Cross-Order Integral Relations from Maximal Cuts

Based on 1108.1180, 1205.0801, 1208.1754 and work to appear (with S. Caron-Huot, H. Johansson, D. Kosower and M. Søgaard)

- Motivation and one-loop generalized unitarity
- Two-loop maximal cuts are contour integrals on algebraic varieties. How are the integration contours determined?
- One-to-one correspondence between basis integrals and integration contours

ヨット イヨット イヨッ

Two motivations for studying two-loop amplitudes:

• Precision LHC phenomenology

Quantitative estimates of QCD background: needed for precision measurements, uncertainty estimates of NLO calculations, and reducing renormalization scale dependence.

• Geometric understanding of scattering amplitudes Fascinating connection to algebraic geometry and multivariate complex analysis.

Our aim is to extend generalized unitarity to two loops so as to *automate* the computation of two-loop QCD amplitudes.

Other approaches:

- Integrand reduction [Mastrolia, Mirabella, Ossola, Peraro], 2011 and [Badger, Frellesvig, Zhang], 2012
- Spinor integration techniques [Feng, Zhen, Huang, Zhou], 2014
- Iterated cuts [Abreu, Britto, Duhr, Gardi], 2014

Generalized unitarity at one loop (1/2)

Use integrand reductions to write the one-loop amplitude as a linear combination of *basis integrals*

+ rational terms

ヨト イヨト イヨト

Generalized unitarity at one loop (1/2)

Use integrand reductions to write the one-loop amplitude as a linear combination of *basis integrals*

+ rational terms

Determine c_i by applying quadruple cuts [Britto, Cachazo, Feng]:

ヨト イヨト イヨト

Generalized unitarity at one loop (2/2)

A triple cut will leave 4 - 3 = 1 free *complex* parameter *z*. Parametrizing the loop momentum,

$$\ell^{\mu} = \alpha_1 K_1^{\flat\mu} + \alpha_2 K_2^{\flat\mu} + \frac{z}{2} \langle K_1^{\flat-} | \gamma^{\mu} | K_2^{\flat-} \rangle + \frac{\alpha_4(z)}{2} \langle K_2^{\flat-} | \gamma^{\mu} | K_1^{\flat-} \rangle$$

one obtains an explicit formula for the triangle coefficient [Forde]

高 とう ヨン うまと

Expand the massless 4-point two-loop amplitude in a basis, e.g.

+ ints with fewer props + rational terms

4 B K 4 B K

Expand the massless 4-point two-loop amplitude in a basis, e.g.

+ ints with fewer props+ rational terms

A B K A B K

Compute $c_1(\epsilon)$ and $c_2(\epsilon)$ according to

Expand the massless 4-point two-loop amplitude in a basis, e.g.

- 4 同 6 4 日 6 4 日 6

Compute $c_1(\epsilon)$ and $c_2(\epsilon)$ according to

The machinery: contour integrals $\oint_{\Gamma_i} (\cdots)$

The philosophy: basis integral $I_i \leftrightarrow$ unique Γ_i producing c_i

The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting $\chi \equiv \frac{t}{s}$,

$$\int d^4 p \, d^4 q \prod_{i=1}^7 \frac{1}{\ell_i^2} \longrightarrow \int d^4 p \, d^4 q \prod_{i=1}^7 \delta^{\mathbb{C}}(\ell_i^2) = \oint_{\Gamma} \frac{dz}{z(z+\chi)},$$

a contour integral in the complex plane.

The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting $\chi \equiv \frac{t}{s}$,

$$\int d^4p \, d^4q \prod_{i=1}^7 \frac{1}{\ell_i^2} \longrightarrow \int d^4p \, d^4q \prod_{i=1}^7 \delta^{\mathbb{C}}(\ell_i^2) = \oint_{\Gamma} \frac{dz}{z(z+\chi)},$$

a contour integral in the complex plane.

Jacobian poles z = 0 and $z = -\chi$: composite leading singularities

encircle
$$z = 0$$
 and $z = -\chi$ with $\Gamma = \omega_1 C_{\epsilon}(0) + \omega_2 C_{\epsilon}(-\chi)$
 \longrightarrow freeze z ("8th cut")

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states \longrightarrow 8 independent leading singularities

3 ×

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states \longrightarrow 8 independent leading singularities

How do we select contours within this variety of possibilities?

Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing heptacuts.

This ensures that

$$I_1 = I_2 \implies \operatorname{cut}(I_1) = \operatorname{cut}(I_2).$$

æ

Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing heptacuts.

This ensures that

$$\mathrm{I}_1 = \mathrm{I}_2 \quad \Longrightarrow \quad \mathsf{cut} \left(\mathrm{I}_1 \right) = \mathsf{cut} \left(\mathrm{I}_2 \right).$$

Origin of terms with vanishing $\mathbb{R}^D \times \mathbb{R}^D$ integration: reduction of Feynman diagram expansion to a *basis of integrals* (including use of integration-by-parts identities [Chetyrkin and Tkachov], 1981).

Remarkable simplification:

- 4 massless external states: 22 \longrightarrow 2 double-box integrals
- 5 massless external states: 160 \longrightarrow 2 "turtle-box" integrals
- 5 massless external states: 76 \rightarrow 1 pentagon-box integral

Contour constraints, part 1/2

There are two classes of constraints on Γ 's:

1) Levi-Civita integrals. For example,

Contour constraints, part 1/2

There are two classes of constraints on Γ 's:

1) Levi-Civita integrals. For example,

2) integration-by-parts (IBP) identities must be preserved. For example,

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts

The constraints in the case of four massless external momenta:

	$\omega_1 - \omega_2 = 0$
	$\omega_3 - \omega_4 = 0$
	$\omega_5 - \omega_6 = 0$
	$\omega_7 - \omega_8 = 0$
$\omega_3 + \omega_4 -$	$\omega_5 - \omega_6 = 0$
$\omega_1 + \omega_2 - \omega_5 - \omega_6 + \omega_6 $	$\omega_7 + \omega_8 = 0$

同 と く ヨ と く ヨ と

3

leaving 8 - 4 - 2 = 2 free winding numbers.

Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Master contours: the concept

Going back to the two-loop basis expansion

$$A_4^{2-\text{loop}} = c_1(\epsilon)$$
 + $c_2(\epsilon)$

ints with fewer props
 rational terms

and applying a heptacut one finds

Exploit free parameters $\longrightarrow \exists$ contours with

 $\begin{array}{ll} {{\cal P}_1:\; \left({{\rm{cut}}\left({{\rm{I}}_1} \right),\,{\rm{cut}}\left({{\rm{I}}_2} \right)} \right)\;=\; \left({1,0} \right)} \\ {{\cal P}_2:\; \left({{\rm{cut}}\left({{\rm{I}}_1} \right),\,{\rm{cut}}\left({{\rm{I}}_2} \right)} \right)\;=\; \left({0,1} \right). \end{array}$

We call such P_i master contours (or projectors).

Master contours: results

With four massless external states,

$$c_{1} = \frac{i\chi}{8} \oint_{P_{1}} \frac{dz}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \qquad c_{2} = -\frac{i}{4s_{12}} \oint_{P_{2}} \frac{dz}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z)$$

With our choice of basis integrals, the P_i are

n =winding number

 $S_1 \overset{\circ}{\bullet} \overset{\circ}{\circ} \overset{\circ}{\circ} \overset{\circ}{\circ}$

A 3 >

 \mathcal{S}_2

э

Master contours: results

With four massless external states,

$$c_{1} = \frac{i\chi}{8} \oint_{P_{1}} \frac{dz}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \qquad c_{2} = -\frac{i}{4s_{12}} \oint_{P_{2}} \frac{dz}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z)$$

With our choice of basis integrals, the P_i are

n =winding number

(Generalizations: [Søgaard; 1306.1496] and [Søgaard, Zhang: 1310.6006])

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts

Characterizing the on-shell solutions

There are six solutions for the heptacut loop momenta

Kasper J. Larsen Nikhef

Cross-Order Integral Relations from Maximal Cuts

Physical interpretation of nodal points

points $\in S_i \cap S_j \longrightarrow$ no notion of \bullet or $\bigcirc \longrightarrow$ resp. prop. is soft also: $S_i \cap S_j \subset \{\text{leading singularities}\}!$

two-loop leading singularities \longrightarrow IR singularities of integral

ヨット イヨット イヨッ

Classification of heptacut solutions

Arbitrary # of external states. Define

The solution to $\ell_i^2 = 0, i = 1, \dots, 7$ is

- case 1 (M,M,M): 1 torus
- case 2 (M,M,m) etc.: 2 \mathbb{CP}^1 with $S_i \longleftrightarrow$ distrib. of \bullet , \bigcirc
- case 3 (M,m,m) etc.: 4 \mathbb{CP}^1 with $S_i \leftrightarrow$ distrib. of \bullet , \bigcirc
- case 4 (m,m,m): 6 \mathbb{CP}^1 with $S_i \longleftrightarrow$ distrib. of \bullet , \bigcirc

・ 同 ト ・ ヨ ト ・ ヨ ト

- 3

Limits $\mu_i \to m \implies$ chiral branchings: torus $\stackrel{\mu_3 \to m}{\longrightarrow}$

Each torus-pinching: new IR-pole + new residue thm \implies # of independent poles same in all cases

In all cases: # of master Γ 's = # of basis integrals

- \implies all linear relations are preserved
- \implies perfect analogy with one-loop generalized unitarity

- 4 同 6 4 日 6 4 日 6

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips. Reverse logic \longrightarrow demand constraints to be invariant under flips and π -rotations.

$$\begin{split} \{\mathsf{M},\mathsf{m},\mathsf{m}\} \text{ case: choose basis, e.g. } \omega_{1,2,5,6} &= 0\\ r_1^{(\mathrm{b})}(\omega_3 + \omega_4 + \omega_7 + \omega_8) + r_2^{(\mathrm{b})}(\omega_9 + \omega_{10} - \omega_{11} - \omega_{12}) &= 0\\ \text{where, in fact, } r_1^{(\mathrm{b})} &= r_2^{(\mathrm{b})} \neq 0. \end{split}$$

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips. Reverse logic \longrightarrow demand constraints to be invariant under flips and π -rotations.

$$\begin{split} \{\mathsf{M},\mathsf{m},\mathsf{m}\} \text{ case: choose basis, e.g. } \omega_{1,2,5,6} &= 0\\ r_1^{(\mathrm{b})}(\omega_3 + \omega_4 + \omega_7 + \omega_8) + r_2^{(\mathrm{b})}(\omega_9 + \omega_{10} - \omega_{11} - \omega_{12}) &= 0\\ \text{where, in fact, } r_1^{(\mathrm{b})} &= r_2^{(\mathrm{b})} \neq 0. \end{split}$$

(m,m,m) case:

1) constraint from {M,m,m} case inherited. 2) new flip symmetry \longrightarrow new constraint: $r_1^{(c)}(\omega_3 + \omega_4) + r_2^{(c)}(\omega_{11} + \omega_{12} - \omega_{13} - \omega_{14}) = 0$ as expressed in the basis $\omega_{1,2,5,6,7,8} = 0$. In fact, $r_1^{(c)} = -r_2^{(c)} \neq 0$.

Part 2: Integral identities from maximal cuts

- Loop integrals share leading singularities
- Consequences of shared leading singularities: integral relations

向下 イヨト イヨト

s- and *t*-channel integrals share global poles

At the nodal points, the rung momenta become soft.

At \mathcal{G}_4 (and \mathcal{G}_3), the middle rung goes soft. These poles are shared with the t-channel double box: k_2 k_3

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts

The two double boxes can be embedded in a single *pentacut*:

The two double boxes can be embedded in a single *pentacut*:

The pentacut of the $\mathcal{N}=4$ SYM amplitude vanishes,

$$\begin{aligned} \left. \left. \left. \left. \left. \left. \left(s_{12}^2 s_{23} J_{\text{HDB}} + s_{23}^2 s_{12} I_{\text{VDB}} \right) \right|_{\mathcal{S}_1} \right. \right. \\ \left. \left. \left. \left. \left. \left. s_{12} s_{23} \oint d^3 z J(z) \frac{s_{12} (\ell_1 + k_1)^2 (\ell_1 + \ell_2 - k_4)^2 + s_{23} (\ell_1 + \ell_2)^2 (\ell_1 - K_{34})^2}{(\ell_1 + k_1)^2 (\ell_1 - K_{34})^2 (\ell_1 + \ell_2)^2 (\ell_1 + \ell_2 - k_4)^2} \right|_{\mathcal{S}_1} \right. \right] \right\} \\ = 0 \\ \end{aligned}$$

because the numerator insertion vanishes identically on S_1 (consistent with $G(1, 2, 3, \ell_1, \ell_2) = 0$).

The two double boxes can be embedded in a single *pentacut*:

The pentacut of the $\mathcal{N} = 4$ SYM amplitude vanishes,

because the numerator insertion vanishes identically on S_1 (consistent with $G(1, 2, 3, \ell_1, \ell_2) = 0$).

Despite its $\mathcal{N} = 4$ SYM origin, the identity $(s_{12}^2 s_{23} I_{\text{HDB}} + s_{23}^2 s_{12} I_{\text{VDB}})|_{S_1} = 0$ is theory independent.

The blue poles are also shared between *s*- and *t*-channel double boxes.

But unlike the red ones, they are not accessible through any maximal cut (e.g., a pentacut) encompassing both DBs.

The sharing of the blue poles thus has no implications for the amplitude.

The blue poles are also shared between *s*- and *t*-channel double boxes.

But unlike the red ones, they are not accessible through any maximal cut (e.g., a pentacut) encompassing both DBs.

The sharing of the blue poles thus has no implications for the amplitude. But it does for the *cross section:* the residues at $\mathcal{G}_{5,6,7,8}$

cancel between the virtual and real contributions, cf. the KLN thm.

Global poles shared between pentaboxes

Pentaboxes embedded in the same "turtle-box" cut share poles:

as the "merge-and-split" move preserves the global pole location.

Global poles shared between pentaboxes

Pentaboxes embedded in the same "turtle-box" cut share poles:

as the "merge-and-split" move preserves the global pole location. Moreover, the "turtle-box octacut" residues cancel:

$$\big(s_{12} s_{23} s_{45} P^{**}_{3,2;\sigma_1} [(\ell_1 + k_5)^2] + s_{34} s_{45} s_{12} P^{**}_{3,2;\sigma_3} [(\ell_2 + k_1)^2] \big) \big|_{8-\mathsf{cut}} = 0$$

There are 10 such cancelations; can be summarized in 5 identities

$$\left(\sum_{\text{cyclic}} s_{12} s_{23} s_{45} P_{3,2;\sigma_1}^{**}[(\ell_1 + k_5)^2]\right)\Big|_{8-\text{cut}} = 0$$

Thus, this cyclic sum of DC pentaboxes can be expressed in terms of simpler integrals.

ABDK/BDS relation from maximal cuts

Reveal candidate integrals by dropping cut constraints. Consider

The integrals sharing these cuts are

as well as factorized two-loop integrals. Fix their coefficients by demanding equal residues on any parity-even contour, yielding

which is precisely the parity-even part of the ABDK/BDS relation.

Conclusions and outlook

- Programme aiming towards fully automated computation of two-loop amplitudes in generic gauge theories
- Integration-by-parts identities \longrightarrow reduce # of Feynman integrals by factor of 10-100
- One-to-one correspondence between two-loop master contours and master integrals
- Sharing of leading singularities between loop integrals allow us to infer integral relations
- Underlying algebraic geometry → deeper understanding of maximal cuts (i.e., contour constraints)
- Integrals with fewer propagators

(本部) (本語) (本語) (語)

Backup slides

・ロ・ ・ 日・ ・ 日・ ・ 日・

- 12

- ideal two-loop basis: chiral integrals
- evaluate 4-point chiral integrals analytically

向下 イヨト イヨト

The two-loop integral coefficients c_i have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ .

回 と く ヨ と く ヨ と …

3

The two-loop integral coefficients c_i have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ . IR-finite integrals $\longrightarrow \mathcal{O}(\epsilon)$ corrections not needed for amplitude Candidates: num. insertions $\rightarrow 0$ in collinear int. regions, e.g.

$$I_{++} \equiv I[[1|\ell_1|2\rangle\langle 3|\ell_2|4]] \times [23]\langle 14\rangle$$
$$I_{+-} \equiv I[[1|\ell_1|2\rangle\langle 4|\ell_2|3]] \times [24]\langle 13\rangle$$

Essentially the chiral integrals of [Arkani-Hamed et al.]

 I_{++} and I_{+-} lin. independent \longrightarrow use in any gauge theory

Philosophy: maximally IR-finite basis

 \longrightarrow minimize need for cuts in $D = 4 - 2\epsilon$

Evaluation of chiral integrals (1/3)

 ${\it I}_{+\pm}$ are finite \longrightarrow can be computed in D=4

1) Feynman parametrize

$$I_{++} = -\chi^2 \left(1 + (1+\chi) \frac{\partial}{\partial \chi} \right) I_1(\chi) \text{ and } I_{+-} = -(1+\chi)^2 \left(1 + \chi \frac{\partial}{\partial \chi} \right) I_1(\chi)$$

where

$$h_{1}(\chi) = \int \frac{d^{3}a \ d^{3}b \ dc \ c \ \delta(1 - c - \sum_{i} a_{i} - \sum_{i} b_{i}) \left(\sum_{i} a_{i} \sum_{i} b_{i} + c(\sum_{i} a_{i} + \sum_{i} b_{i})\right)^{-1}}{\left(a_{1}a_{3}(c + \sum_{i} b_{i}) + (a_{1}b_{4} + a_{3}b_{6} + a_{2}b_{5}\chi)c + b_{4}b_{6}(c + \sum_{i} a_{i})\right)^{2}}$$

2) "Projectivize" $l_1(\chi) = 6 \int_1^\infty dc \int_0^\infty \frac{d^7(a_1 a_2 a_3 a_{\mathcal{I}} b_1 b_2 b_3 b_{\mathcal{I}})}{\text{vol}(\text{GL}(1))} \frac{1}{(cA^2 + A.B + B^2)^4}$

- ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ● ○ ○ ○ ○

Evaluation of chiral integrals (2/3)

3) Obtain symbol

Integrate projective form one variable at the time, at the level of the symbol.

$$\mathcal{S}[\mathit{h}_1(\chi)] \,=\, \frac{2}{\chi} \left[\chi \otimes \chi \otimes (1+\chi) \otimes (1+\chi) \right] - \frac{2}{1+\chi} \left[\chi \otimes \chi \otimes (1+\chi) \otimes \chi \right]$$

4) "Integrate" symbol, using

- a) I_1 has transcendentality 4 (fact, not a conjecture)
- b) I_1 has no *u*-channel discontinuity
- c) Regge limits:

$$\begin{split} h_1(\chi) &\to \ \frac{\pi^2}{6} \log^2 \chi + \left(4\zeta(3) - \frac{\pi^2}{3}\right) \log \chi + \mathcal{O}(1) \quad \text{as} \quad \chi \to 0\\ h_1(\chi) &\to \ 6\zeta(3) \frac{\log \chi}{\chi} + \mathcal{O}(\chi^{-1}) \quad \text{as} \quad \chi \to \infty \end{split}$$

回 と く ヨ と く ヨ と

In conclusion, for the "chiral" integrals

$$I_{++} \equiv I[[1|\ell_1|2\rangle\langle 3|\ell_2|4]] \times [23]\langle 14\rangle$$
$$I_{+-} \equiv I[[1|\ell_1|2\rangle\langle 4|\ell_2|3]] \times [24]\langle 13\rangle$$

we find the results

$$I_{++}(\chi) = 2H_{-1,-1,0,0}(\chi) - \frac{\pi^2}{3}\text{Li}_2(-\chi) \\ + \left(\frac{\pi^2}{2}\log(1+\chi) - \frac{\pi^2}{3}\log\chi + 2\zeta(3)\right)\log(1+\chi) - 6\chi\zeta(3) \\ I_{+-}(\chi) = 2H_{0,-1,0,0}(\chi) - \pi^2\text{Li}_2(-\chi) - \frac{\pi^2}{6}\log^2\chi - 4\zeta(3)\log\chi - \frac{\pi^4}{10} - 6(1+\chi)\zeta(3)$$

Actual chiral integrals: transcendentality-breaking terms cancel.

▲圖▶ ▲屋▶ ▲屋▶

3