Mathematical structures and tools for Feynman amplitudes

Johannes M. Henn

Institute for Advanced Study
supported in part by the Department of Energy grant DE-SC0009988
Marvin L. Goldberger Member

Ideal and realistic scattering amplitudes

- $\mathrm{N}=4 \mathrm{SYM}$ is 'hydrogen atom of quantum field theory'
dualities, dual conformal/Yangian symmetry,AdS/CFT, integrability, twistor space, simple integrands...
what further surprises does it hold for us?
what can we learn from it for QCD?
- Higgs discovery at the LHC
more theory predictions needed for precision measurements!

this talk: tools for loop-level scattering amplitudes (building on tree/integrand insights)

Techniques for loop integrands

- unitarity cut based techniques [Bern, Dixon, Dunbar, Kosower] [...]
cf. talks by Badger, Britto, Larsen, Mastrolia, Penante, Roiban, Yang,...
used for many I-loop phenomenological studies; multi-loop in super Yang-Mills and supergravity
- on-shell recursion relations and diagrams
[Britto, Cachazo, Feng, (Witten)] [Arkani-Hamed,Bourjaily, Cachazo, Caron-Huot, Trnka] very useful, compact answers, helps make symmetries manifest challenges for the future: apply to $\mathrm{N}<4$ SYM, non-planar, $\mathrm{D}=4$-2eps recent development:'amplituhedron' [Arkani-Hamed,Trnka]
- physical properties of loop integrands
make infrared (IR) properties manifest
[Arkani-Hamed et al.] [Drummond, J.M.H.][Bourjaily, DiRe, Shaikh, Spradlin,Volovich] closely related to (generalized) cut structure

UV properties, anomalies [Chen, Huang, McGady]

Scattering amplitudes at loop level

-What functions are needed to describe them?

- Example: integral appearing in Higgs production

$$
\begin{aligned}
& \int \frac{d^{4} k}{i \pi^{2}} \frac{1}{\left(m_{t}^{2}-k^{2}\right)\left(m_{t}^{2}-\left(k+p_{1}\right)^{2}\right)\left(m_{t}^{2}-\left(k-p_{2}\right)^{2}\right)}= \\
& \quad=-\frac{1}{2 s} \log ^{2}\left(\frac{\sqrt{1-4 m_{t}^{2} / s}-1}{\sqrt{1-4 m_{t}^{2} / s}+1}\right) \\
& s=\left(p_{1}+p_{2}\right)^{2}
\end{aligned}
$$

- multivalued function; two-particle threshold
- more generally: need integrals in a Laurent series about $D=4-2$ eps.
- At one loop, only logarithm and dilogarithm needed

$$
\log z=\int_{1}^{z} \frac{d t}{t} \quad \operatorname{Li}_{2}(z)=\int_{0}^{z} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}
$$

- what functions will appear at higher loops?
- how to compute them in an efficient way?

Feynman integrals as iterated integrals (I)

- Logarithm and dilogarithm are first examples of iterated integrals with special " ${ }^{\text {d-log" integration kernels }}$

$$
\frac{d t}{t}=d \log t \quad \frac{-d t}{1-t}=d \log (1-t) \quad \frac{d t}{1+t}=d \log (1+t)
$$

- these are called harmonic polylogarithms (HPL) [Remiddi,Vermaseren] e.g. $\quad H_{1,-1}(x)=\int_{0}^{x} \frac{d x_{1}}{1-x_{1}} \int_{0}^{x_{1}} \frac{d x_{2}}{1+x_{2}}$
- shuffle product algebra
- coproduct structure
- Mathematica implementation [Maitre]
- weight: number of integrations
- special values related to multiple zeta values (MZV) [cf. Duhr's talk]

$$
\zeta_{i_{1}, i_{2}, \ldots, i_{k}}=\sum_{a_{1}>a_{2}>\ldots a_{k} \geq 1} \frac{1}{a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{k}^{i_{k}}} \quad \begin{aligned}
& \text { cf. e.g. [Bluemlein, Broadhurst, } \\
& \text { Vermaseren] }
\end{aligned}
$$

$$
\text { e.g. } \quad H_{0,1}(1)=\operatorname{Li}_{2}(1)=\zeta_{2}
$$

Feynman integrals as iterated integrals (2)

- Natural generalization: multiple polylogarithms allow kernels $\quad w=d \log (t-a)$

$$
G_{a_{1}, \ldots a_{n}}(z)=\int_{0}^{z} \frac{d t}{t-a_{1}} G_{a_{2}, \ldots, a_{n}}(t)
$$

[also called hyperlogarithms; Goncharov polylogarithms]
numerical evaluation: GINAC [Vollinga, Weinzierl]

- Chen iterated integrals

$$
\int_{C} \omega_{1} \omega_{2} \ldots \omega_{n} \quad C:[0,1] \longrightarrow M \quad \text { (space of kinematical variables) }
$$

Alphabet: set of differential forms $\omega_{i}=d \log \alpha_{i}$ integrals we discuss will be monodromy invariant on $M \backslash S$ S (set of singularities) more flexible than multiple polylogarithms!

- Uniform weight functions (pure functions):
\mathbb{Q}-linear combinations of functions of the same weight

Goncharov weight four conjecture

- rewrite any multiple polylogarithm in terms of function basis
[Goncharov]
e.g. at weight 4 (important for NNLO computations)

$$
\begin{array}{r}
\left\{\log (x) \log (y) \log (z) \log (w), \log (x) \log (y) \operatorname{Li}_{2}(z)\right. \\
\left.\operatorname{Li}_{2}(x) \operatorname{Li}_{2}(y), \log (x) \operatorname{Li}_{3}(y), \operatorname{Li}_{4}(x), \operatorname{Li}_{2,2}(x, y)\right\}
\end{array}
$$

for set of arguments (to be found - symbol/coproduct provides guidance)
[in N=4 SYM related to cluster coordinates? cf.Vergu's talk] minimal set of integration kernels vs. minimal set of function arguments

- practical tool: `symbol` useful projections [Goncharov, Spradlin,Vergu,Volovich]
[Brown] [Goncharov]
[Duhr, Gangl, Rhodes]
e.g. project on $\mathrm{Li}_{2,2}(x, y)$ part
e.g. project out all products
lecture notes: [Vergu]
[Brown][Zhao]
- " ${ }^{\text {symbol }}{ }^{\prime}=$ Chen iterated integral without boundary information diff. eqs. or other information can be used to fix this

d-log representations

- Can we make it manifest when integrals evaluate to pure functions?

$$
\mathcal{A}_{4}^{\ell=0} \times \overbrace{p_{1}}^{p_{2}}=\mathcal{A}_{4}^{\ell=0} \times \int \frac{d^{4} \ell\left(p_{1}+p_{2}\right)^{2}\left(p_{1}+p_{3}\right)^{2}}{\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell+p_{1}+p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}}
$$

[Arkani-Hamed, Bourjaily, Cachzo, Goncharov, Postnikov,Trnka, 2012]
[Caron-Huot, talk at Trento, 2012]

$$
\begin{aligned}
& \frac{d^{4} \ell\left(p_{1}+p_{2}\right)^{2}\left(p_{1}+p_{3}\right)^{2}}{\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell+p_{1}+p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}} \\
& \quad=d \log \left(\frac{\ell^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}+p_{2}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell-p_{4}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right)
\end{aligned}
$$

[Lipstein, Mason, 2013]
very suggestive! New ways of performing loop integrations?

- amplitude/Wilson loop duality: relation between momentum space spacetime integrals and position space line integrals

right number of d-logs for weight 2 function
algorithm for evaluating (multiple) Wilson line integrals with any propagator exchanges

Cuts and integrated integrands

- discontinuities usually simpler than full answer cf. talks by Badger, Britto, Mastrolia,...
- contain important information
dispersive representations, e.g.
Mandelstam, optical theorem
- maximal cuts, leading singularities [Cachzao, Skinner]
- integrals with simple cuts are expected to integrate to uniform weight functions idea: any cut that completely localizes the integral should give just a rational number
- use cuts of integrals as guiding principle for
[J.M.H., 20I3] finding convenient integral basis

A word of caution: more exotic objects

- mathematicians like to consider single-scale Feynman integrals
- conjecture that certain periods only evaluate to multiple zeta values (MZV) appear disproven by [Brown, Schnetz]
- Elliptic functions
relevant e.g. in top quark physics also appear in massless $\mathrm{N}=4 \mathrm{SYM}$

Czakon et al.
[Caron-Huot, Larsen]
recent work Elliptic polylogairthms [Brown, Levin]

```
[Bloch,Vanhove] [Vanhove] [Remiddi,Tancredi] [Adams, Bogner,Weinzierl]
```

Note: weight property generalizes weight $\mathrm{n}->(\mathrm{n} / 2, \mathrm{n} / 2)$ mixed Hodge theory systematic and practical way for dealing with them for practical applications?

- Here: cases where Chen iterated integrals are sufficient

differential equations, uniform weight basis

Strategy for computing Feynman integrals

 using differential equations

 using differential equations}
cf. Smirnov's talk

- Useful facts:
(I) For a given problem, one can
a finite basis of Feynman integrals
(2) Basis integrals satisfy coupled first-order differential equations
(3) many classes of Feynman integrals evaluate to iterated integrals
- Idea: choose basis such that the differential equations are simple, and such that (3) is made obvious

Key points of the method

- differential equations for master integrals \vec{f}
- crucial: choose convenient basis (systematic procedure)
\longrightarrow makes solution trivial to obtain
- elegant description: Feynman integrals specified by:
(I) set of 'letters' (related to singularities x_{k})
(2) set of constant matrices A_{k}

Example: one dimensionless variable $x ; \quad D=4-2 \epsilon$
$\partial_{x} \vec{f}(x ; \epsilon)=\epsilon \sum_{k} \frac{A_{k}}{x-x_{k}} \vec{f}(x ; \epsilon)$

- expansion to any order in ϵ is linear algebra answer: multiple polylogarithms of uniform weight ('transcendentality')
- asymptotic behavior $\vec{f}(x ; \epsilon) \sim\left(x-x_{k}\right)^{\epsilon A_{k}} \vec{f}_{0}(\epsilon)$
- natural extension to multi-variable case

Example: massless 2 to 2 scattering

- basis $f=$

$$
\begin{aligned}
& x=t / s \\
& D=4-2 \epsilon
\end{aligned}
$$

differential equations

$$
\partial_{x} f=\epsilon\left[\frac{a}{x}+\frac{b}{1+x}\right] f \quad a=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
-2 & 0 & -1
\end{array}\right) \quad b=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 2 & 1
\end{array}\right)
$$

- (regular) singular points

$$
s=0, \quad t=0, \quad u=-s-t=0
$$

- asymptotic behavior governed by matrices a, b
- Solution: expand to any order in ϵ

$$
f=\sum_{k \geq 0} \epsilon^{k} f^{(k)} \quad f^{(k)} \quad \text { is } \text { k-fold iterated integral (uniform weight) }
$$

alphabet $\{d \log x, d \log (1+x)\} \quad$ or equivalently $\quad\{x, 1+x\}$

- same eqs. at 2,3 loops, only bigger matrices a,b (!)

Multi-variable case and the alphabet

- Natural generalization to multi-variable case

$$
d \vec{f}(\vec{x} ; \epsilon)=\epsilon d\left[\sum_{k} A_{k} \log \alpha_{k}(\vec{x})\right] \vec{f}(\vec{x} ; \epsilon)
$$

- Examples of alphabets:

4-point on-shell
two-variable example (from
I-loop Bhabha scattering):
"hexagon functions" ${ }^{\text {' }}$ n $N=4 S Y M$

$$
\begin{aligned}
& \alpha=\{x, 1+x\} \\
& \alpha=\{x, 1 \pm x, y, 1 \pm y, x+y, 1+x y\} \\
& \alpha=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\} \\
& \begin{array}{ll}
\text { [Goncharov, Spradlin,Vergu,Volovich] } & \text { [Caron-Huot, He] } \\
\text { [Dixon, Drummond, J.M.H.] } & \text { [Dixon et al.] [cf. Dixon's talk] }
\end{array}
\end{aligned}
$$

- Matrices and letters determine solution
- Immediate to solve in terms of Chen iterated integrals

The alphabet and perfect bricks (I)

Can we parametrize variables such that alphabet is rational?
Not essential, but nice feature.

- Example: Higgs production

$$
\begin{aligned}
& \text { encounter } \sqrt{1-4 m^{2} / s} \\
& \text { choose } \quad-m^{2} / s=x /(1-x)^{2} \\
& \alpha=\{x, 1-x, 1+x\} \quad \text { (to two loops) }
\end{aligned}
$$

Note: this is a purely kinematical question. Independent of basis choice.

- Related to diophantine equations
e.g. find rational solutions to equations such as

$$
1+4 a=b^{2}
$$

here we found a I-parameter solution

$$
a=\frac{x}{(1-x)^{2}} \quad b=\frac{1+x}{1-x}
$$

The alphabet and perfect bricks (2)

- Classic example: Euler brick problem

Find a brick with sides a, b, c and diagonals d, e, f integers smallest solution (P. Halcke): $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(44,117,240)$

$$
\begin{aligned}
& a^{2}+b^{2}=d^{2} \\
& a^{2}+c^{2}=e^{2} \\
& b^{2}+c^{2}=f^{2}
\end{aligned}
$$

Perfect cuboid (add eq. $\quad a^{2}+b^{2}+c^{2}=g^{2} \quad$): open problem in mathematics!

- Similar equations for particle kinematics
[Caron-Huot JMH, 2014] e.g encountered in 4-d light-by-light scattering

$$
\begin{aligned}
& u=-4 m^{2} / s \\
& \beta_{u}=\sqrt{1+u}, \quad \beta_{v}=\sqrt{1+v}, \beta_{u v}=\sqrt{1+u+v}
\end{aligned}
$$

Need two-parameter solution to

$$
\begin{aligned}
\beta_{u}^{2}+\beta_{v}^{2} & =\beta_{u v}^{2}+1 \\
\text { e.g. } \quad \beta_{u} & =\frac{1-w z}{w-z}, \quad \beta_{v}=\frac{w+z}{w-z}, \quad \beta_{u v}=\frac{1+w z}{w-z} .
\end{aligned}
$$

more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order!
Find such solutions systematically? Minimal polynomial order?

Equivalent representations

- version I: Chen iterated integrals
$g_{6}=\int_{\gamma} d \log \frac{\beta_{u}-1}{\beta_{u}+1} d \log \frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}+\int_{\gamma} d \log \frac{\beta_{v}-1}{\beta_{v}+1} d \log \frac{\beta_{u v}-\beta_{v}}{\beta_{u v}+\beta_{v}}$.
[2 loops: IO terms]
- version 2: Goncharov polylogarithms
(if alphabet rational in at least one variable)

$$
\begin{aligned}
g_{6}= & -G_{-1,0}(w)+G_{0,-1}(w)-G_{0,1}(w)+G_{1,0}(w)+H_{-1,0}(z)-H_{0,-1}(z)-H_{0,1}(z) \\
& +H_{1,0}(z)-G_{0}(w) H_{-1}(z)+G_{-1}(w) H_{0}(z)-G_{1}(w) H_{0}(z)-G_{0}(w) H_{1}(z)
\end{aligned}
$$

[2 loops: 2-3 pages]
[most compact]
[flexible: analytic continuation, limits] [easy to see DE, cuts] [ideas for numerics: J.M.H., Caron-Huot]
[longer expressions; requires rational alphabet;
GINAC numerical evaluation]

- version 3: minimal function basis $g_{6}=-\beta_{u v} / 2 I_{1}$

$$
\begin{aligned}
I_{1}= & \frac{2}{\beta_{u v}}\left\{2 \log ^{2}\left(\frac{\beta_{u v}+\beta_{u}}{\beta_{u v}+\beta_{v}}\right)+\log \left(\frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}\right) \log \left(\frac{\beta_{u v}-\beta_{v}}{\beta_{u v}+\beta_{v}}\right)-\frac{\pi^{2}}{2}\right. \\
& \left.+\sum_{i=1,2}\left[2 \operatorname{Li}_{2}\left(\frac{\beta_{i}-1}{\beta_{u v}+\beta_{i}}\right)-2 \operatorname{Li}_{2}\left(-\frac{\beta_{u v}-\beta_{i}}{\beta_{i}+1}\right)-\log ^{2}\left(\frac{\beta_{i}+1}{\beta_{u v}+\beta_{i}}\right)\right]\right\} .
\end{aligned}
$$

[arbitraryness;
usually long expressions;
good at low weight;
fast numerical evaluation]
[2 loops: several pages]

$$
\beta_{u}=\sqrt{1+u}, \beta_{v}=\sqrt{1+v}, \beta_{u v}=\sqrt{1+u+v}
$$

- some examples from literature: [Goncharov et al.] [Duhr] [Gehrmann et al.] ...

Important points differential equations

- Uniform weight basis can be found systematically using cuts (related to d-log representations)
- DE provide information about integrals in compact form (alphabet, matrices)
- contain more information than epsilon expansion: exact limits
- boundary conditions often for free (e.g. finiteness in certain limits)
[applications to single-scale integrals: cf. Smirnov's talk]
- Chen iterated integrals give most compact form of answer
- To given weight, answer can be rewritten in terms of minimal function basis
[Goncharov]

On the QCD cusp anomalous dimension

based on work in progress with

A. Grozin

G. Korchemsky

P. Marquard

Cusp anomalous dimension

- Cusp anomalous dimension describes infrared divergences
[cf. L. Magnea's talk on Friday]
- $\Gamma_{\text {cusp }}(\phi)$ governs UV divergences at cusp
[Polyakov; I loop]

[2 loops: Korchemsky, Radyushkin (1987)]

$$
\langle W\rangle \sim e^{-\left|\ln \frac{\mu_{U} V}{\mu_{I R}}\right| \Gamma_{\mathrm{cusp}}}
$$

- relation to light-like anomalous dimension K
[Korchemsky et al]

$$
x=e^{i \phi} \quad \lim _{x \rightarrow 0} \Gamma_{\text {cusp }}=-K \log x+\mathcal{O}\left(x^{0}\right)
$$

- N=4 SYM susy/non-susy Wilson loop operator

$$
\xi=\frac{\cos \theta-\cos \phi}{i \sin \phi} \quad \theta=\frac{\pi}{2} \quad \longrightarrow \quad \xi=\frac{1+x^{2}}{1-x^{2}}
$$

Beautiful answers

- Observation: constants in N=4 SYM anomalous dimensions have uniform 'transcendentality'
- generalize: pure functions of uniform weight (UT)
- suggests iterative differential structure
- what about QCD?
ref. [JMH, PRL $110(2013)]$ suggests QCD integrals can also be chosen UT
do physical results look nice when expressed in a good basis?

Perturbative results in $\mathrm{N}=4 \mathrm{SYM}$

- I loop $A^{(1)}(\phi)=-\xi \log x$
- 2 loops

$$
A^{(2)}(\phi)=\frac{1}{3} \xi\left[\pi^{2} \log x+\log ^{3} x\right]
$$

[Makeenko, Oleson, Semenoff (2006)]
[Drukker, Forini (2OI2)]

$$
-\xi^{2}\left[\zeta_{3}+\zeta_{2} \log x+\frac{1}{3} \log ^{3} x+\log x \operatorname{Li}_{2}\left(x^{2}\right)-\operatorname{Li}_{3}\left(x^{2}\right)\right]
$$

- bosonic Wilson loop in N=4 SYM, 2 loops

$$
\begin{aligned}
\Gamma_{\text {cusp }}^{(2) g}(\phi) & =A^{(2)}(\phi)-A^{(2)}(0)+B^{(2)}(\phi)-B^{(2)}(0), \quad \theta=\frac{\pi}{2} \\
B^{(2)}(\phi) & =\left[\log ^{2} x+\frac{1}{3} \pi^{2}\right]-\xi\left[\zeta_{2}+\log ^{2} x+2 \log x \operatorname{Li}_{1}\left(x^{2}\right)-\operatorname{Li}_{2}\left(x^{2}\right)\right] .
\end{aligned}
$$

- 3 loops; ξ term at any loop order [Correa, JMH, Maldacena, Sever (2012)]
- 4 loops planar; nonplanar ξ^{4} term;
- d-log algorithm for ladder integrals

A new look at two loops in QCD

- QCD result

$$
\begin{aligned}
\Gamma^{(1)}= & C_{F}\left[A^{(1)}(\phi)-A^{(1)}(0)\right] \quad \text { [Kidonakis (2009)] } \\
\Gamma^{(2)}= & C_{F} C_{A}\left[A^{(2)}(\phi)-A^{(2)}(0)+B^{(2)}(\phi)-B^{(2)}(0)\right] \\
& +\left(-\frac{5}{9} C_{F} T_{F} n_{f}-\frac{67}{36} C_{F} C_{A}\right)\left[A^{(1)}(\phi)-A^{(1)}(0)\right] .
\end{aligned}
$$

Only functions from N=4 SYM needed!

- $A^{(1)}$ uniform weight I : from susy WL
- $B^{(2)}$ uniform weight 2 : from bosonic WL
- $A^{(2)}$ uniform weight 3 : from susy WL
- what happens at 3 loops?
- why functions of uniform weight?

Why should we get pure functions?

- ForWilson line integrals, this is easy to see
- key:'d-log representations’
- make it obvious that result is given by pure functions
- provides algorithm for computing the answer

$$
\begin{aligned}
I_{\mathrm{NP}, \text { four-loop }}(x)= & -2 \zeta_{2}\left(18 H_{1,1,1,2}+24 H_{1,1,2,1}+18 H_{1,2,1,1}+30 H_{1,1,1,1,1}\right) \\
& +48 H_{1,1,1,4}+64 H_{1,1,2,3}+64 H_{1,1,3,2}+48 H_{1,2,1,3} \\
& +48 H_{1,2,2,2}+80 H_{1,1,1,1,3}+80 H_{1,1,1,2,2}+24 H_{1,1,1,3,1} \\
& +64 H_{1,1,2,1,2}+32 H_{1,1,2,2,1}+32 H_{1,1,3,1,1}+48 H_{1,2,1,1,2} \\
& +24 H_{1,2,1,2,1}+24 H_{1,2,2,1,1}+62 H_{1,1,1,1,1,2}+40 H_{1,1,1,1,2,1} \\
& +22 H_{1,1,1,2,1,1}+8 H_{1,1,2,1,1,1}+6 H_{1,2,1,1,1,1}+H_{1,1,1,1,1,1,1}
\end{aligned}
$$

- note: implies that all functions of this family have this property!
see this more generally: [JMH, PRL IIO (IOI3) 25]
- algorithm also works for the multi-line case.
other method:
[cf. E. Gardi (20|4)]

Master integrals

- abelian eikonal exponentiation: need only planar integrals

- 7I master integrals $\vec{f}(x ; \epsilon) \quad D=4-2 \epsilon \quad x=e^{i \phi}$
- differential equations in suitable basis
$\partial_{x} \vec{f}(x ; \epsilon)=\epsilon\left[\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}\right] \vec{f}(x ; \epsilon)$
a, b, c constant $71 \times 7 \mathrm{I}$ matrices
- boundary conditions trivially from $x=1$
one integral: [Chetyrkin,
Grozin, NP B666 (2003)]
- solution in terms of harmonic polylogarithms
[cf.V. Smirnov's talk for applications to multi-scale cases]

Example

$$
\begin{aligned}
& f_{44}=\epsilon^{5} \frac{1-x^{2}}{x} G_{1,0,1,0,1,0,1,1,2,0,1,0} \\
& x=e^{i \phi}
\end{aligned}
$$

$$
\begin{aligned}
f_{44}=\epsilon^{4}[- & \frac{1}{6} \pi^{2} H_{0,0}(x)-\frac{2}{3} \pi^{2} H_{1,0}(x)-4 H_{0,-1,0,0}(x)+2 H_{0,0,-1,0}(x) \\
& \left.+2 H_{0,1,0,0}(x)-4 H_{1,0,0,0}(x)+4 \zeta_{3} H_{0}(x)-\frac{17 \pi^{4}}{360}\right]+\mathcal{O}\left(\epsilon^{5}\right)
\end{aligned}
$$

- all basis integrals are pure functions of uniform weight
- numerical checks with FIESTA
- confirmed previously known `N=4 SYM` result

Calculation at three loops

(I) compute proper vertex function
(2) take into account renormalization of Lagrangian
(3) compute vertex renormalization
(4) extract Gamma cusp $\quad \Gamma_{\text {cusp }}=\frac{\partial}{\partial \log \mu} \log Z$

- color structures $\Gamma_{\text {cusp }}^{(3)}: c_{1} C_{F} C_{A}^{2}+c_{2} C_{F}\left(T_{f} n_{f}\right)^{2}+c_{3} C_{F}^{2} T_{f} n_{f}+c_{4} C_{F} C_{A} T_{F} n_{f}$

$$
\begin{aligned}
& C_{F}\left(T_{F} n_{f}\right)^{2} \quad \text { [Braun, Beneke, I 995] } \\
& \left.\begin{array}{l}
C_{F}^{2} T_{F} n_{f} \\
C_{F} C_{A} T_{F} n_{f}
\end{array}\right\} \text { this talk } \\
& C_{F} C_{A}^{2} \quad \text { stay tuned! }
\end{aligned}
$$

Results $\Gamma_{\mathrm{cusp}}^{(3)}: c_{1} C_{F} C_{A}^{2}+c_{2} C_{F}\left(T_{f} n_{f}\right)^{2}+c_{3} C_{F}^{2} T_{f} n_{f}+c_{4} C_{F} C_{A} T_{F} n_{f}$

$$
\begin{aligned}
c_{2} & =-\frac{1}{27} A^{(1)} \quad c_{3}=\left(\zeta_{3}-\frac{55}{48}\right) A^{(1)} \\
c_{4} & =-\frac{5}{9}\left(A^{(2)}+B^{(2)}\right)-\frac{1}{6}\left(7 \zeta_{3}+\frac{209}{36}\right) A^{(1)} \\
A & =A(\phi)-A(0) \quad \text { Only functions from } \mathrm{N}=4 \text { SYM needed! }
\end{aligned}
$$

- Checks: expected divergence structure

$$
\log Z=-\frac{1}{2 \epsilon}\left(\frac{\alpha_{s}}{\pi}\right) \Gamma^{(1)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left[\frac{\beta_{0}}{16 \epsilon^{2}} \Gamma^{(1)}-\frac{1}{4 \epsilon} \Gamma^{(2)}\right]+\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left[-\frac{\beta_{0}^{2} \Gamma^{(1)}}{96 \epsilon^{3}}+\frac{\beta_{1} \Gamma^{(1)}+4 \beta_{0} \Gamma^{(2)}}{96 \epsilon^{2}}-\frac{\Gamma^{(3)}}{6 \epsilon}\right]
$$

- Known limit $\lim _{x \rightarrow 0} \Gamma_{\text {cusp }}=-K \log x+\mathcal{O}\left(x^{0}\right)$

$$
\begin{aligned}
K^{(3)}= & \frac{1}{4} C_{F} C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right)+C_{F}^{2} n_{f} T_{F}\left(-\frac{55}{48}+\zeta_{3}\right) \\
& +\frac{1}{2} C_{F} C_{A} n_{f} T_{F}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+C_{F} n_{f}^{2} T_{F}^{2}\left(-\frac{1}{27}\right)
\end{aligned}
$$

[Vogt (200I)] [Berger (2002)] [Moch,Vermeaseren,Vogt (2004)]

Iterative structure of loop integrals

cf. [Caron-Huot, J.M.H. (20|4)

- The physical result is finite as $D \rightarrow 4$
- Obtain it from a subset of finite integrals/functions?
graded by weight
3

2

0

- Note: functions appear already in `simpler` N=4 SYM calculations!
- top-down vs. bottom-up approach

Massive scattering amplitudes in $\mathrm{N}=4$ SYM

Massive scattering amplitudes in $\mathrm{N}=4$ SYM

- define analog of light-by-light scattering s, t, m^{2}
- natural for dual conformal symmetry
- previously studied only in limits: use mass as regulator $m^{2} \ll s, t$
Regge limit $s \gg m^{2}, t$ related to cusp anomalous dimension
[J.M.H., Naculich, Schnitzer, Spradlin]
- Systematic analysis for generic kinematics
[Caron-Huot, J.M.H., 20I4]

$$
\begin{aligned}
\text { one loop: } \quad I_{1}= & \frac{2}{\beta_{u v}}\left\{2 \log ^{2}\left(\frac{\beta_{u v}+\beta_{u}}{\beta_{u v}+\beta_{v}}\right)+\log \left(\frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}\right) \log \left(\frac{\beta_{u v}-\beta_{v}}{\beta_{u v}+\beta_{v}}\right)-\frac{\pi^{2}}{2}\right. \\
& \left.+\sum_{i=1,2}\left[2 \operatorname{Li}_{2}\left(\frac{\beta_{i}-1}{\beta_{u v}+\beta_{i}}\right)-2 \operatorname{Li}_{2}\left(-\frac{\beta_{u v}-\beta_{i}}{\beta_{i}+1}\right)-\log ^{2}\left(\frac{\beta_{i}+1}{\beta_{u v}+\beta_{i}}\right)\right]\right\} . \\
u=-4 m^{2} / s \quad v= & -4 m^{2} / t \quad \beta_{u}=\sqrt{1+u}, \beta_{v}=\sqrt{1+v}, \beta_{u v}=\sqrt{1+u+v}
\end{aligned}
$$

two-loop and three-loop answer now also known.

Iterative structure for finite loop integrals

- block triangular matrix structure (weight grading)
- algorithm for finding this form

Discussion and outlook

- iterative structure of finite loop integrals perfect for finite physical objects, e.g.
- similar to structure for MHV and NMHV hexagon functions in N=4 SYM cf. [Dixon, Drummond, J.M.H. (2012)
- possible application: correlation functions in CFT [cf. e.g. Sokatchev's talk]
- integrals and cross sections for light-by-like scattering in $\mathrm{N}=4$ SYM

3 loops and 3 scales!
 full calculation, no guesses

similar integrals appear in QCD for finite top quark mass

- results for Regge trajectories
[Caron-Huot, J.M.H., to appear],
[cf. Caron-Huot's talk]
- dual conformal symmetry is generalization of conservation of Laplace-Runge-Lenz-(Pauli) vector for hydrogen atom!

Conclusions

- exciting results and techniques
- some already applicable in QCD
(e.g. uniform weight basis, Chen iterated integrals)
- more work needed for elliptic functions and generalizations
- New results:
- 3-loop QCD cusp anomalous dimension
- 3-loop light-by-light scattering in N=4 SYM

Thank you!

