Cross-Order Integral Relations from Maximal Cuts

Kasper J. Larsen
Nikhef

Amplitudes 2014
IPhT CEA Saclay
June 10, 2014
Based on 1108.1180, 1205.0801, 1208.1754 and work to appear (with S. Caron-Huot, H. Johansson, D. Kosower and M. Søgaard)

Part 1: Review of Maximal Unitarity at Two Loops

- Motivation and one-loop generalized unitarity
- Two-loop maximal cuts are contour integrals on algebraic varieties. How are the integration contours determined?
- One-to-one correspondence between basis integrals and integration contours

Motivation and approaches

Two motivations for studying two-loop amplitudes:

- Precision LHC phenomenology

Quantitative estimates of QCD background: needed for precision measurements, uncertainty estimates of NLO calculations, and reducing renormalization scale dependence.

- Geometric understanding of scattering amplitudes Fascinating connection to algebraic geometry and multivariate complex analysis.

Our aim is to extend generalized unitarity to two loops so as to automate the computation of two-loop QCD amplitudes.

Other approaches:

- Integrand reduction [Mastrolia, Mirabella, Ossola, Peraro], 2011 and [Badger, Frellesvig, Zhang], 2012
- Spinor integration techniques [Feng, Zhen, Huang, Zhou], 2014
- Iterated cuts [Abreu, Britto, Duhr, Gardi], 2014

Generalized unitarity at one loop (1/2)

Use integrand reductions to write the one-loop amplitude as a linear combination of basis integrals

Generalized unitarity at one loop (1/2)

Use integrand reductions to write the one-loop amplitude as a linear combination of basis integrals

Determine c_{i} by applying quadruple cuts [Britto, Cachazo, Feng]:

$$
\Longrightarrow \quad c_{1}=\frac{1}{2} \sum_{\text {kin sols }} \prod_{j=1}^{4} A_{j}^{\text {tree }}
$$

Generalized unitarity at one loop (2/2)

A triple cut will leave 4-3=1 free complex parameter z.
Parametrizing the loop momentum,

$$
\ell^{\mu}=\alpha_{1} K_{1}^{b \mu}+\alpha_{2} K_{2}^{b \mu}+\frac{z}{2}\left\langle K_{1}^{b-}\right| \gamma^{\mu}\left|K_{2}^{b-}\right\rangle+\frac{\alpha_{4}(z)}{2}\left\langle K_{2}^{b-}\right| \gamma^{\mu}\left|K_{1}^{b-}\right\rangle
$$

one obtains an explicit formula for the triangle coefficient [Forde]

$$
\begin{equation*}
c_{\triangle}=\oint_{C(\infty)} \frac{d z}{z} \tag{z}
\end{equation*}
$$

From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

Compute $c_{1}(\epsilon)$ and $c_{2}(\epsilon)$ according to

Expand the massless 4-point two-loop amplitude in a basis, e.g.

Compute $c_{1}(\epsilon)$ and $c_{2}(\epsilon)$ according to

The machinery: contour integrals $\oint_{\Gamma_{j}}(\cdots)$
The philosophy: basis integral $I_{j} \longleftrightarrow$ unique Γ_{j} producing c_{j}

The anatomy of two-loop maximal cuts
Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting $\chi \equiv \frac{t}{s}$,

$$
\int d^{4} p d^{4} q \prod_{i=1}^{7} \frac{1}{\ell_{i}^{2}} \longrightarrow \int d^{4} p d^{4} q \prod_{i=1}^{7} \delta^{\mathbb{C}}\left(\ell_{i}^{2}\right)=\oint_{\Gamma} \frac{d z}{z(z+\chi)}
$$

a contour integral in the complex plane.

The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting $\chi \equiv \frac{t}{s}$,

$$
\int d^{4} p d^{4} q \prod_{i=1}^{7} \frac{1}{\ell_{i}^{2}} \longrightarrow \int d^{4} p d^{4} q \prod_{i=1}^{7} \delta^{\mathbb{C}}\left(\ell_{i}^{2}\right)=\oint_{\Gamma} \frac{d z}{z(z+\chi)}
$$

a contour integral in the complex plane.
Jacobian poles $z=0$ and $z=-\chi$: composite leading singularities
encircle $z=0$ and $z=-\chi$ with $\Gamma=\omega_{1} C_{\epsilon}(0)+\omega_{2} C_{\epsilon}(-\chi)$
\longrightarrow freeze z (" $8^{\text {th }}$ cut")

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states $\longrightarrow 8$ independent leading singularities

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states $\longrightarrow 8$ independent leading singularities

How do we select contours within this variety of possibilities?

Principle for selecting contours

To fix the contours, insist that
vanishing Feynman integrals must have vanishing heptacuts.
This ensures that

$$
\mathrm{I}_{1}=\mathrm{I}_{2} \quad \Longrightarrow \quad \operatorname{cut}\left(\mathrm{I}_{1}\right)=\operatorname{cut}\left(\mathrm{I}_{2}\right) .
$$

To fix the contours, insist that
vanishing Feynman integrals must have vanishing heptacuts.
This ensures that

$$
\mathrm{I}_{1}=\mathrm{I}_{2} \quad \Longrightarrow \quad \operatorname{cut}\left(\mathrm{I}_{1}\right)=\operatorname{cut}\left(\mathrm{I}_{2}\right) .
$$

Origin of terms with vanishing $\mathbb{R}^{D} \times \mathbb{R}^{D}$ integration: reduction of Feynman diagram expansion to a basis of integrals (including use of integration-by-parts identities [Chetyrkin and Tkachov], 1981).

Remarkable simplification:

- 4 massless external states: $22 \longrightarrow 2$ double-box integrals
- 5 massless external states: $160 \longrightarrow 2$ "turtle-box" integrals
- 5 massless external states: $76 \longrightarrow 1$ pentagon-box integral

Contour constraints, part $1 / 2$

There are two classes of constraints on 「's:

1) Levi-Civita integrals. For example,

Contour constraints, part $1 / 2$

There are two classes of constraints on 「's:

1) Levi-Civita integrals. For example,

2) integration-by-parts (IBP) identities must be preserved. For example,

Contour constraints, part $2 / 2$

The constraints in the case of four massless external momenta:

$$
\begin{array}{r}
\omega_{1}-\omega_{2}=0 \\
\omega_{3}-\omega_{4}=0 \\
\omega_{5}-\omega_{6}=0 \\
\omega_{7}-\omega_{8}=0 \\
\omega_{3}+\omega_{4}-\omega_{5}-\omega_{6}=0 \\
\omega_{1}+\omega_{2}-\omega_{5}-\omega_{6}+\omega_{7}+\omega_{8}=0
\end{array}
$$

leaving $8-4-2=2$ free winding numbers.

Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Exploit free parameters $\longrightarrow \exists$ contours with

$$
\begin{aligned}
& P_{1}:\left(\operatorname{cut}\left(\mathrm{I}_{1}\right), \operatorname{cut}\left(\mathrm{I}_{2}\right)\right)=(1,0) \\
& P_{2}:\left(\operatorname{cut}\left(\mathrm{I}_{1}\right), \operatorname{cut}\left(\mathrm{I}_{2}\right)\right)=(0,1) .
\end{aligned}
$$

We call such P_{i} master contours (or projectors).

Master contours: results

With four massless external states,

$$
c_{1}=\frac{i \chi}{8} \oint_{P_{1}} \frac{d z}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text {tree }}(z)
$$

$$
c_{2}=-\frac{i}{4 s_{12}} \oint_{P_{2}} \frac{d z}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text {tree }}(z)
$$

With our choice of basis integrals, the P_{i} are

$n=$ winding number

Master contours: results

With four massless external states,

$$
c_{1}=\frac{i \chi}{8} \oint_{P_{1}} \frac{d z}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text {ree }}(z)
$$

$$
c_{2}=-\frac{i}{4 s_{12}} \oint_{P_{2}} \frac{d z}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text {tree }}(z)
$$

With our choice of basis integrals, the P_{i} are

$$
n=\text { winding number }
$$

(Generalizations: [Søgaard; 1306.1496] and [Søgaard, Zhang; 1310.6006])

Characterizing the on-shell solutions

There are six solutions for the heptacut loop momenta

Set $k_{i}^{\mu}=\lambda_{i} \sigma^{\mu} \widetilde{\lambda}_{i}$ and classify each vertex according to

(MHV)

$\lambda_{a} \propto \lambda_{b} \propto \lambda_{c}$
(MHV)

points $\in \mathcal{S}_{i} \cap \mathcal{S}_{j} \longrightarrow$ no notion of \boldsymbol{O} or $\bigcirc \longrightarrow$ resp. prop. is soft also: $\quad \mathcal{S}_{i} \cap \mathcal{S}_{j} \subset\{$ leading singularities $\}$!
two-loop leading singularities \longrightarrow IR singularities of integral

Classification of heptacut solutions

Arbitrary \# of external states. Define
$\mu_{i} \equiv \begin{cases}\mathrm{~m} & \text { if } i^{\text {th }} \text { vertical prop. } \in 3 \text {-pt. vertex } \\ \mathrm{M} & \text { if } i^{\text {th }} \text { vertical prop. } \notin 3 \text {-pt. vertex }\end{cases}$

$$
\text { is } \quad(m, m, M)
$$

The solution to $\ell_{i}^{2}=0, i=1, \ldots, 7$ is

- case $1(M, M, M)$: 1 torus
- case $2(M, M, m)$ etc.: $2 \mathbb{C P}^{1}$ with $\mathcal{S}_{i} \longleftrightarrow$ distrib. of \bullet, O
- case $3(\mathrm{M}, \mathrm{m}, \mathrm{m})$ etc.: $4 \mathbb{C P}^{1}$ with $\mathcal{S}_{i} \longleftrightarrow$ distrib. of \bullet, \bigcirc
- case $4(\mathrm{~m}, \mathrm{~m}, \mathrm{~m}): \quad 6 \mathbb{C P}^{1}$ with $\mathcal{S}_{i} \longleftrightarrow$ distrib. of \bullet, \bigcirc

Uniqueness of master contours

Limits $\mu_{i} \rightarrow \mathrm{~m} \quad$ chiral branchings: torus $\xrightarrow{\mu_{3} \rightarrow \mathrm{~m}}$

Each torus-pinching: new IR-pole + new residue thm \Longrightarrow \# of independent poles same in all cases

In all cases: \# of master Г's = \# of basis integrals
\Longrightarrow all linear relations are preserved
\Longrightarrow perfect analogy with one-loop generalized unitarity

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.
Reverse logic \longrightarrow demand constraints to be invariant under flips and π-rotations.
$\{M, m, m\}$ case: choose basis, e.g. $\omega_{1,2,5,6}=0$
$r_{1}^{(\mathrm{b})}\left(\omega_{3}+\omega_{4}+\omega_{7}+\omega_{8}\right)+r_{2}^{(\mathrm{b})}\left(\omega_{9}+\omega_{10}-\omega_{11}-\omega_{12}\right)=0$
where, in fact, $r_{1}^{(\mathrm{b})}=r_{2}^{(\mathrm{b})} \neq 0$.

Kasper J. Larsen Nikhef

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.
Reverse logic \longrightarrow demand constraints to be invariant under flips and π-rotations.
$\{M, m, m\}$ case: choose basis, e.g. $\omega_{1,2,5,6}=0$
$r_{1}^{(\mathrm{b})}\left(\omega_{3}+\omega_{4}+\omega_{7}+\omega_{8}\right)+r_{2}^{(\mathrm{b})}\left(\omega_{9}+\omega_{10}-\omega_{11}-\omega_{12}\right)=0$
where, in fact, $r_{1}^{(\mathrm{b})}=r_{2}^{(\mathrm{b})} \neq 0$.

(m, m, m) case:

1) constraint from $\{M, m, m\}$ case inherited.
2) new flip symmetry \longrightarrow new constraint:
$r_{1}^{(c)}\left(\omega_{3}+\omega_{4}\right)+r_{2}^{(c)}\left(\omega_{11}+\omega_{12}-\omega_{13}-\omega_{14}\right)=0$ as expressed in the basis $\omega_{1,2,5,6,7,8}=0$. In fact, $r_{1}^{(\mathrm{c})}=-r_{2}^{(\mathrm{c})} \neq 0$.

Part 2: Integral identities from maximal cuts

- Loop integrals share leading singularities
- Consequences of shared leading singularities: integral relations

s - and t-channel integrals share global poles

At the nodal points, the rung momenta become soft.

At \mathcal{G}_{4} (and \mathcal{G}_{3}), the middle rung goes soft. These poles are shared with the t-channel double box:

Consequences of global pole sharing

The two double boxes can be embedded in a single pentacut:

Consequences of global pole sharing

The two double boxes can be embedded in a single pentacut:

The pentacut of the $\mathcal{N}=4$ SYM amplitude vanishes, $\left.\left(s_{12}^{2} s_{23} I_{\mathrm{HDB}}+s_{23}^{2} s_{12} I_{\mathrm{VDB}}\right)\right|_{\mathcal{S}_{1}}$
$=\left.s_{12} s_{23} \oint d^{3} z J(z) \frac{s_{12}\left(\ell_{1}+k_{1}\right)^{2}\left(\ell_{1}+\ell_{2}-k_{4}\right)^{2}+s_{23}\left(\ell_{1}+\ell_{2}\right)^{2}\left(\ell_{1}-K_{34}\right)^{2}}{\left(\ell_{1}+k_{1}\right)^{2}\left(\ell_{1}-K_{34}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2}\left(\ell_{1}+\ell_{2}-k_{4}\right)^{2}}\right|_{\mathcal{S}_{1}}=0$
because the numerator insertion vanishes identically on \mathcal{S}_{1}
(consistent with $\left.G\left(1,2,3, \ell_{1}, \ell_{2}\right)=0\right)$.

Consequences of global pole sharing

The two double boxes can be embedded in a single pentacut:

The pentacut of the $\mathcal{N}=4$ SYM amplitude vanishes, $\left.\left(s_{12}^{2} s_{23} I_{\mathrm{HDB}}+s_{23}^{2} s_{12} I_{\mathrm{VDB}}\right)\right|_{\mathcal{S}_{1}}$
$=\left.s_{12} s_{23} \oint d^{3} z J(z) \frac{s_{12}\left(\ell_{1}+k_{1}\right)^{2}\left(\ell_{1}+\ell_{2}-k_{4}\right)^{2}+s_{23}\left(\ell_{1}+\ell_{2}\right)^{2}\left(\ell_{1}-K_{34}\right)^{2}}{\left(\ell_{1}+k_{1}\right)^{2}\left(\ell_{1}-K_{34}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2}\left(\ell_{1}+\ell_{2}-k_{4}\right)^{2}}\right|_{\mathcal{S}_{1}}=0$
because the numerator insertion vanishes identically on \mathcal{S}_{1}
(consistent with $\left.G\left(1,2,3, \ell_{1}, \ell_{2}\right)=0\right)$.
Despite its $\mathcal{N}=4$ SYM origin, the identity
$\left.\left(s_{12}^{2} s_{23} /_{\mathrm{HDB}}+s_{23}^{2} s_{12} / V_{\mathrm{VB}}\right)\right|_{\mathcal{S}_{1}}=0$ is theory independent.

Consequences of global pole sharing

The blue poles are also shared between s - and t-channel double boxes.
But unlike the red ones, they are not accessible through any maximal cut (e.g., a pentacut) encompassing both DBs.

The sharing of the blue poles thus has no implications for the amplitude.

Consequences of global pole sharing

The blue poles are also shared between s - and t-channel double boxes.
But unlike the red ones, they are not accessible through any maximal cut (e.g., a pentacut) encompassing both DBs.

The sharing of the blue poles thus has no implications for the amplitude. But it does for the cross section: the residues at $\mathcal{G}_{5,6,7,8}$

cancel between the virtual and real contributions, cf, the KLN thm.

Global poles shared between pentaboxes

Pentaboxes embedded in the same "turtle-box" cut share poles:

as the "merge-and-split" move preserves the global pole location.

Global poles shared between pentaboxes

Pentaboxes embedded in the same "turtle-box" cut share poles:

as the "merge-and-split" move preserves the global pole location. Moreover, the "turtle-box octacut" residues cancel:

$$
\left.\left(s_{12} s_{23} s_{45} P_{3,2 ; \sigma_{1}}^{* *}\left[\left(\ell_{1}+k_{5}\right)^{2}\right]+s_{34} s_{45} s_{12} P_{3,2 ; \sigma_{3}}^{* *}\left[\left(\ell_{2}+k_{1}\right)^{2}\right]\right)\right|_{8-\mathrm{cut}}=0
$$

There are 10 such cancelations; can be summarized in 5 identities

$$
\left.\left(\sum_{\text {cyclic }} s_{12} s_{23} s_{45} P_{3,2 ; \sigma_{1}}^{* *}\left[\left(\ell_{1}+k_{5}\right)^{2}\right]\right)\right|_{8-\mathrm{cut}}=0
$$

Thus, this cyclic sum of DC pentaboxes can be expressed in terms of simpler integrals.

ABDK/BDS relation from maximal cuts

Reveal candidate integrals by dropping cut constraints. Consider

The integrals sharing these cuts are

as well as factorized two-loop integrals. Fix their coefficients by demanding equal residues on any parity-even contour, yielding

which is precisely the parity-even part of the ABDK/BDS relations

Conclusions and outlook

- Programme aiming towards fully automated computation of two-loop amplitudes in generic gauge theories
- Integration-by-parts identities \longrightarrow reduce \# of Feynman integrals by factor of 10-100
- One-to-one correspondence between two-loop master contours and master integrals
- Sharing of leading singularities between loop integrals allow us to infer integral relations
- Underlying algebraic geometry \longrightarrow deeper understanding of maximal cuts (i.e., contour constraints)
- Integrals with fewer propagators

Backup slides

Integrals and integral bases

- ideal two-loop basis: chiral integrals
- evaluate 4-point chiral integrals analytically

Maximally IR-finite basis

The two-loop integral coefficients c_{i} have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ.

Maximally IR-finite basis

The two-loop integral coefficients c_{i} have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ.

IR-finite integrals $\longrightarrow \mathcal{O}(\epsilon)$ corrections not needed for amplitude
Candidates: num. insertions $\rightarrow 0$ in collinear int. regions, e.g.

$$
\begin{aligned}
I_{++} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 3| \ell_{2} \mid 4\right]\right] \times[23]\langle 14\rangle \\
I_{+-} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 4| \ell_{2} \mid 3\right]\right] \times[24]\langle 13\rangle
\end{aligned}
$$

Essentially the chiral integrals of [Arkani-Hamed et al.]
I_{++}and I_{+-}lin. independent \longrightarrow use in any gauge theory
Philosophy: maximally IR-finite basis
\longrightarrow minimize need for cuts in $D=4-2 \epsilon$

Evaluation of chiral integrals $(1 / 3)$

$I_{+ \pm}$are finite \longrightarrow can be computed in $D=4$

1) Feynman parametrize

$$
I_{++}=-\chi^{2}\left(1+(1+\chi) \frac{\partial}{\partial \chi}\right) I_{1}(\chi) \text { and } I_{+-}=-(1+\chi)^{2}\left(1+\chi \frac{\partial}{\partial \chi}\right) I_{1}(\chi)
$$

where

$$
I_{1}(\chi)=\int \frac{d^{3} a d^{3} b d c c \delta\left(1-c-\sum_{i} a_{i}-\sum_{i} b_{i}\right)\left(\sum_{i} a_{i} \sum_{i} b_{i}+c\left(\sum_{i} a_{i}+\sum_{i} b_{i}\right)\right)^{-1}}{\left(a_{1} a_{3}\left(c+\sum_{i} b_{i}\right)+\left(a_{1} b_{4}+a_{3} b_{6}+a_{2} b_{5} \chi\right) c+b_{4} b_{6}\left(c+\sum_{i} a_{i}\right)\right)^{2}}
$$

2) "Projectivize"

$$
I_{1}(\chi)=6 \int_{1}^{\infty} d c \int_{0}^{\infty} \frac{d^{7}\left(a_{1} a_{2} a_{3} a_{\mathcal{I}} b_{1} b_{2} b_{3} b_{\mathcal{I}}\right)}{\operatorname{vol}(\mathrm{GL}(1))} \frac{1}{\left(c A^{2}+A \cdot B+B^{2}\right)^{4}}
$$

Evaluation of chiral integrals (2/3)

3) Obtain symbol

Integrate projective form one variable at the time, at the level of the symbol.

$$
\mathcal{S}\left[I_{1}(\chi)\right]=\frac{2}{\chi}[\chi \otimes \chi \otimes(1+\chi) \otimes(1+\chi)]-\frac{2}{1+\chi}[\chi \otimes \chi \otimes(1+\chi) \otimes \chi]
$$

4) "Integrate" symbol, using
a) I_{1} has transcendentality 4 (fact, not a conjecture)
b) I_{1} has no u-channel discontinuity
c) Regge limits:

$$
\begin{aligned}
& I_{1}(\chi) \rightarrow \frac{\pi^{2}}{6} \log ^{2} \chi+\left(4 \zeta(3)-\frac{\pi^{2}}{3}\right) \log \chi+\mathcal{O}(1) \text { as } \chi \rightarrow 0 \\
& I_{1}(\chi) \rightarrow 6 \zeta(3) \frac{\log \chi}{\chi}+\mathcal{O}\left(\chi^{-1}\right) \text { as } \chi \rightarrow \infty
\end{aligned}
$$

Evaluation of chiral integrals (3/3)

In conclusion, for the "chiral" integrals

$$
\begin{aligned}
I_{++} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 3| \ell_{2} \mid 4\right]\right] \times\left[\begin{array}{ll}
2 & 3
\end{array}\right]\langle 14\rangle \\
I_{+-} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 4| \ell_{2} \mid 3\right]\right] \times[24]\langle 13\rangle
\end{aligned}
$$

we find the results

$$
\begin{aligned}
I_{++}(\chi)= & 2 H_{-1,-1,0,0}(\chi)-\frac{\pi^{2}}{3} \operatorname{Li}_{2}(-\chi) \\
& +\left(\frac{\pi^{2}}{2} \log (1+\chi)-\frac{\pi^{2}}{3} \log \chi+2 \zeta(3)\right) \log (1+\chi)-6 \chi \zeta(3) \\
I_{+-}(\chi)= & 2 H_{0,-1,0,0}(\chi)-\pi^{2} \operatorname{Li}_{2}(-\chi)-\frac{\pi^{2}}{6} \log ^{2} \chi-4 \zeta(3) \log \chi-\frac{\pi^{4}}{10}-6(1+\chi) \zeta(3)
\end{aligned}
$$

Actual chiral integrals: transcendentality-breaking terms cancel.

