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Part 1: Review of Maximal Unitarity at Two Loops

Motivation and one-loop generalized unitarity

Two-loop maximal cuts are contour integrals on algebraic
varieties. How are the integration contours determined?

One-to-one correspondence between basis integrals and
integration contours

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts



Motivation and approaches

Two motivations for studying two-loop amplitudes:

Precision LHC phenomenology
Quantitative estimates of QCD background: needed for
precision measurements, uncertainty estimates of NLO
calculations, and reducing renormalization scale dependence.

Geometric understanding of scattering amplitudes
Fascinating connection to algebraic geometry and
multivariate complex analysis.

Our aim is to extend generalized unitarity to two loops so as to
automate the computation of two-loop QCD amplitudes.

Other approaches:

Integrand reduction [Mastrolia, Mirabella, Ossola, Peraro], 2011

and [Badger, Frellesvig, Zhang], 2012

Spinor integration techniques [Feng, Zhen, Huang, Zhou], 2014

Iterated cuts [Abreu, Britto, Duhr, Gardi], 2014
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Generalized unitarity at one loop (1/2)

Use integrand reductions to write the one-loop amplitude as a
linear combination of basis integrals

Determine ci by applying quadruple cuts [Britto, Cachazo, Feng]:
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Generalized unitarity at one loop (2/2)

A triple cut will leave 4− 3 = 1 free complex parameter z .
Parametrizing the loop momentum,

`µ = α1K
[µ
1 + α2K

[µ
2 + z

2〈K [−
1 |γµ|K [−

2 〉+ α4(z)
2 〈K [−

2 |γµ|K [−
1 〉

one obtains an explicit formula for the triangle coefficient [Forde]
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From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

Compute c1(ε) and c2(ε) according to

The machinery: contour integrals
∮

Γj
(· · · )

The philosophy: basis integral Ij ←→ unique Γj producing cj
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The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting χ ≡ t
s ,

∫
d4pd4q

7∏
i=1

1

`2
i

−→
∫
d4pd4q

7∏
i=1

δC(`2
i ) =

∮
Γ

dz

z(z + χ)
,

a contour integral in the complex plane.

Jacobian poles z = 0 and z = −χ: composite leading singularities

encircle z = 0 and z = −χ with Γ = ω1Cε(0) + ω2Cε(−χ)
−→ freeze z (“8th cut”)
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Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states −→ 8 independent leading singularities

How do we select contours within this variety of possibilities?

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts



Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states −→ 8 independent leading singularities

How do we select contours within this variety of possibilities?

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts



Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing heptacuts.

This ensures that

I1 = I2 =⇒ cut(I1) = cut(I2) .

Origin of terms with vanishing RD × RD integration:
reduction of Feynman diagram expansion to a basis of integrals
(including use of integration-by-parts identities [Chetyrkin and Tkachov],

1981).

Remarkable simplification:

4 massless external states: 22 −→ 2 double-box integrals

5 massless external states: 160 −→ 2 “turtle-box” integrals

5 massless external states: 76 −→ 1 pentagon-box integral
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Contour constraints, part 1/2

There are two classes of constraints on Γ’s:

1) Levi-Civita integrals. For example,

2) integration-by-parts (IBP) identities must be preserved. For
example,
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Contour constraints, part 2/2

The constraints in the case of four massless external momenta:

leaving 8− 4− 2 = 2 free winding numbers.
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Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Exploit free parameters −→ ∃ contours with

P1 :
(
cut(I1), cut(I2)

)
= (1, 0)

P2 :
(
cut(I1), cut(I2)

)
= (0, 1) .

We call such Pi master contours (or projectors).
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Master contours: results

With four massless external states,

c1 =
iχ

8

∮
P1

dz

z(z + χ)

6∏
j=1

Atree
j (z) c2 =− i

4s12

∮
P2

dz

z(z + χ)

6∏
j=1

Atree
j (z)

With our choice of basis integrals, the Pi are

(Generalizations: [Søgaard; 1306.1496] and [Søgaard, Zhang; 1310.6006])

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts



Master contours: results

With four massless external states,

c1 =
iχ

8

∮
P1

dz

z(z + χ)

6∏
j=1

Atree
j (z) c2 =− i

4s12

∮
P2

dz

z(z + χ)

6∏
j=1

Atree
j (z)

With our choice of basis integrals, the Pi are

(Generalizations: [Søgaard; 1306.1496] and [Søgaard, Zhang; 1310.6006])

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts



Characterizing the on-shell solutions

There are six solutions for the heptacut loop momenta

Set kµi = λiσ
µλ̃i and classify each vertex according to

λ̃a ∝ λ̃b ∝ λ̃c (MHV) −→ ◦
λa ∝ λb ∝ λc (MHV) −→ •
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Physical interpretation of nodal points

points ∈ Si ∩ Sj −→ no notion of • or ◦ −→ resp. prop. is soft
also: Si ∩ Sj ⊂ {leading singularities}!

two-loop leading singularities −→ IR singularities of integral
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Classification of heptacut solutions

Arbitrary # of external states. Define

µi ≡
{

m if ith vertical prop. ∈ 3-pt. vertex

M if ith vertical prop. /∈ 3-pt. vertex

The solution to `2
i = 0, i = 1, . . . , 7 is

case 1 (M,M,M): 1 torus

case 2 (M,M,m) etc.: 2 CP1 with Si ←→ distrib. of •, ◦
case 3 (M,m,m) etc.: 4 CP1 with Si ←→ distrib. of •, ◦
case 4 (m,m,m): 6 CP1 with Si ←→ distrib. of •, ◦

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts



Uniqueness of master contours

Limits µi → m =⇒ chiral branchings: torus
µ3→m−→

Each torus-pinching: new IR-pole + new residue thm
=⇒ # of independent poles same in all cases

In all cases: # of master Γ’s = # of basis integrals
=⇒ all linear relations are preserved
=⇒ perfect analogy with one-loop generalized unitarity
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Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.

Reverse logic −→ demand constraints to be
invariant under flips and π-rotations.

{M,m,m} case: choose basis, e.g. ω1,2,5,6 = 0

r
(b)
1

(
ω3 + ω4 + ω7 + ω8

)
+ r

(b)
2

(
ω9 + ω10 − ω11 − ω12

)
= 0

where, in fact, r (b)
1 = r

(b)
2 6= 0.

(m,m,m) case:

1) constraint from {M,m,m} case inherited.
2) new flip symmetry −→ new constraint:

r
(c)
1

(
ω3 + ω4

)
+ r

(c)
2

(
ω11 + ω12 − ω13 − ω14

)
= 0

as expressed in the basis ω1,2,5,6,7,8 = 0.

In fact, r (c)
1 = −r (c)

2 6= 0.
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Part 2: Integral identities from maximal cuts

Loop integrals share leading singularities

Consequences of shared leading singularities: integral relations
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s- and t-channel integrals share global poles

At the nodal points, the rung momenta become soft.

At G4 (and G3), the middle rung goes soft. These poles are
shared with the t-channel double box:

k1

k2 k3

k4
`1

`2
`2 → 0

k1

k2 k3

k4
`1

`2 → 0

k1

k2 k3

k4

`2

`1
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Consequences of global pole sharing

The two double boxes can be embedded in a single pentacut:

k1

k2 k3

k4
`1

`2

k1

k2 k3

k4
`1

`2

k1

k2 k3

k4
`1

`2

The pentacut of the N = 4 SYM amplitude vanishes,(
s2

12s23IHDB + s2
23s12IVDB

)∣∣
S1

= s12s23

∮
d3z J(z)

s12(`1 + k1)2(`1 + `2 − k4)2 + s23(`1 + `2)2(`1 − K34)2

(`1 + k1)2(`1 − K34)2(`1 + `2)2(`1 + `2 − k4)2

∣∣∣∣
S1

= 0

because the numerator insertion vanishes identically on S1

(consistent with G (1, 2, 3, `1, `2) = 0).

Despite its N = 4 SYM origin, the identity(
s2

12s23IHDB + s2
23s12IVDB

)∣∣
S1

= 0 is theory independent.
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Consequences of global pole sharing

The blue poles are also shared between
s- and t-channel double boxes.

But unlike the red ones, they are not
accessible through any maximal cut
(e.g., a pentacut)
encompassing both DBs.

The sharing of the blue poles thus has no implications for the
amplitude.
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Consequences of global pole sharing

The blue poles are also shared between
s- and t-channel double boxes.

But unlike the red ones, they are not
accessible through any maximal cut
(e.g., a pentacut)
encompassing both DBs.

The sharing of the blue poles thus has no implications for the
amplitude. But it does for the cross section: the residues at G5,6,7,8

1

2
3

4

3

4
`1

`2

`3

(a)

`2 → 0

k5 → 0

1

2
3

4

5

3

4
`1`3

(b)

cancel between the virtual and real contributions, cf. the KLN thm.
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Global poles shared between pentaboxes

Pentaboxes embedded in the same “turtle-box” cut share poles:

as the “merge-and-split” move preserves the global pole location.

Moreover, the ”turtle-box octacut” residues cancel:(
s12s23s45P

∗∗
3,2;σ1

[(`1 + k5)2] + s34s45s12P
∗∗
3,2;σ3

[(`2 + k1)2]
)∣∣

8−cut
= 0

There are 10 such cancelations; can be summarized in 5 identities(∑
cyclic

s12s23s45P
∗∗
3,2;σ1

[(`1 + k5)2]

)∣∣∣∣
8−cut

= 0

Thus, this cyclic sum of DC pentaboxes can be expressed in terms
of simpler integrals.
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ABDK/BDS relation from maximal cuts

Reveal candidate integrals by dropping cut constraints. Consider

The integrals sharing these cuts are

as well as factorized two-loop integrals. Fix their coefficients by
demanding equal residues on any parity-even contour, yielding

which is precisely the parity-even part of the ABDK/BDS relation.
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Conclusions and outlook

Programme aiming towards fully automated computation of
two-loop amplitudes in generic gauge theories

Integration-by-parts identities −→ reduce # of Feynman
integrals by factor of 10-100

One-to-one correspondence between two-loop master contours
and master integrals

Sharing of leading singularities between loop integrals allow us
to infer integral relations

Underlying algebraic geometry −→ deeper understanding of
maximal cuts (i.e., contour constraints)

Integrals with fewer propagators

Kasper J. Larsen Nikhef Cross-Order Integral Relations from Maximal Cuts



Backup slides
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Integrals and integral bases

ideal two-loop basis: chiral integrals

evaluate 4-point chiral integrals analytically
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Maximally IR-finite basis

The two-loop integral coefficients ci have O(ε) corrections.

Important to know, as the integrals have poles in ε.

IR-finite integrals −→ O(ε) corrections not needed for amplitude

Candidates: num. insertions → 0 in collinear int. regions, e.g.

I++ ≡ I
[
[1|/̀1|2〉〈3|/̀2|4]

]
× [2 3]〈1 4〉

I+− ≡ I
[
[1|/̀1|2〉〈4|/̀2|3]

]
× [2 4]〈1 3〉

Essentially the chiral integrals of [Arkani-Hamed et al.]

I++ and I+− lin. independent −→ use in any gauge theory

Philosophy: maximally IR-finite basis
−→ minimize need for cuts in D = 4− 2ε
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Evaluation of chiral integrals (1/3)

I+± are finite −→ can be computed in D = 4

1) Feynman parametrize

I++ = −χ2

(
1 + (1 + χ)

∂

∂χ

)
I1(χ) and I+− = −(1 + χ)2

(
1 + χ

∂

∂χ

)
I1(χ)

where

I1(χ) =

∫ d3a d3b dc c δ
(

1− c −
∑

i ai −
∑

i bi
)(∑

i ai
∑

i bi + c
(∑

i ai +
∑

i bi
))−1

(
a1a3

(
c +

∑
i bi
)

+ (a1b4 + a3b6 + a2b5χ)c + b4b6
(
c +

∑
i ai
))2

2) “Projectivize”

I1(χ) = 6

∫ ∞
1

dc

∫ ∞
0

d7(a1a2a3aIb1b2b3bI)

vol(GL(1))

1

(cA2 + A.B + B2)4
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Evaluation of chiral integrals (2/3)

3) Obtain symbol

Integrate projective form one variable at the time, at the level
of the symbol.

S[I1(χ)] =
2

χ
[χ⊗ χ⊗ (1 + χ)⊗ (1 + χ)]−

2

1 + χ
[χ⊗ χ⊗ (1 + χ)⊗ χ]

4) “Integrate” symbol, using

a) I1 has transcendentality 4 (fact, not a conjecture)

b) I1 has no u-channel discontinuity

c) Regge limits:

I1(χ) →
π2

6
log2 χ+

(
4ζ(3)−

π2

3

)
logχ+O(1) as χ→ 0

I1(χ) → 6ζ(3)
logχ

χ
+O(χ−1) as χ→∞
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Evaluation of chiral integrals (3/3)

In conclusion, for the “chiral” integrals

I++ ≡ I
[
[1|/̀1|2〉〈3|/̀2|4]

]
× [2 3]〈1 4〉

I+− ≡ I
[
[1|/̀1|2〉〈4|/̀2|3]

]
× [2 4]〈1 3〉

we find the results

I++(χ) = 2H−1,−1,0,0(χ)−
π2

3
Li2(−χ)

+

(
π2

2
log(1 + χ)−

π2

3
logχ+ 2ζ(3)

)
log(1 + χ)− 6χζ(3)

I+−(χ) = 2H0,−1,0,0(χ)− π2Li2(−χ)−
π2

6
log2 χ− 4ζ(3) logχ−

π4

10
− 6(1 + χ)ζ(3)

Actual chiral integrals: transcendentality-breaking terms cancel.
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