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Ideal and realistic scattering amplitudes

• Higgs discovery at the LHC

more theory predictions needed
for precision measurements!

• N=4 SYM is ‘hydrogen atom of quantum field theory’

dualities, dual conformal/Yangian symmetry, AdS/CFT,
integrability, twistor space, simple integrands...

what can we learn from it for QCD?

what further surprises does it hold for us?

this talk: tools for loop-level scattering amplitudes
(building on tree/integrand insights)



Techniques for loop integrands
• unitarity cut based techniques

• physical properties of loop integrands

make infrared (IR) properties manifest

apply to N<4 SYM, non-planar, D=4-2eps

cf. talks by Badger, Britto, Larsen, Mastrolia, Penante, Roiban, Yang,... 

[Britto, Cachazo, Feng, (Witten)] [Arkani-Hamed,Bourjaily, Cachazo, Caron-Huot, Trnka]

• on-shell recursion relations and diagrams

challenges for the future:

[Arkani-Hamed et al.] [Drummond, J.M.H. ][Bourjaily, DiRe, Shaikh, Spradlin, Volovich]

very useful, compact answers, helps make symmetries manifest

recent development: ‘amplituhedron’ [Arkani-Hamed, Trnka]

[Bern, Dixon, Dunbar, Kosower] [...]

closely related to (generalized) cut structure

UV properties, anomalies

used for many 1-loop phenomenological studies; 
multi-loop in super Yang-Mills and supergravity

[Chen, Huang, McGady ]



Scattering amplitudes at loop level

• Example: integral appearing in Higgs production
• What functions are needed to describe them?

• At one loop, only logarithm and dilogarithm needed

log z =

Z z
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1� t2

- multivalued function; two-particle threshold

- more generally: need integrals in a Laurent series about D = 4 - 2 eps.

- what functions will appear at higher loops?

- how to compute them in an efficient way?
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Feynman integrals as iterated integrals (1)
• Logarithm and dilogarithm are first examples of iterated integrals 
with special ``d-log`` integration kernels

dt

t
= d log t

�dt

1� t
= d log(1� t)

• these are called harmonic polylogarithms (HPL)

• shuffle product algebra

[Remiddi, Vermaseren]

• coproduct structure

• Mathematica implementation [Maitre]

• special values related to multiple zeta values (MZV)

dt

1 + t
= d log(1 + t)

e.g. 

• weight: number of integrations

H1,�1(x) =
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⇣i1,i2,...,ik =
X
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1

ai11 ai22 . . . aikk

e.g. H0,1(1) = Li2(1) = ⇣2

cf. e.g. [Bluemlein, Broadhurst, 
Vermaseren]

[cf. Duhr’s talk]



Feynman integrals as iterated integrals (2)
• Natural generalization: multiple polylogarithms

allow kernels w = d log(t� a)

Ga1,...an(z) =

Z z

0

dt

t� a1
Ga2,...,an(t)

• Chen iterated integralsZ

C
!1!2 . . .!n C : [0, 1] �! M

Alphabet: set of differential forms !i = d log↵i

(space of kinematical variables)

numerical evaluation: GINAC

more flexible than multiple polylogarithms!

[Vollinga, Weinzierl]

[also called hyperlogarithms; 
Goncharov polylogarithms]

integrals we discuss will be monodromy invariant on M \ S
S (set of singularities)

• Uniform weight functions (pure functions):
-linear combinations of functions of the same weightQ



Goncharov weight four conjecture
• rewrite any multiple polylogarithm in terms of function basis

e.g. at weight 4 (important for NNLO computations)

[Goncharov]

• practical tool: ``symbol`` useful projections [Goncharov, Spradlin, Vergu, Volovich]

[Brown] [Goncharov] [Duhr, Gangl, Rhodes]

minimal set of integration kernels vs. minimal set of function arguments

diff. eqs. or other information can be used to fix this

lecture notes: [Vergu]
[Brown][Zhao]

{log(x) log(y) log(z) log(w), log(x) log(y)Li2(z),
Li2(x)Li2(y), log(x)Li3(y),Li4(x),Li2,2(x, y)}

e.g. project on                     part

e.g. project out all products

Li2,2(x, y)

• ``symbol`` = Chen iterated integral without boundary information

for set of arguments (to be found - symbol/coproduct provides guidance)
[in N=4 SYM related to cluster coordinates? cf. Vergu’s talk]



d-log representations
• Can we make it manifest when integrals evaluate to pure functions?

[Lipstein, Mason, 2013]

[Arkani-Hamed, Bourjaily, Cachzo,
Goncharov, Postnikov, Trnka, 2012]

[Caron-Huot, talk at Trento, 2012]

[J.M.H., Huber, 2013]

very suggestive! New ways of performing loop integrations?

• amplitude/Wilson loop duality: relation between momentum space 
spacetime integrals and position space line integrals

Forum de la Théorie au CEA, Apr 4, 2013 - p. 8/20

Four-gluon planar amplitude in N = 4 SYM at weak coupling

‘Mirracle’ at weak coupling: number of Feynman diagrams increases with loop level but their sum
can be expressed in terms of a few ‘special’ scalar box-like integrals

Example: four-gluon amplitude in N = 4 SYM:
✔ One loop:

1

2 3

4

✔ Two loops:

1

2 3

4

all-loop iteration structure conjectured

✔ Three loops:

1

2 3

4

Little hope to get an exact all-loop analytical solution...

 !
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Figure 2: Propagator-type integral discussed in the main text.

4.1 ‘d-log’ forms for Wilson line integrals

In this section we elaborate on ‘d-log’ forms for integrals, which were introduced in the

context of scattering amplitudes in [13–15]. As an instructive example, let us discuss the

diagram shown in Fig 2. The corresponding integral over the line parameters s and t can

be written as
Z

⇤

ds ^ dt

s2 + t2 + st(x + 1/x)
=

x

1 � x2

Z

⇤
d log(s + tx) ^ d log(t + sx) , (4.1)

where on the RHS we have dropped di↵erentials involving dx because they do not contribute

to the integral, and where the integration region ⇤ is s 2 [a, S] and t 2 [b, T ].

What is gained from writing the integral in this way? We see that a natural normaliza-

tion factor, x/(1�x2), has been pulled out of the integral. Together with trivial prefactors

originating from the Feynman rules, this constitutes the normalization of the diagram. The

remaining integral will give a (generalized) polylogarithmic function, which, in the present

example, has degree 2. It depends on the variables a, b, S, T and x,

f(a, b, S, T, x) =

Z

⇤
d log(s + tx) ^ d log(t + sx) . (4.2)

Integrals of this type satisfy simple di↵erential equations, as we explain below. Let us first

focus on one of the two integration variables, say s, and rewrite the integral in a more

convenient form thanks to the identity [44]

d log(s + ↵) ^ d log(s + �) = d log
s + ↵

s + �
^ d log(↵ � �) . (4.3)

A simple generalization of this identity holds for n-forms. Then, we perform one integration

at a time, in this case starting with the one over s. The main point is that one will always

have an integral of the form

G(↵, �
i

) :=

Z

⇤y

d log(y + ↵)F (y, �
i

) , (4.4)
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Z
d4k

Z
ds

Z
dt

algorithm for evaluating (multiple) Wilson line 
integrals with any propagator exchanges

This is more than mere amusement. It immediately tells us that with an appro-
priate choice of variables representing the BCFW-shifts, the one-loop amplitude can
be represented in a remarkably simple form:
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Of course, this does not look anything like the more familiar expression, [81],
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In this form, it is not at all obvious that there is any change of variables that reduces
the integrand to the “dlog”-form of (2.33). However, following the rule for identifying
o↵-shell loop momenta in terms of on-shell data, (2.27), we may easily identify the
map which takes us from the ` of (2.34) to the ↵

i

of (2.33):
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where `⇤ is either of the two points null separated from all four external momenta.
This expression will be derived in detail in section 16.3.

As we will see, the existence of this “dlog” representation for loop integrands is a
completely general feature of all amplitudes at all loop-orders. But the possibility of
such a form even existing was never anticipated from the more traditional formula-
tions of field theory. Indeed, even for the simple example of the four-particle one-loop
amplitude, the existence of a change of variables converting d4` to four dlog’s went
unnoticed for decades. We will see that these “dlog”-forms follow directly from the
on-shell diagram description of scattering amplitudes generated by the BCFW recur-
sion relations, (2.26). Beyond their elegance, these dlog-forms suggest a completely
new way of carrying out loop integrations, and more directly expose an underlying,
“motivic” structure of the final results which will be a theme pursued in a later, more
extensive work.

The equivalence of on-shell diagrams related by mergers and square-moves clearly
represents a major simplification in the structure on-shell diagrams; but these alone
cannot reduce the seemingly infinite complexities of graphs with arbitrary numbers
of ‘loops’ (faces) as neither of these operations a↵ect the number of faces of a graph.
However, using mergers and square-moves, it may be possible to represent an on-shell
diagram in a way that exposes a “bubble” on an internal line. As one might expect,
there is a sense in which such diagrams can be reduced by eliminating bubbles:
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right number of d-logs 
for weight 2 function



Cuts and integrated integrands
• discontinuities usually simpler than full answer cf. talks by Badger, Britto, Mastrolia,... 

• contain important information

• maximal cuts, leading singularities [Cachzao, Skinner]

• integrals with simple cuts are expected to integrate to uniform 
weight functions 

• use cuts of integrals as guiding principle for 
finding convenient integral basis

[J.M.H., 2013]

dispersive representations, e.g. 
Mandelstam, optical theorem

idea: any cut that completely localizes the integral should 
give just a rational number



A word of caution: more exotic objects
• mathematicians like to consider single-scale Feynman integrals

• conjecture that certain periods only evaluate to
multiple zeta values (MZV) appear disproven by 

relevant e.g. in top quark physics Czakon et al.

Note: weight property generalizes weight n -> (n/2,n/2)

systematic and practical way for dealing with them
for practical applications?

• Elliptic functions

recent work Elliptic polylogairthms [Brown, Levin]

[Remiddi, Tancredi] [Adams, Bogner, Weinzierl][Bloch, Vanhove]

also appear in massless N=4 SYM [Caron-Huot, Larsen]

[Brown, Schnetz]

mixed Hodge theory

[Vanhove]

• Here: cases where Chen iterated integrals are sufficient



differential equations,
uniform weight basis



Strategy for computing Feynman integrals
using differential equations

 (3) many classes of Feynman integrals 
evaluate to iterated integrals

 (2) Basis integrals satisfy coupled 
first-order differential equations

• Useful facts:

• Idea: choose basis such that the differential equations are simple,
and such that (3) is made obvious

 (1) For a given problem, one can choose 
a finite basis of Feynman integrals

cf. Smirnov’s talk

cf. Zhang’s talk



Key points of the method [JMH, PRL 110 (2013) 25]

• expansion to any order in     is linear algebra
answer: multiple polylogarithms of uniform weight (‘transcendentality’)

✏

D = 4� 2✏Example: one dimensionless variable     ;              x

• elegant description: Feynman integrals specified by:
      (1) set of ‘letters’ (related to singularities      )
      (2) set of constant matrices 

xk

Ak

~f• differential equations for master integrals

• crucial: choose convenient basis (systematic procedure)
          makes solution trivial to obtain�!

• asymptotic behavior ~

f(x; ✏) ⇠ (x� xk)
✏Ak

~

f0(✏)

• natural extension to multi-variable case

@

x

~

f(x; ✏) = ✏

X

k

A

k

x� x

k

~

f(x; ✏)



Example: massless 2 to 2 scattering

differential equations

x = t/s

• (regular) singular points

@

x

f = ✏


a

x

+
b

1 + x

�
f

s = 0 , t = 0 , u = �s� t = 0

 alphabet           {x, 1 + x}{d log x, d log(1 + x)} or equivalently          

• same eqs. at 2,3 loops, only bigger matrices a,b (!)

• basis           {                ,          ,             }f =
D = 4� 2✏

• Solution: expand to any order in ✏
f =

P
k�0 ✏

kf (k) f (k)
is k-fold iterated integral (uniform weight)

a =

0

@
�1 0 0
0 0 0
�2 0 �1

1

A b =

0

@
0 0 0
0 0 0
2 2 1

1

A

• asymptotic behavior governed by matrices a, b



Multi-variable case and the alphabet
• Natural generalization to multi-variable case

d

~

f(~x; ✏) = ✏ d

"
X

k

Ak log↵k(~x)

#
~

f(~x; ✏)

constant matrices letters (alphabet)

4-point on-shell ↵ = {x, 1 + x}
two-variable example (from 
1-loop Bhabha scattering):

↵ = {x , 1± x , y , 1± y , x+ y , 1 + xy}

• Matrices and letters determine solution

• Immediate to solve in terms of Chen iterated integrals

``hexagon functions`` in 
N=4 SYM [Caron-Huot, He][Goncharov, Spradlin, Vergu, Volovich]

[Dixon, Drummond, J.M.H.] [cf. Dixon’s talk][Dixon et al.]

↵ = {u, v, w, 1� u, 1� v, 1� w, yu, yv, yw}

• Examples of alphabets:

[J.M.H., Smirnov]



The alphabet and perfect bricks (1)
Can we parametrize variables such that alphabet is rational?

• Example: Higgs production

Note: this is a purely kinematical question. Independent of basis choice.

p
1� 4m2/s

�m

2
/s = x/(1� x)2

↵ = {x, 1� x, 1 + x} (to two loops)
choose

• Related to diophantine equations
e.g. find rational solutions to equations such as

1 + 4 a = b2

here we found a 1-parameter solution

a =
x

(1� x)2 b =
1 + x

1� x

Not essential, but nice feature.

encounter



The alphabet and perfect bricks (2)
Find a brick with sides    
and diagonals                integers

• Classic example: Euler brick problem

• Similar equations for particle kinematics [Caron-Huot JMH, 2014]

e.g encountered in 4-d light-by-light scattering 

more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order!

Need two-parameter solution to

Find such solutions systematically? Minimal polynomial order?

u = �4m2/s v = �4m2/t

e.g. 

p1

a2

p2

a3

p3

a4

p4

a1

(a)

p1

a2

p2

a3

p3

b4

p4

b1a1

b3

c

(b)

Figure 1. Families of massive one- and two-loop integrals for light-by-light scattering. Possible
irreducible numerator factors at two loops are not shown.

integrals that appear in massive form factor calculations. They were computed previously
(in a different basis) to some order in ✏ in ref. [18]. We confirm these results. Moreover, the
formulation we give can be trivially expanded to any order in ✏, where the result is given
by a homogeneous expression in terms of harmonic polylogarithms.

This paper is organized as follows. In section 2, we give definitions of the loop integrals
that appear in the paper. Then, in section 3, we briefly review the differential equations
method for loop integrals, and discuss simplifications in the four-dimensional limit. We
use the one-loop integrals as a pedagogical example. In section 4, we explain how to
systematically set up the differential equations directly in four dimensions, and present
an algorithm for putting the latter into a canonical block-triangular form. We give the
differential equations at two and three loops and discuss the iterative structure of the
analytic solution. In section 5, we discuss the analytic properties of the functions to three
loops and show that they satisfy a Mandelstam representation. We discuss checks of our
results in section 6. We conclude in section 7. There are three appendices. In appendix
A we apply the differential equation method to the set of two-loop master integrals in
D = 4�2✏ dimensions and compute them using the method of ref. [7]. Additional material
on our method for writing down identities and differential equations for four-dimensional
loop integrals can be found in appendix B. Appendix C contains expressions for the one-
and two-loop box integrals in terms of multiple polylogarithms. Appendix D contains the
differential equations up to three loops. We supply several ancillary electronic files together
with the arXiv submission of this paper.
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�u =
p
1 + u, �v =

p
1 + v, �uv =

p
1 + u+ v

�2
u + �2

v = �2
uv + 1

�u =
1� wz

w � z
, �v =

w + z

w � z
, �uv =

1 + wz

w � z
.

smallest solution (P. Halcke):

(a,b,c)=(44,117,240)

Perfect cuboid (add eq.                                          ): open problem in mathematics!

a2 + b2 =d2 ,

a2 + c2 =e2 ,

b2 + c2 =f2 .

a, b, c
d, e, f

a2 + b2 + c2 = g2



Equivalent representations
• version 1: Chen iterated integrals

• version 2: Goncharov polylogarithms

• version 3: minimal function basis

[most compact]

[flexible: analytic 
continuation, limits]

[arbitraryness;
usually long expressions;
good at low weight;
fast numerical evaluation]

[longer expressions;
requires rational 
alphabet;
GINAC numerical 
evaluation]

g6 =�G�1,0(w) +G0,�1(w)�G0,1(w) +G1,0(w) +H�1,0(z)�H0,�1(z)�H0,1(z)

+H1,0(z)�G0(w)H�1(z) +G�1(w)H0(z)�G1(w)H0(z)�G0(w)H1(z) .

g6 =

Z

�
d log

�u � 1

�u + 1

d log
�uv � �u

�uv + �u
+

Z

�
d log

�v � 1

�v + 1

d log

�uv � �v

�uv + �v
.

p1

a2

a1

p2

a3

p3

p4

c4

b3

d

b1 c1

e

c3

(a)

p1

b2

b1

p2

a2

a3

p3

p4

d

c3

b4

c4

f

e

(b)

Figure 2. Families of massive three-loop integrals for light-by-light scattering. Possible irreducible
numerator factors are not shown.

of indices associated with each loop variable. For example, a two-loop integral is DCI if
(a1 + a2 + a3 + a4 + c) = 4 and (b1 + b2 + b3 + b4 + c) = 4.

In the following, we will define all integrals in the Euclidean region s/m2 < 0, t/m2 < 0,
where all functions are real-valued. One then defines the functions elsewhere by analytic
continuation, using the Feynman prescription. This implies giving the kinematical variables
a small imaginary part, according to m2 ! m2 � i0, s ! s + i0, t ! t + i0.

Let us have a first look at these integrals, and take I1 as an example. It is given
analytically by (the form below is due to [20]),

I1 =

2

�uv

n

2 log

2

✓

�uv + �u

�uv + �v

◆

+ log

✓

�uv � �u

�uv + �u

◆

log

✓

�uv � �v

�uv + �v

◆

� ⇡2

2

+

X

i=1,2

h

2 Li2

✓

�i � 1

�uv + �i

◆

� 2 Li2

✓

��uv � �i

�i + 1

◆

� log

2

✓

�i + 1

�uv + �i

◆

io

. (2.6)

Here we introduced dimensionless variables2

u =

4m2

�s
, v =

4m2

�t
, (2.7)

and the following abbreviations,

�u =

p
1 + u , �v =

p
1 + v , �uv =

p
1 + u + v . (2.8)

The functions appearing in eq. (2.6) are examples of polylogarithms. For these and more
general classes of integral functions that we will discuss one can define a “symbol” [1, 2, 21].
Roughly speaking, the symbol contains information about the integration kernels leading

2
From the context there should be no confusion between the ratio u and the Mandelstam invariant

u = �s� t. Also note that our normalization of u and v differs by a factor 4 from those in ref. [13].
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[2 loops: 10 terms]

[2 loops: 2-3 pages]

[2 loops: several pages]

[easy to see DE, cuts]

g6 = ��uv/2I1

(if alphabet rational in at least one variable)

�u =
p
1 + u, �v =

p
1 + v, �uv =

p
1 + u+ v

[ideas for numerics: 
J.M.H., Caron-Huot]

• some examples from literature: [Duhr][Goncharov et al.] [Gehrmann et al.] ...



Important points differential equations

• Uniform weight basis can be found systematically using cuts
(related to d-log representations)

• DE provide information about integrals in compact form
(alphabet, matrices)

• contain more information than epsilon expansion: exact limits

• boundary conditions often for free (e.g. finiteness in certain limits)

• Chen iterated integrals give most compact form of answer

• To given weight, answer can be rewritten in terms of minimal 
function basis

other algebraic ideas [Mastrolia et al.] [Caron-Huot, J.M.H.] [Gehrmann et al.]

[Arkani-Hamed et al.] [J.M.H.]

[applications to single-scale integrals: cf. Smirnov’s talk]

[Goncharov]



On the QCD cusp 
anomalous dimension

based on work in progress with

A. Grozin G. Korchemsky P. Marquard



Cusp anomalous dimension

• Cusp anomalous dimension describes infrared divergences

• N=4 SYM susy/non-susy Wilson loop operator

[cf. L. Magnea’s talk on Friday]

Cusp anomalous dimension

J. M. Henn, IAS

governs ultraviolet (UV) divergences at cusp

�cusp(�,�, N)

hW i ⇠ e�| ln µUV
µIR

| �cusp

� = g2YMN

Wilson loop with cusp

�cusp

Polyakov; Brandt, Neri, Sato
Korchemsky & Radyushkin ’87

cos(�) =
p · qp
p2q2

This quantity B also determines the energy emitted by a moving quark

�E = 2⇡B � dt(v̇)2 (5)

in the small velocity limit. The result for any velocity can be obtained by performing a

boost and it is the same old formula that one has in electrodynamics, up to the replacement
2e

2

3

→ 2⇡B, see [11] for a discussion at strong coupling. Its appearance in (5) is what

prompted us to call it the Bremsstrahlung function.

� �

(a) (b)
S3

Figure 1: (a) A Wilson line that makes a turn by an angle �. (b) Under the plane to cylinder

map, the same line is mapped to a quark anti-quark configuration. The quark and antiquark

are sitting at two points on S3 at a relative angle of ⇡ − �. Of course, they are extended

along the time direction.

The cusp anomalous dimension is an interesting quantity that is related to a variety of

physical observables as particular cases.

Originally it was defined in [12] as the logarithmic divergence that arises for a Wilson

loop operator when there is a cusp in the contour. A cusp is a region where a straight line

makes a sudden turn by an angle �, see figure 1(a). In that case the Wilson loop develops a

logarithmic divergence of the form

�W � ∼ e−�cusp(�,�) log L
✏̃ (6)

where L is an IR cuto↵ and ✏̃ a UV cuto↵. One can also consider the continuation � = i' so

that now ' is a boost angle in Lorentzian signature.

�
cusp

is related to a variety of physical observables:

• It characterizes the IR divergences that arise when we scatter massive colored particles

in the planar limit. Here ' is the boost angle between two external massive particle

3

similar to anomalous dimensions of composite operators
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•              governs UV divergences at cusp�cusp(�)
[Polyakov;  I loop]

[2 loops:  Korchemsky, Radyushkin (1987)]

• relation to light-like anomalous dimension K

x = e

i�
lim

x!0
�cusp = �K log x+O(x

0
)

[Korchemsky et al]

⇠ =

cos ✓ � cos�

i sin�
✓ =

⇡

2
�! ⇠ =

1 + x

2

1� x

2



Beautiful answers
• Observation: constants in N=4 SYM anomalous dimensions
have uniform ‘transcendentality’

• generalize: pure functions of uniform weight (UT)

• what about QCD?

do physical results look nice when expressed in a good basis?

ref.                              suggests QCD integrals can also be chosen UT[JMH, PRL 110 (2013)]

[Kotikov, Lipativ, Velizhanin]

• suggests iterative differential structure



Perturbative results in N=4 SYM
• 1 loop

• 3 loops;      term at any loop order [Correa, JMH, Maldacena, Sever (2012)]⇠

• 4 loops planar; nonplanar      term;
• d-log algorithm for ladder integrals

[JMH, Huber (2013)]
⇠4

[Makeenko, Oleson, Semenoff (2006)]
[Drukker, Forini (2012)]

• bosonic Wilson loop in N=4 SYM, 2 loops

[5] 5

I

Fig. 2(a) ⇠
✓

1 + x

2

1� x

2

◆

n 1

✏

2
log x (9)

� 1

✏

h

log x+
1

2
log2 x� 1

2
Li2

�

x

2
�� log x log(1� x

2) +
1

2
⇣2

io

.

The log x term in the second line looks like a finite leftover from the counter
term, and should cancel between the two diagrams.

We need to compute the contribution of the integral corresponding to
Fig. 2(b). Our guess is that it is given by

I

Fig. 2(b) ⇠
✓

1 + x
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1� x

2

◆ 

1

✏

2
log x� 1

✏

log x

�

� 1
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

1

2
log2 x+ c

�

, (10)

such that the UV counter terms cancel between the two diagram. The guess
for the remaining terms is motivated by comparing to the QCD result (see
below).

The equations above are also consistent with Grisha’s notes QCD-cusp-
GK.pdf. It would be nice to convert the results for the line integrals there to
those for HQET integrals.

2.2 Final result at two loops for �(2)g
cusp(�)

We expect the final answer to be given by

�(2)g
cusp(�) = A

(2)(�)� A

(2)(0) +B

(2)(�)� B

(2)(0) , (11)

where

A

(2)(�) =�(2)
cusp(�, ⇡/2) ,

=
1

3

✓

1 + x

2

1� x

2

◆

⇥

⇡

2 log x+ log3 x
⇤

�
✓

1 + x

2

1� x

2

◆2 

⇣3 + ⇣2 log x+
1

3
log3 x+ log xLi2(x

2)� Li3(x
2)

�

.

(12)

5Need to check that 1/✏ terms are the same for HQET integrals as defined in Andrei’s
HQET book. Actually, in [6] there seems to be a di↵erent 1/✏ term, presumably due to a
di↵erent regulator.
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• 2 loops

B

(2)
(�) =


log

2
x+

1

3

⇡

2

�
� ⇠

⇥
⇣2 + log

2
x+ 2 log xLi1(x

2
)� Li2(x

2
)

⇤
.

A

(1)
(�) = �⇠ log x

A

(2)
(�) =

1

3

⇠

⇥
⇡

2
log x+ log

3
x

⇤

� ⇠

2


⇣3 + ⇣2 log x+

1

3

log

3
x+ log xLi2(x

2
)� Li3(x

2
)

�
.



A new look at two loops in QCD
[Korchemsky, Radyushkin (1987)]
nf [Braun, Beneke,1995]
[Kidonakis (2009)]

• QCD result

�(2) =CFCA

h
A(2)(�)�A(2)(0) +B(2)(�)�B(2)(0)

i

+

✓
�5

9
CFTFnf � 67

36
CFCA

◆h
A(1)(�)�A(1)(0)

i
.

�(1) = CF

h
A(1)(�)�A(1)(0)

i

Only functions from N=4 SYM needed!

•         uniform weight 1 :  from susy WL 

•         uniform weight 2 :  from bosonic WL

•         uniform weight 3 :  from susy WL 

A(1)

A(2)

B(2)

• what happens at 3 loops?

• why functions of uniform weight?



Why should we get pure functions?
• For Wilson line integrals, this is easy to see

• algorithm also works for the multi-line case.

[JMH, Huber, JHEP 1309 (2013) 147]

other method: 
[cf. E. Gardi (2014)]

- key: ‘d-log representations’

- make it obvious that result is given by pure functions 

- provides algorithm for computing the answer

Nonplanar correction to scaling limit

J. M. Henn, IAS

first correction appear at four loops 

⇠ ⇠

4 ⇥ I

NP,four�loop

(x)

I
NP,four�loop

(x) =� 2⇣
2

(18H
1,1,1,2 + 24H
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+ 22H
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1,2,1,1,1,1 +H

1,1,1,1,1,1,1

massless limit:

lim
x!0

I

NP,four�loop,NP
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5
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7

] +O(x)

x ! 0 , L = log x
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Nonplanar correction to scaling limit

J. M. Henn, IAS

first correction appear at four loops 
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- note: implies that all functions of this family have this property!
see this more generally: [JMH, PRL 110 (1013) 25]



Master integrals
• abelian eikonal exponentiation: need only planar integrals

[cf. V. Smirnov’s talk for applications to multi-scale cases]

• differential equations in suitable basis

v1

!v2

q

v1

!v2

q

v1 !v2

q

v1

!v2

q

v1

!v2

q

v1!v2

qv1

!v2

q

v1

!v2

q

@

x

~

f(x; ✏) = ✏


a

x

+
b

x� 1
+

c

x+ 1

�
~

f(x; ✏)

D = 4� 2✏
x = e

i�• 71 master integrals ~

f(x; ✏)

• boundary conditions trivially from x = 1

• solution in terms of harmonic polylogarithms

a, b, c constant 71x71 matrices

[method: see JMH, PRL 110 (1013) 25]

one integral: [Chetyrkin, 
Grozin, NP B666 (2003)]



Example

v1 -v2

q

f44 = ✏4
h
� 1

6
⇡2H0,0(x)� 2

3
⇡2H1,0(x)� 4H0,�1,0,0(x) + 2H0,0,�1,0(x)

+2H0,1,0,0(x)� 4H1,0,0,0(x) + 4⇣3H0(x)� 17⇡4

360

i
+O(✏5)

f44 = ✏

5 1� x

2

x

G1,0,1,0,1,0,1,1,2,0,1,0

x = e

i�

• all basis integrals are pure functions of uniform weight

• numerical checks with FIESTA

• confirmed previously known `N=4 SYM` result



Calculation at three loops
 (1) compute proper vertex function

 (2) take into account renormalization of Lagrangian

 (3) compute vertex renormalization

 (4) extract Gamma cusp

• color structures

CFC
2
A stay tuned!

CF (TFnf )
2

C2
FTFnf

CFCATFnf
this talk

[Braun, Beneke,1995]

�cusp =

@

@ logµ
logZ

�(3)
cusp : c1CFC

2
A + c2CF (Tfnf )

2 + c3C
2
FTfnf + c4CFCATFnf

}



Results �(3)
cusp : c1CFC

2
A + c2CF (Tfnf )

2 + c3C
2
FTfnf + c4CFCATFnf

• Checks: expected divergence structure

Only functions from N=4 SYM needed!

lim

x!0
�cusp = �K log x+O(x

0
)• Known limit

[Berger (2002)]

logZ =� 1

2✏

⇣↵s

⇡

⌘
�

(1)
+

⇣↵s

⇡

⌘2


�0

16✏2
�

(1) � 1

4✏
�

(2)

�
+

⇣↵s

⇡

⌘3

��2

0�
(1)

96✏3
+

�1�
(1)

+ 4�0�
(2)

96✏2
� �

(3)

6✏

�
.

c4 = �5

9

⇣
A(2) +B(2)

⌘
� 1

6

✓
7⇣3 +

209

36

◆
A(1)

c2 = � 1

27
A(1) c3 =

✓
⇣3 �

55

48

◆
A(1)

A = A(�)�A(0)

K(3) =
1

4
CFC

2
A

✓
245

24
� 67

9
⇣2 +

11

6
⇣3 +

11

5
⇣22

◆
+ C2

FnfTF

✓
�55

48
+ ⇣3

◆

+
1

2
CFCAnfTF

✓
�209

108
+

10

9
⇣2 �

7

3
⇣3

◆
+ CFn

2
fT

2
F

✓
� 1

27

◆

[Vogt (2001)] [Moch, Vermeaseren,Vogt (2004)]



Iterative structure of loop integrals
cf. [Caron-Huot, J.M.H. (2014) 

• Obtain it from a subset of finite integrals/functions?

• The physical result is finite as D ! 4

• Note: functions appear already in `simpler` N=4 SYM calculations!

• top-down vs. bottom-up approach
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Massive scattering 
amplitudes in N=4 SYM



Massive scattering amplitudes in N=4 SYM
• define analog of light-by-light scattering

p1

a2

p2

a3

p3

a4

p4

a1

(a)

p1

a2

p2

a3

p3

b4

p4

b1a1

b3

c

(b)

Figure 1. Families of massive one- and two-loop integrals for light-by-light scattering. Possible
irreducible numerator factors at two loops are not shown.

integrals that appear in massive form factor calculations. They were computed previously
(in a different basis) to some order in ✏ in ref. [18]. We confirm these results. Moreover, the
formulation we give can be trivially expanded to any order in ✏, where the result is given
by a homogeneous expression in terms of harmonic polylogarithms.

This paper is organized as follows. In section 2, we give definitions of the loop integrals
that appear in the paper. Then, in section 3, we briefly review the differential equations
method for loop integrals, and discuss simplifications in the four-dimensional limit. We
use the one-loop integrals as a pedagogical example. In section 4, we explain how to
systematically set up the differential equations directly in four dimensions, and present
an algorithm for putting the latter into a canonical block-triangular form. We give the
differential equations at two and three loops and discuss the iterative structure of the
analytic solution. In section 5, we discuss the analytic properties of the functions to three
loops and show that they satisfy a Mandelstam representation. We discuss checks of our
results in section 6. We conclude in section 7. There are three appendices. In appendix
A we apply the differential equation method to the set of two-loop master integrals in
D = 4�2✏ dimensions and compute them using the method of ref. [7]. Additional material
on our method for writing down identities and differential equations for four-dimensional
loop integrals can be found in appendix B. Appendix C contains expressions for the one-
and two-loop box integrals in terms of multiple polylogarithms. Appendix D contains the
differential equations up to three loops. We supply several ancillary electronic files together
with the arXiv submission of this paper.
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• previously studied only in limits:

s, t,m2

use mass as regulator m2 ⌧ s, t

• natural for dual conformal symmetry

[Alday, J.M.H., Plefka, Schuster]

[Schabinger]

Regge limit           s � m2, t related to cusp anomalous dimension
[J.M.H., Naculich, Schnitzer, Spradlin]

• Systematic analysis for generic kinematics [Caron-Huot, J.M.H., 2014]
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e

(b)

Figure 2. Families of massive three-loop integrals for light-by-light scattering. Possible irreducible
numerator factors are not shown.

of indices associated with each loop variable. For example, a two-loop integral is DCI if
(a1 + a2 + a3 + a4 + c) = 4 and (b1 + b2 + b3 + b4 + c) = 4.

In the following, we will define all integrals in the Euclidean region s/m2 < 0, t/m2 < 0,
where all functions are real-valued. One then defines the functions elsewhere by analytic
continuation, using the Feynman prescription. This implies giving the kinematical variables
a small imaginary part, according to m2 ! m2 � i0, s ! s + i0, t ! t + i0.

Let us have a first look at these integrals, and take I1 as an example. It is given
analytically by (the form below is due to [20]),

I1 =

2

�uv

n

2 log

2

✓

�uv + �u

�uv + �v

◆

+ log

✓

�uv � �u

�uv + �u

◆

log

✓

�uv � �v

�uv + �v

◆

� ⇡2

2

+

X

i=1,2

h

2 Li2

✓

�i � 1

�uv + �i

◆

� 2 Li2

✓

��uv � �i

�i + 1

◆

� log

2

✓

�i + 1

�uv + �i

◆

io

. (2.6)

Here we introduced dimensionless variables2

u =

4m2

�s
, v =

4m2

�t
, (2.7)

and the following abbreviations,

�u =

p
1 + u , �v =

p
1 + v , �uv =

p
1 + u + v . (2.8)

The functions appearing in eq. (2.6) are examples of polylogarithms. For these and more
general classes of integral functions that we will discuss one can define a “symbol” [1, 2, 21].
Roughly speaking, the symbol contains information about the integration kernels leading

2
From the context there should be no confusion between the ratio u and the Mandelstam invariant

u = �s� t. Also note that our normalization of u and v differs by a factor 4 from those in ref. [13].
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one loop:

two-loop and three-loop answer now also known.

u = �4m2/s v = �4m2/t �u =
p
1 + u, �v =

p
1 + v, �uv =

p
1 + u+ v



Iterative structure
for finite 

loop integrals
[Caron-Huot, J.M.H. (2014) 

4
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�v � 1
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transcendental

weight

uv

(1 + u)(u + v)

Figure 4. Hierarchy of master integrals up to two loops. The integrals are classified according
to their (transcendental) weight, shown in the leftmost column. Each arrow corresponds to one
non-zero element of the derivative matrix A, cf. eq. (4.11). The fact that arrows only link integrals
in adjacent rows is the statement that the matrix is block triangular. The result for an integral
can immediately be written down by summing over all paths leading up from the tadpole integral
g1 = 1. Each path gives a contribution to an iterated integral, with the integration kernels being
specified by the ‘letters’ written next to the corresponding arrows. Solid and dashed lines denote
massive and massless propagators, respectively. Note that the pictures are intended to give an idea
of how the integrals look like, but omit details such as e.g. numerator factors.
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• block triangular matrix structure
(weight grading)

• algorithm for finding this form



Discussion and outlook

• integrals and cross sections for light-by-like scattering in N=4 SYM 

• results for Regge trajectories

• iterative structure of finite loop integrals

• dual conformal symmetry is generalization of conservation of 
Laplace-Runge-Lenz-(Pauli) vector for hydrogen atom!

[Caron-Huot, J.M.H., to appear], 
[cf. Caron-Huot’s talk]

- similar to structure for MHV and NMHV hexagon
functions in N=4 SYM cf. [Dixon, Drummond, J.M.H. (2012) 

- possible application: correlation functions in CFT [cf. e.g. Sokatchev’s talk]

perfect for finite physical objects, e.g.

3 loops and 3 scales!
full calculation, no guesses

similar integrals appear in QCD for finite top quark mass



Conclusions

• exciting results and techniques

• some already applicable in QCD 
(e.g. uniform weight basis, Chen iterated integrals)

• more work needed for elliptic functions and generalizations

• New results:

- 3-loop QCD cusp anomalous dimension

- 3-loop light-by-light scattering in N=4 SYM



Thank you!


