11*Pi^2 - (18*I)*Pi*G[0, z] +
```

-(ep^2*(11*Pi^2 - (18*I)*Pi*G[0, z] +
G[0, y]*((6*I)*Pi + 6*G[0, z]) - (6*I)*Pi*G[1, z] -
G[0, y]*((6*I)*Pi + 6*G[0, z]) - (6*I)*Pi*G[1, z] -
6*G[0, y]*G[-((1 + y - z)/y), x] + 6*G[1, z]*G[-((1 + y - z)/y), x] +
6*G[0, y]*G[-((1 + y - z)/y), x] + 6*G[1, z]*G[-((1 + y - z)/y), x] +
G[0, x]*((-12*I)*Pi + 6*G[0, y] - 6*G[0, z] - 6*G[1, z] -
G[0, x]*((-12*I)*Pi + 6*G[0, y] - 6*G[0, z] - 6*G[1, z] -
6*G[-1 + z, y]) + ((6*I)*Pi + 6*G[1, z])*G[-1 + z, y] +
6*G[-1 + z, y]) + ((6*I)*Pi + 6*G[1, z])*G[-1 + z, y] +
G[-((1 + y - z)/y), x]*((6*I)*Pi + 6*G[-1 + z, y]) +
G[-((1 + y - z)/y), x]*((6*I)*Pi + 6*G[-1 + z, y]) +
(6*I)*Pi*G[-z^(-1), x] + 6*G[0, z]*G[-z^(-1), x] -
(6*I)*Pi*G[-z^(-1), x] + 6*G[0, z]*G[-z^(-1), x] -
(12*I)*Pi*G[z, y] - 6*G[0, z]*G[z, y] - 6*G[1, z]*G[z, y] -
(12*I)*Pi*G[z, y] - 6*G[0, z]*G[z, y] - 6*G[1, z]*G[z, y] -
12*G[0, 0, z] - 6*G[0, 1, z] - 6*G[1, 0, z] -
12*G[0, 0, z] - 6*G[0, 1, z] - 6*G[1, 0, z] -
6*G[-((1 + y - z)/y), 0, x] - 6*G[-1 + z, 0, y] +
6*G[-((1 + y - z)/y), 0, x] - 6*G[-1 + z, 0, y] +
6*G[-1 + z, -1 + z, y] + 6*G[-z^(-1), 0, x] + 6*G[z, 0, y] -
6*G[-1 + z, -1 + z, y] + 6*G[-z^(-1), 0, x] + 6*G[z, 0, y] -
6*G[z, -1 + z, y])) - ep^3*(((16*I)/3)*Pi^3 + (Pi^2*G[-1, x])/3 +
6*G[z, -1 + z, y])) - ep^3*(((16*I)/3)*Pi^3 + (Pi^2*G[-1, x])/3 +
(Pi^2*G[0, x])/3 - (19*Pi^2*G[0, z])/3 - (31*Pi^2*G[1, z])/3 +
(Pi^2*G[0, x])/3 - (19*Pi^2*G[0, z])/3 - (31*Pi^2*G[1, z])/3 +
(Pi^2*G[-Y^(-1), x])/3 - (Pi^2*G[z, y])/3 - (24*I)*Pi*G[-1, 0, x] +
(Pi^2*G[-Y^(-1), x])/3 - (Pi^2*G[z, y])/3 - (24*I)*Pi*G[-1, 0, x] +
(12*I)*Pi*G[-1, -(1 + y - z)^(-1), x] +
(12*I)*Pi*G[-1, -(1 + y - z)^(-1), x] +
(12*I)*Pi*G[-1, -((1 + y - z)/y), x] + (12*I)*Pi*G[-1, -z^(-1), x] +
(12*I)*Pi*G[-1, -((1 + y - z)/y), x] + (12*I)*Pi*G[-1, -z^(-1), x] +
(12*I)*Pi*G[-1, -(z/y), x] + (80*I)*Pi*G[0, 0, x] -
(12*I)*Pi*G[-1, -(z/y), x] + (80*I)*Pi*G[0, 0, x] -
(6*I)*Pi*G[0, 0, y] + G[-(z/y), x]*(8*Pi^2 - 16*G[0, 0, z]) +
(6*I)*Pi*G[0, 0, y] + G[-(z/y), x]*(8*Pi^2 - 16*G[0, 0, z]) +
(34*I)*Pi*G[0, 0, z] + (24*I)*Pi*G[0, 1, z] -
(34*I)*Pi*G[0, 0, z] + (24*I)*Pi*G[0, 1, z] -
(24*I)*Pi*G[0, - (1 + y - z)^(-1), x] +...

```
    (24*I)*Pi*G[0, - (1 + y - z)^(-1), x] +...
```


Checks:

- Comparison with the equal mass case, $M_{3}^{2}=M_{4}^{2}=M^{2}$
[T. Gehrmann, L. Tancredi \& E. Weihs'13]

Checks:

- Comparison with the equal mass case, $M_{3}^{2}=M_{4}^{2}=M^{2}$ [T. Gehrmann, L. Tancredi \& E. Weihs'13]
- Using fiesta3

Checks:

- Comparison with the equal mass case, $M_{3}^{2}=M_{4}^{2}=M^{2}$ [T. Gehrmann, L. Tancredi \& E. Weihs'13]
- Using fiesta3
- Using analytic continuation over contour in the complex plane starting from a point in an unphysical region where the boundary conditions are simple.

For the nonplanar families N_{12} and N_{13} we choose the same parametrization as in the planar case

$$
S=M^{2}(1+x)(1+x y), \quad T=-M^{2} x z, \quad M_{3}^{2}=M^{2}, \quad M_{4}^{2}=M^{2} x^{2} y
$$

For the nonplanar families N_{12} and N_{13} we choose the same parametrization as in the planar case
$S=M^{2}(1+x)(1+x y), \quad T=-M^{2} x z, \quad M_{3}^{2}=M^{2}, \quad M_{4}^{2}=M^{2} x^{2} y$
For N_{34} we choose
$S=M^{2}(1+x)^{2}, \quad T=-M^{2} x((1+y)(1+x y)-2 z y(1+x))$,
$M_{3}^{2}=M^{2} x^{2}\left(1-y^{2}\right), \quad M_{4}^{2}=M^{2}\left(1-x^{2} y^{2}\right)$

For the nonplanar families N_{12} and N_{13} we choose the same parametrization as in the planar case
$S=M^{2}(1+x)(1+x y), \quad T=-M^{2} x z, \quad M_{3}^{2}=M^{2}, \quad M_{4}^{2}=M^{2} x^{2} y$
For N_{34} we choose
$S=M^{2}(1+x)^{2}, \quad T=-M^{2} x((1+y)(1+x y)-2 z y(1+x))$,
$M_{3}^{2}=M^{2} x^{2}\left(1-y^{2}\right), \quad M_{4}^{2}=M^{2}\left(1-x^{2} y^{2}\right)$
The physical region is

$$
x<1 / y, \quad 0<y<1, \quad 0<z<1 .
$$

For N_{12} and N_{13}, we have the following letters

$$
\begin{aligned}
& \{x, 1+x, 1-y, y, 1+x y, 1+x(1+y-z), 1-z, y-z, 1+y-z \\
& \quad 1+y+x y-z, z,-y+z, x y+z, 1+x+x y-x z, 1+x z \\
& \left.1+y+2 x y-z+x^{2} y z, z-y(1-z-x z)\right\}
\end{aligned}
$$

For N_{12} and N_{13}, we have the following letters

$$
\begin{aligned}
&\{x, 1+x, 1-y, y, 1+x y, 1+x(1+y-z), 1-z, y-z, 1+y-z, \\
& 1+y+x y-z, z,-y+z, x y+z, 1+x+x y-x z, 1+x z, \\
&\left.1+y+2 x y-z+x^{2} y z, z-y(1-z-x z)\right\}
\end{aligned}
$$

For N_{34}, we have

$$
\{x, 1+x, 1-y, y, 1+y, 1-x y, 1+x y, 1-y(1-2 z), 1+y-2 y z,
$$

$$
1-x y^{2}-y(1-x-2 z+2 x z), 1-x y(1-2 z), 1+x(y-2 y z),
$$

$$
1+x y^{2}-(1+x) y(1-2 z), 1-z, z, 1+y-2 y z
$$

$$
(1+y)(1+x y)-2 z y(1+x), 1-y+2 y z,
$$

$$
\left.1-x y^{2}+(1-x) y(1-2 z)\right\}
$$

> In contrast to planar master integrals, there is a quadratic dependence of the letters (for x for N_{13} and for y for N_{34}).

In contrast to planar master integrals, there is a quadratic dependence of the letters (for x for N_{13} and for y for N_{34}).
Postpone integration over this variable to the end. Results are still obtained in terms of Goncharov polylogarithms.

In contrast to planar master integrals, there is a quadratic dependence of the letters (for x for N_{13} and for y for N_{34}).
Postpone integration over this variable to the end. Results are still obtained in terms of Goncharov polylogarithms.

In the physical region, all the letters are sign-definite. All iterated integrals needed for calculating the vector of the master integrals can be written in a manifestly real form, so that imaginary parts appear only through explicit factors of i coming from the boundary conditions.

Conclusion

- With this strategy of the method of DE based on UT, it was possible to evaluate families of quite complicated Feynman integrals.
(Fließbandarbeit. Mass-line production.)

Conclusion

- With this strategy of the method of DE based on UT, it was possible to evaluate families of quite complicated Feynman integrals.
(Fließbandarbeit. Mass-line production.)
- Results are naturally expressed in terms of HPL, GPL etc.

Conclusion

- With this strategy of the method of DE based on UT, it was possible to evaluate families of quite complicated Feynman integrals.
(Fließbandarbeit. Mass-line production.)
- Results are naturally expressed in terms of HPL, GPL etc.
- It is also possible to evaluate single scale diagrams.

Conclusion

- With this strategy of the method of DE based on UT, it was possible to evaluate families of quite complicated Feynman integrals.
(Fließbandarbeit. Mass-line production.)
- Results are naturally expressed in terms of HPL, GPL etc.
- It is also possible to evaluate single scale diagrams.
- Further results will be obtained in the nearest future.

Conclusion

- With this strategy of the method of DE based on UT, it was possible to evaluate families of quite complicated Feynman integrals.
(Fließbandarbeit. Mass-line production.)
- Results are naturally expressed in terms of HPL, GPL etc.
- It is also possible to evaluate single scale diagrams.
- Further results will be obtained in the nearest future.
- The method is under construction.

