Simple form factors in $\mathcal{N}=4 \mathrm{SYM}$

> Amplitudes 2014
> - IPhT CEA-Saclay -
based on:
hep-th/1402.1300-BP, Spence, Travaglini, Wen hep-th/1406.1443 - Brandhuber, BP, Travaglini, Wen

Brenda Penante
Queen Mary University of London

Outline

1. Motivation
2. Half-BPS operators
3. $M H V$ form factors of half-BPS operators

* Tree level
* One loop
* Minimal form factors at two loops

4. Conclusions

Outline

1. Motivation
2. Half-BPS operators
3. $M H V$ form factors of half-BPS operators

* Tree level
* One loop
* Minimal form factors at two loops

4. Conclusions
5. Lunch

Motivation I:

Bridge between amplitudes and correlation functions

Amplitudes
$A_{n}=\langle 1 \cdots n \mid 0\rangle$

on-shell

- Recursion relations
- On-shell diagrams
* Grassmannian
* Amplituhedron

Corr. functions
$C_{n}=\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle$
 off-shell

Motivation I:

Bridge between amplitudes and correlation functions

Amplitudes
$A_{n}=\langle 1 \cdots n \mid 0\rangle$

on-shell

* Recursion relations
* On-shell diagrams
* Grassmannian
* Amplituhedron

Corr. functions
$C_{n}=\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle$

off-shell

Motivation I:

Bridge between amplitudes and correlation functions

Form Factors

Amplitudes
$A_{n}=\langle 1 \cdots n \mid 0\rangle$

Corr. functions $C_{n}=\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle$

off shell
on shell

$$
F_{\mathcal{O}, n}=\langle 1 \cdots n| \mathcal{O}|0\rangle
$$

"A little bit off shell"

Definition of a form factor

Gauge invariant local operator $\mathcal{O}(x)$ n-particle state $\langle 1 \cdots n|$

Definition of a form factor

Gauge invariant local operator $\mathcal{O}(x)$

 n-particle state $\langle 1 \cdots n|$$$
\begin{aligned}
& F_{\mathcal{O}, n}(q):=\int_{d^{4} x e^{-i q x}\langle 1 \cdots n| \mathcal{O}(x)|0\rangle} \begin{array}{ll}
=\delta^{(4)}\left(q-\sum_{i=1}^{n} p_{i}\right)\langle 1 \cdots n| \mathcal{O}(0)|0\rangle & q \rightarrow \mathcal{O}(q) \\
& \rightarrow \\
q^{2} \neq 0
\end{array}
\end{aligned}
$$

Motivation II:

Form factors are interesting on their own...

Ex 1: E\&M hadronic current

Motivation II:

Form factors are interesting on their own...

Ex 1: E\&M hadronic current

(

Ex 2: Higgs+multigluon amplitudes in QCD

$\langle H g \cdots g| \operatorname{Tr} F^{2}(0)|0\rangle$

$$
m_{H}<2 m_{t} \quad \rightarrow \mathcal{L}_{\text {eff }} \sim H \operatorname{Tr} F^{2}
$$

Related via SUSY to $F_{\operatorname{Tr} \phi^{2}, n}$ in $\mathcal{N}=4$ [[Brandhuber, Gurdogan, Mooney, Travaglini, Yang (2011)]]

Half-BPS operators $\mathcal{O}_{k}:=\operatorname{Tr}\left(\phi^{k}\right)$

$k=2$ [I Brandhuber, Spence, Travaglini, Yang (2010)]]

* Part of the stress-tensor multiplet
* Related to Higgs+multigluon amps in QCD

$$
F_{\operatorname{Tr}\left(\phi^{2}\right)}\left(1^{\phi}, 2^{\phi} ; q\right)=\delta^{(4)}\left(q-p_{1}-p_{2}\right)
$$

Half-BPS operators $\mathcal{O}_{k}:=\operatorname{Tr}\left(\phi^{k}\right)$

$k=2$ [I Brandhuber, Spence, Travaglini, Yang (2010)]]

* Part of the stress-tensor multiplet
* Related to Higgs+multigluon amps in QCD

$$
F_{\operatorname{Tr}\left(\phi^{2}\right)}\left(1^{\phi}, 2^{\phi} ; q\right)=\delta^{(4)}\left(q-p_{1}-p_{2}\right)
$$

Adding arbirarily many $g^{+} \longrightarrow$ "MHV"

$$
\begin{aligned}
F_{\operatorname{Tr}\left(\phi^{2}\right)}\left(i^{\phi}, j^{\phi},\left\{g^{+}\right\} ; q\right)=\frac{\langle i j\rangle^{2}}{\langle 12\rangle \cdots\langle n 1\rangle} \delta^{(4)}(& q-P) \\
P & =\sum_{i=1}^{n} p_{i}
\end{aligned}
$$

Tree

Generalisation for any k [[BP, Spence, Travaglini, Wen (2014)]]

* "Minimal" form factors: \# legs = \# fields

$$
F_{\operatorname{Tr}\left(\phi^{k}\right)}\left(1^{\phi}, \ldots, k^{\phi} ; q\right)=\delta^{(4)}(q-P)
$$

* Adding $g^{+} \rightarrow$ "MHV family"

$$
F_{\operatorname{Tr}\left(\phi^{k}\right)}\left(i_{1}^{\phi}, \ldots, i_{k}^{\phi},\left\{g^{+}\right\} ; q\right)=\frac{\left\langle i_{1} i_{2}\right\rangle \cdots\left\langle i_{k} i_{1}\right\rangle}{\langle 12\rangle \cdots\langle n 1\rangle} \delta^{(4)}(q-P)
$$

Supersymmetric form factors

[[Brandhuber, Travaglini, Yang; + Gurdogan, Mooney; Bork, Kazakov, Vartanov; BP, Spence, Travaglini, Wen; Brandhuber, BP, Travaglini, Wen]]

* External states $\longrightarrow \mathcal{N}=4$ Nair's Superwavefunction

$$
\begin{aligned}
\Phi(p, \eta) & :=g^{+}(p)+\eta_{A} \lambda^{A}(p)+\frac{\eta_{A} \eta_{B}}{2!} \phi^{A B}(p) \\
& +\epsilon^{A B C D} \frac{\eta_{A} \eta_{B} \eta_{C}}{3!} \bar{\lambda}_{D}(p)+\eta_{1} \eta_{2} \eta_{3} \eta_{4} g^{-}(p)
\end{aligned}
$$

Supersymmetric form factors

[[Brandhuber, Travaglini, Yang; + Gurdogan, Mooney; Bork, Kazakov, Vartanov; BP, Spence, Travaglini, Wen; Brandhuber, BP, Travaglini, Wen]]

* External states $\longrightarrow \mathcal{N}=4$ Nair's Superwavefunction

$$
\begin{aligned}
\Phi(p, \eta) & :=g^{+}(p)+\eta_{A} \lambda^{A}(p)+\frac{\eta_{A} \eta_{B}}{2!} \phi^{A B}(p) \\
& +\epsilon^{A B C D} \frac{\eta_{A} \eta_{B} \eta_{C}}{3!} \bar{\lambda}_{D}(p)+\eta_{1} \eta_{2} \eta_{3} \eta_{4} g^{-}(p)
\end{aligned}
$$

* Operator \rightarrow Harmonic projection \|I Galperin, vanov, Ogieversky, $k=2 \rightarrow$ Chiral part of stress-tensor multiplet

$$
\mathcal{T}:=\operatorname{Tr}\left(W^{++} W^{++}\right)=\operatorname{Tr}\left(\phi^{++} \phi^{++}\right)+\cdots+\left(\theta^{+}\right)^{4} \mathcal{L}
$$

Chiral vector superfield

Supersymmetric form factors

[[Brandhuber, Travaglini, Yang; + Gurdogan, Mooney; Bork, Kazakov, Vartanov; BP, Spence, Travaglini, Wen; Brandhuber, BP, Travaglini, Wen]]

* External states $\longrightarrow \mathcal{N}=4$ Nair's Superwavefunction

$$
\begin{aligned}
\Phi(p, \eta) & :=g^{+}(p)+\eta_{A} \lambda^{A}(p)+\frac{\eta_{A} \eta_{B}}{2!} \phi^{A B}(p) \\
& +\epsilon^{A B C D} \frac{\eta_{A} \eta_{B} \eta_{C}}{3!} \bar{\lambda}_{D}(p)+\eta_{1} \eta_{2} \eta_{3} \eta_{4} g^{-}(p)
\end{aligned}
$$

* Operator \longrightarrow Harmonic projection [I Galperin, Ivanov, Ogieversky, $k=2 \longrightarrow$ Chiral part of stress-tensor multiplet

$$
\mathcal{T}:=\operatorname{Tr}\left(W^{++} W^{++}\right)=\operatorname{Tr}\left(\phi^{++} \phi^{++}\right)+\cdots+\left(\theta^{+}\right)^{4} \mathcal{L}
$$

Chiral vector superfield

* Generalisation to higher k :

$$
\mathcal{T}_{k}:=\operatorname{Tr}\left[\left(W^{++}\right)^{k}\right]=\operatorname{Tr}\left[\left(\phi^{++}\right)^{k}\right]+\cdots
$$

Supersymmetric form factors

[[Brandhuber, Travaglini, Yang; + Gurdogan, Mooney; Bork, Kazakov, Vartanov; BP, Spence, Travaglini, Wen; Brandhuber, BP, Travaglini, Wen]]

* External states $\longrightarrow \mathcal{N}=4$ Nair's Superwavefunction

$$
\begin{aligned}
\Phi(p, \eta) & :=g^{+}(p)+\eta_{A} \lambda^{A}(p)+\frac{\eta_{A} \eta_{B}}{2!} \phi^{A B}(p) \\
& +\epsilon^{A B C D} \frac{\eta_{A} \eta_{B} \eta_{C}}{3!} \bar{\lambda}_{D}(p)+\eta_{1} \eta_{2} \eta_{3} \eta_{4} g^{-}(p)
\end{aligned}
$$

* Operator \longrightarrow Harmonic projection [I Galperin, Ivanov, Ogieversky, $k=2 \longrightarrow$ Chiral part of stress-tensor multiplet

$$
\mathcal{T}:=\operatorname{Tr}\left(W^{++} W^{++}\right)=\operatorname{Tr}\left(\phi^{++} \phi^{++}\right)+\cdots+\left(\theta^{+}\right)^{4} \mathcal{L}
$$

Chiral vector superfield

* Generalisation to higher k :

$$
\mathcal{T}_{k}:=\operatorname{Tr}\left[\left(W^{++}\right)^{k}\right]=\operatorname{Tr}\left[\left(\phi^{++}\right)^{k}\right]+\cdots
$$

MHV super form factors

[[Brandhuber, Gurdogan, Mooney, Travaglini, Yang (2011); Bork, Kazakov, Vartanov (2011)

Definition of form factors of \mathcal{T}_{k} :

$$
\mathcal{F}_{\mathcal{T}_{k}, n}\left(q, \gamma_{+}\right):=\int d^{4} x d^{4} \theta^{+} e^{-\left(i q x+i \theta_{\alpha}^{+a} \gamma_{+a}^{\alpha}\right)}\langle 1 \cdots n| \mathcal{T}_{k}\left(x, \theta^{+}\right)|0\rangle
$$

MHV super form factors

[[Brandhuber, Gurdogan, Mooney, Travaglini, Yang (2011); Bork, Kazakov, Vartanov (2011)

Definition of form factors of \mathcal{T}_{k} :

$$
\mathcal{F}_{\mathcal{T}_{k}, n}\left(q, \gamma_{+}\right):=\int d^{4} x d^{4} \theta^{+} e^{-\left(i q x+i \theta_{\alpha}^{+a} \gamma_{+a}^{\alpha}\right)}\langle 1 \cdots n| \mathcal{T}_{k}\left(x, \theta^{+}\right)|0\rangle
$$

For \mathcal{T}_{2} (Ward ids.):

$$
\mathcal{F}_{\mathcal{T}_{2}, n}=\frac{\delta^{(4)}(q-P) \delta^{(4)}\left(\gamma_{+}-\mathcal{Q}_{+}\right) \delta^{(4)}\left(\mathcal{Q}_{-}\right)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}, \quad \mathcal{Q}_{ \pm}=\sum_{i=1}^{n} \lambda_{i} \eta_{ \pm, i}
$$

Compare with superamplitude:

$$
\mathcal{A}^{\mathrm{MHV}}=\frac{\delta^{(4)}(P) \delta^{(4)}(\mathcal{Q})}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}, \quad \mathcal{Q}=\sum_{i=1}^{n} \lambda_{i} \eta_{i}
$$

MHV super form factors of \mathcal{T}_{3} [[BP, Spence, Travaglini, Wen (2014)]]

$$
\begin{gathered}
\mathcal{F}_{\mathcal{T}_{2}, n}=\frac{\delta^{(4)}(q-P) \delta^{(4)}\left(\gamma_{+}-\mathcal{Q}_{+}\right) \delta^{(4)}\left(\mathcal{Q}_{-}\right)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \\
\mathcal{F}_{\mathcal{T}_{3}, n}=\mathcal{F}_{\mathcal{T}_{2}, n} \delta\left(\sum_{i<j=1}^{n}\langle i j\rangle \eta_{-, i} \cdot \eta_{-, j}\right) \\
\eta_{-, i} \cdot \eta_{-, j}:=\frac{1}{2} \eta_{-a, i} \eta_{-b, j} \epsilon^{a b} \quad \text { Extra R-charge }
\end{gathered}
$$

MHV super form factors of \mathcal{T}_{3}

 [[BP, Spence, Travaglini, Wen (2014)]]$$
\begin{gathered}
\mathcal{F}_{\mathcal{T}_{2}, n}=\frac{\delta^{(4)}(q-P) \delta^{(4)}\left(\gamma_{+}-\mathcal{Q}_{+}\right) \delta^{(4)}\left(\mathcal{Q}_{-}\right)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \\
\mathcal{F}_{\mathcal{T}_{3}, n}=\mathcal{F}_{\mathcal{T}_{2}, n} \delta\left(\sum_{i<j=1}^{n}\langle i j\rangle \eta_{-, i} \cdot \eta_{-, j}\right) \\
\eta_{-, i} \cdot \eta_{-, j}:=\frac{1}{2} \eta_{-a, i} \eta_{-b, j} \epsilon^{a b} \quad \text { Extra R-charge }
\end{gathered}
$$

* Adjacent BCFW shifts \longrightarrow Boundary term $\propto \mathcal{F}_{\mathcal{T}_{2}, n-1}$
\rightarrow On-shell recursion relation

$$
\mathcal{F}_{\mathcal{T}_{k}, n}=\frac{\frac{\langle n-11\rangle}{\langle n-1 n\rangle\langle n 1\rangle} \mathcal{F}_{\mathcal{T}_{k}, n-1}+\left(\eta_{-, n}\right)^{2} \mathcal{F}_{\mathcal{T}_{k-1}, n-1}}{\text { Soft-factor } \quad \text { Boundary }}
$$

MHV super form factors of \mathcal{T}_{k} [[BP, Spence, Travaglini, Wen (2014)]]

* Solution of recursion relation for all k (conjecture)

Ex: $k=4$
$\mathcal{F}_{\mathcal{T}_{4}, n}=\mathcal{F}_{\mathcal{T}_{2}, n} \sum_{1 \leq i \leq j}^{n-3} \sum_{j<k \leq l}^{n-2}\left(2-\delta_{i j}\right)\left(2-\delta_{k l}\right) \frac{\langle n i\rangle\langle j k\rangle\langle l n-1\rangle}{\langle n-1 n\rangle}\left(\eta_{-, i} \cdot \eta_{-, j}\right)\left(\eta_{-, k} \cdot \eta_{-, l}\right)$
Consistency checks:

1 loop

MHV form factors of \mathcal{T}_{k} at one loop [[BP, Spence, Travaglini, Wen (2014)]]

$$
+\mathcal{F}_{\mathcal{T}_{k}, n}^{\mathrm{MHV}(1)}=-\mathcal{F}_{\mathcal{T}_{k}, n}^{\mathrm{MHV}(0)} \sum_{i=1}^{n} s_{i i+1}^{\mathrm{MHV}(0)} \sum_{a, b} f_{\mathcal{T}_{k}}(a+1, \ldots, b-1, b, a)
$$

Minimal form factors

* As many particles as fields

$$
F_{k}:=\left\langle 1^{\phi} \cdots k^{\phi}\right| \operatorname{Tr} \phi^{k}(0)|0\rangle
$$

* Ex F_{2} at two loops II van Neerven (1976); Gehrmann, Henn, Huber (2012); Brandhuber, Travaglini, Yang (2012)]]

- $F^{a_{1} a_{2}} \propto \delta^{a_{1} a_{2}} \rightarrow$ Non-planar contributions from 1-loop amplitude

$$
F_{2}^{(2)}\left(q^{2}\right)=4
$$

$F_{3}^{(2)}$ at two loops
[[Brandhuber, BP, Travaglini, Wen (2014)]]

* Generalised unitarity

No non-planar integrals
$F_{3}^{(2)}$ at two loops

- Result: $\quad F_{3}^{(2)}=\sum_{i=1}^{3}\left[I_{1}(i)+I_{2}(i)+I_{3}(i)+I_{4}(i)-I_{5}(i)\right]$

$I_{1}(i)$

$I_{2}(i)$

$I_{3}(i)$

$I_{4}(i)$

$I_{5}(i)$

Decompose in terms of master integrals [FIRE]

Analytical expressions for all integrals

$F_{3}^{(2)}$ at two loops

* Uniform transcendentality four
* Many Goncharov polylogs with numerical coefficients
* Variables:

$$
\begin{gathered}
u=\frac{s_{12}}{q^{2}}, \quad v=\frac{s_{23}}{q^{2}}, \quad w=\frac{s_{31}}{q^{2}} \\
q=p_{1}+p_{2}+p_{3} \quad \Rightarrow \quad u+v+w=1
\end{gathered}
$$

$F_{3}^{(2)}$ at two loops

* Uniform transcendentality four
* Many Goncharov polylogs with numerical coefficients
* Variables:

$$
\begin{gathered}
u=\frac{s_{12}}{q^{2}}, \quad v=\frac{s_{23}}{q^{2}}, \quad w=\frac{s_{31}}{q^{2}} \\
q=p_{1}+p_{2}+p_{3} \quad \Rightarrow \quad u+v+w=1
\end{gathered}
$$

Can we simplify this?

Form factor remainder

ABDK/BDS ansatz

$$
\begin{gathered}
R_{3}^{(2)}:=F_{3}^{(2)}(\epsilon)-\frac{1}{2}\left[F_{3}^{(1)}(\epsilon)\right]^{2}-f^{(2)} F_{3}^{(1)}(2 \epsilon)-C^{(2)}+\mathcal{O}(\epsilon) \\
f^{(2)}=-f_{0}^{(2)}-f_{1}^{(2)} \epsilon-f_{2}^{(2)} \epsilon^{2}
\end{gathered}
$$

Properties:

* Finite
* Symmetric under
permutations of
(u, v, w)

Form factor remainder

ABDK/BDS ansatz

$$
R_{3}^{(2)}:=F_{3}^{(2)}(\epsilon)-\frac{1}{2}\left[F_{3}^{(1)}(\epsilon)\right]^{2}-f^{(2)} F_{3}^{(1)}(2 \epsilon)-C^{(2)}+\mathcal{O}(\epsilon)
$$

$$
f^{(2)}=-f_{0}^{(2)}-f_{1}^{(2)} \epsilon-f_{2}^{(2)} \epsilon^{2}
$$

Properties:

* Finite
* Symmetric under

$$
\longrightarrow f_{1}^{(2)}=2 \zeta_{3} \sim \Gamma_{\mathrm{coll}}^{(2)}
$$ permutations of

$$
(u, v, w) \quad \text { Also: } C^{(2)}=0, f_{2}^{(2)}=2 \zeta_{4}
$$

Simplifying the remainder

$R_{3}^{(2)} \longrightarrow$ Very messy

Simplifying the remainder

$R_{3}^{(2)} \longrightarrow$ Very messy
 Non-classical polylogs

\downarrow
Symbol \longrightarrow Transc. k function $\rightarrow k$-fold \otimes product [[Goncharov, Spradlin, Volovich, Vergu (2010)]]

Simplifying the remainder

Symbol \longrightarrow Transc. k function $\rightarrow k$-fold \otimes product [[Goncharov, Spradlin, Volovich, Vergu (2010)]]

$$
\begin{aligned}
\mathcal{S}_{3}^{(2)}(u, v, w)= & u \otimes v \otimes\left[\frac{u}{w} \otimes_{S} \frac{v}{w}\right]+\frac{1}{2} u \otimes \frac{u}{(1-u)^{3}} \otimes \frac{v}{w} \otimes \frac{v}{w} \\
& +\operatorname{perms}(u, v, w)
\end{aligned}
$$

(notice unusual 2nd and last entry conditions)

Simplifying the remainder

$\mathcal{S}_{3}^{(2)}$
\longrightarrow Very simple

$$
\begin{gathered}
\mathcal{S}_{a b c d}-\mathcal{S}_{b a c d}-\mathcal{S}_{a b d c}+\mathcal{S}_{b a d c} \\
-(a \leftrightarrow c, b \leftrightarrow d)=0 \\
\left.\delta\left(\mathcal{S}_{3}^{(2)}\right)\right|_{\Lambda^{2} B_{2}}=0
\end{gathered}
$$

Can be integrated back to classical polylogs

Simplifying the remainder

$\mathcal{S}_{3}^{(2)}$

$$
\begin{aligned}
& \mathcal{S}_{a b c d}-\mathcal{S}_{b a c d}-\mathcal{S}_{a b d c}+\mathcal{S}_{b a d c} \\
& \quad-(a \leftrightarrow c, b \leftrightarrow d)=0
\end{aligned}
$$

Goncharov's condition

$$
\downarrow \text { arov's condifion }\left.\quad \delta\left(\mathcal{S}_{3}^{(2)}\right)\right|_{\Lambda^{2} B_{2}}=0
$$

Can be integrated back to classical polylogs

Strategy:

1) Decompose the symbol into $\mathrm{A} \otimes \mathrm{A}, \mathrm{S} \otimes \mathrm{A}, \mathrm{A} \otimes \mathrm{S}, \mathrm{S} \otimes \mathrm{S}$
2) Compare with

Function	$\mathrm{A} \otimes \mathrm{A}$			
$\mathrm{Li}_{4}\left(z_{1}\right)$	\times	\times	\checkmark	\checkmark
$\mathrm{Li}_{3}\left(z_{1}\right) \log \left(z_{2}\right)$	\times	\times	\checkmark	\checkmark
$\mathrm{Li}_{2}\left(z_{1}\right) \mathrm{Li}_{2}\left(z_{2}\right)$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{Li}_{2}\left(z_{1}\right) \log \left(z_{2}\right) \log \left(z_{3}\right)$	\times	\checkmark	\checkmark	\checkmark
$\underline{\log \left(z_{1}\right) \log \left(z_{2}\right) \log \left(z_{3}\right) \log \left(z_{4}\right)}$	\times	\times	\times	\checkmark

We find $\mathrm{A} \otimes \mathrm{A}=0, \mathrm{~S} \otimes \mathrm{~A}=0$

Simplifying the remainder

$\mathcal{S}_{3}^{(2)}$

$$
\begin{gathered}
\mathcal{S}_{a b c d}-\mathcal{S}_{b a c d}-\mathcal{S}_{a b d c}+\mathcal{S}_{b a d c} \\
-(a \leftrightarrow c, b \leftrightarrow d)=0 \\
\left.\delta\left(\mathcal{S}_{3}^{(2)}\right)\right|_{\Lambda^{2} B_{2}}=0
\end{gathered}
$$

Can be integrated back to classical polylogs

Strategy:

3) Choose a list of entries
$\left\{u, v, w, 1-u, 1-v, 1-w,-\frac{u}{v},-\frac{u}{w},-\frac{v}{u},-\frac{v}{w},-\frac{w}{u},-\frac{w}{v},-\frac{u v}{w},-\frac{u w}{v},-\frac{v w}{u}\right\}$
4) Fix "beyond the symbol" terms $\left(\pi, \zeta_{i}\right)$ using numerics

Simplifying the remainder

$\mathcal{S}_{3}^{(2)}$

Very simple

Goncharov's condition

$$
\downarrow
$$

$$
\begin{aligned}
& \mathcal{S}_{a b c d}-\mathcal{S}_{b a c d}-\mathcal{S}_{a b d c}+\mathcal{S}_{b a d c} \\
& \quad-(a \leftrightarrow c, b \leftrightarrow d)=0
\end{aligned}
$$

$$
\left.\delta\left(\mathcal{S}_{3}^{(2)}\right)\right|_{\Lambda^{2} B_{2}}=0
$$

Can be integrated back to classical polylogs

$$
\begin{aligned}
\mathcal{R}_{3}^{(2)}:= & -\frac{3}{2} \operatorname{Li}_{4}(u)+\frac{3}{4} \operatorname{Li}_{4}\left(-\frac{u v}{w}\right)-\frac{3}{2} \log (w) \operatorname{Li}_{3}\left(-\frac{u}{v}\right)+\frac{\log ^{4}(u)}{32} \\
& +\frac{\log ^{2}(u)}{16}\left[\log ^{2}(v)-2 \log (v) \log (w)+10 \zeta_{2}\right] \\
& -\frac{\log (u)}{4}\left[\zeta_{2} \log (v)-2 \zeta_{3}\right]+\frac{7}{16} \zeta_{4}+\operatorname{perms}(u, v, w)
\end{aligned}
$$

Simplifying the remainder

$$
\left.\left.\begin{array}{rl}
\mathcal{S}_{3}^{(2)} & \longrightarrow \text { Very simple } \\
\text { Can be integrated back to classical polylogs } \\
\left.\delta\left(\mathcal{S}_{3}^{(2)}\right)\right|_{\Lambda^{2} B_{2}}=0
\end{array}\right\} \begin{array}{c}
\mathcal{S}_{a b c d}-\mathcal{S}_{b a c d}-\mathcal{S}_{a b d c}+\mathcal{S}_{\text {badc }} \\
-(a \leftrightarrow c, b \leftrightarrow d)=0
\end{array}\right] \begin{aligned}
\mathcal{R}_{3}^{(2)}:= & -\frac{3}{2} \operatorname{Li}_{4}(u)+\frac{3}{4} \operatorname{Li}_{4}\left(-\frac{u v}{w}\right)-\frac{3}{2} \log (w) \operatorname{Li}_{3}\left(-\frac{u}{v}\right)+\frac{\log ^{4}(u)}{32} \\
& +\frac{\log ^{2}(u)}{16}\left[\log ^{2}(v)-2 \log (v) \log (w)+10 \zeta_{2}\right] \\
& -\frac{\log (u)}{4}\left[\zeta_{2} \log (v)-2 \zeta_{3}\right]+\frac{7}{16} \zeta_{4}+\operatorname{perms}(u, v, w)
\end{aligned}
$$

Comments

Some disagreements with previous work [[Bork, Kazakov, Vartanov hep-th/1011.2440]]

1) $\Gamma_{\text {coll }}^{(2)}$

$$
f^{(2)}=-f_{0}^{(2)}-f_{1}^{(2)} \epsilon-f_{2}^{(2)} \epsilon^{2}
$$

Ours: $f_{1}^{(2)}=2 \zeta_{3} \rightarrow$ Same for amplitudes and FFs of $\operatorname{Tr} \phi^{2}$
Theirs: $f_{1}^{(2)}=14 \zeta_{3}$
2) Appearance of the integral G_{3}

At most one triangle connected to the form factor [[Boers, Kniehl, Tarasov, Yang (2013)]]

Generalisation to all $R_{k}^{(2)}$

- Same strategy as for $R_{3}^{(2)}$

$$
F_{k}^{(2)}=\sum_{i=1}^{n}\left[I_{1}(i)+I_{2}(i)+I_{3}(i)+I_{4}(i)-I_{5}(i)+\frac{1}{2} \sum_{j=i+2}^{i-2} I_{6}(i, j)\right]
$$

Generalisation to all $R_{k}^{(2)}$

Generalisation to all $R_{k}^{(2)}$

Everything can be decomposed in 3-particle building blocks

$$
\begin{gathered}
\qquad \text { Symbol } \\
\mathcal{S}_{k}^{(2)}=\sum_{i=1}^{k} s_{i}^{(2)}\left(u_{i}, v_{i}, w_{i}\right) \\
u_{i}=\frac{u_{i+1}}{u_{i i+1 i+2}}, v_{i}=\frac{u_{i+1 i+2}}{u_{i+1+1+2}}, w_{i}=\frac{u_{i+2 i}}{u_{i i+1+2}}, \quad u_{i}+v_{i}+w_{i}=1
\end{gathered}
$$

Building block symbol $s_{i}^{(2)}$

$s_{i}^{(2)}$ \longrightarrow Does not satisfy Goncharov's condition

* Identify non-classical part of the remainder:

$$
s_{i}^{(2)}=s_{\mathrm{cl}, i}^{(2)}+s_{\mathrm{nc}, i}^{(2)}
$$

$$
\mathcal{S}[\underbrace{\left.G\left(\left\{1-v_{i}, 1-v_{i}, 1,0\right\}, u_{i}\right)-\left(u_{i} \leftrightarrow v_{i}\right)\right]}_{\equiv r_{\mathrm{nc}, i}^{(2)}}
$$

* Integrate $s_{\mathrm{cl}, i}^{(2)}$ and fix beyond the symbol terms

General result for $R_{k}^{(2)}$

$$
\begin{aligned}
r_{\mathrm{cl}, i}^{(2)} & =\operatorname{Li}_{4}\left(1-u_{i}\right)+\operatorname{Li}_{4}\left(u_{i}\right)-\operatorname{Li}_{4}\left(\frac{u_{i}-1}{u_{i}}\right)+\log \left(\frac{1-u_{i}}{w_{i}}\right)\left[\operatorname{Li}_{3}\left(\frac{u_{i}-1}{u_{i}}\right)\right. \\
& \left.-\operatorname{Li}_{3}\left(1-u_{i}\right)\right]+\log \left(u_{i}\right)\left[\operatorname{Li}_{3}\left(\frac{v_{i}}{1-u^{\prime}}\right)_{\imath}+\operatorname{Li}_{3}\left(-\frac{w_{i}}{v_{i}}\right)+\operatorname{Li}_{3}\left(\frac{v_{i}-1}{v_{i}}\right)\right. \\
& \left.-\frac{1}{3} \log ^{3}\left(v_{i}\right)-\frac{1}{3} \log ^{3}\left(1-u_{i}\right)\right]+\operatorname{Li}_{2}\left(\frac{u_{i}-1}{u_{i}}\right) \operatorname{Li}_{2}\left(\frac{v_{i}}{1-u_{i}}\right) \\
& -\operatorname{Li}_{2}\left(u_{i}\right)\left[\log \left(\frac{1-u_{i}}{w_{i}}\right) \log \left(v_{i}\right)+\frac{1}{2} \log ^{2}\left(\frac{1-u_{i}}{w_{i}}\right)\right]-\frac{1}{24} \log ^{4}\left(u_{i}\right) \\
& +\frac{1}{8} \log ^{2}\left(u_{i}\right) \log ^{2}\left(v_{i}\right)+\frac{1}{2} \log ^{2}\left(1-u_{i}\right) \log \left(u_{i}\right) \log \left(\frac{w_{i}}{v_{i}}\right)+\frac{1}{6} \log ^{3}\left(u_{i}\right) \log \left(w_{i}\right) \\
& +\frac{1}{2} \log \left(1-u_{i}\right) \log ^{2}\left(u_{i}\right) \log \left(v_{i}\right)+\left(u_{i} \leftrightarrow v_{i}\right)
\end{aligned}
$$

General result for $R_{k}^{(2)}$

$$
\begin{aligned}
r_{\mathrm{bts}, i}^{(2)}= & \zeta_{2}\left[\log \left(u_{i}\right) \log \left(\frac{1-v_{i}}{v_{i}}\right)+\frac{1}{2} \log ^{2}\left(\frac{1-u_{i}}{w_{i}}\right)-\frac{1}{2} \log ^{2}\left(u_{i}\right)\right] \\
& -\zeta_{3} \log \left(u_{i}\right)-\frac{\zeta_{4}}{2}+\left(u_{i} \leftrightarrow v_{i}\right) \\
r_{\mathrm{nc}, i}^{(2)} & =-G\left(\left\{1-v_{i}, 1-v_{i}, 1,0\right\}, u_{i}\right)-\left(u_{i} \leftrightarrow v_{i}\right)
\end{aligned}
$$

$$
\mathcal{R}_{k}^{(2)}=\sum_{i=1}^{k}\left[r_{\mathrm{nc}, i}^{(2)}+r_{\mathrm{cl}, i}^{(2)}+r_{\mathrm{bts}, i}^{(2)}\right]
$$

Summary + Outlook

* On-shell recursion relation for tree-level MHV form factors
* MHV form factors of half-BPS operators in $\mathcal{N}=4$ SYM

$$
\text { all } n<\begin{aligned}
& \text { Tree level } \\
& \text { One loop }
\end{aligned}
$$

* Finite two-loop remainder functions for minimal form factors

Summary + Outlook

* On-shell recursion relation for tree-level MHV form factors
* MHV form factors of half-BPS operators in $\mathcal{N}=4$ SYM

$$
\text { all } n<\begin{aligned}
& \text { Tree level } \\
& \text { One loop }
\end{aligned}
$$

* Finite two-loop remainder functions for minimal form factors
? Connection with QCD
? Application for correlation functions
? Representation in terms of Wilson lines
? More loops and/or legs

Summary + Outlook

* On-shell recursion relation for tree-level MHV form factors
* MHV form factors of half-BPS operators in $\mathcal{N}=4$ SYM

$$
\text { all } n<\begin{aligned}
& \text { Tree level } \\
& \text { One loop }
\end{aligned}
$$

* Finite two-loop remainder functions for minimal form factors
? Connection with QCD
? Application for correlation functions
? Representation in terms of Wilson lines
? More loops and/or legs

Soft and Collinear Limits

* Collinear limit $p_{1} \| p_{2}$ (edges)
$u \rightarrow 0, u+v \rightarrow 1$
$\mathcal{R}_{3}^{(2)} \sim \log (u)^{2}$
* Soft limit $p_{1} \rightarrow 0$ (corners)
$u=x \delta, v=1-\delta, w=y \delta$

$$
x+y=1, \delta \rightarrow 0
$$

$$
\mathcal{R}_{3}^{(2)} \sim \log (\delta)^{4}
$$

