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ldeal and realistic scattering amplitudes

* N=4 SYM is ‘hydrogen atom of quantum field theory’

dualities, dual conformal/Yangian symmetry, AdS/CFT,
integrability, twistor space, simple integrands...

what further surprises does it hold for us?

what can we learn from it for QCD?

* Higgs discovery at the LHC

more theory predictions needed
for precision measurements!

this talk: tools for loop-level scattering amplitudes
(building on tree/integrand insights)




Techniques for loop integrands

* unitarity cut based techniques [Bern, Dixon, Dunbar, Kosower] [...]
cf. talks by Badger, Britto, Larsen, Mastrolia, Penante, Roiban, Yang,...

used for many |-loop phenomenological studies;
multi-loop in super Yang-Mills and supergravity

e on-shell recursion relations and diagrams

[Britto, Cachazo, Feng, (Witten)] [Arkani-Hamed,Bourjaily, Cachazo, Caron-Huot, Trnka]

very useful, compact answers, helps make symmetries manifest
challenges for the future: apply to N<4 SYM, non-planar, D=4-2eps

recent development:‘amplituhedron’ [Arkani-Hamed, Trnka]

e physical properties of loop integrands

make infrared (IR) properties manifest
[Arkani-Hamed et al.] [Drummond, J.M.H. ][Bourjaily, DiRe, Shaikh, Spradlin,Volovich]

closely related to (generalized) cut structure

UV properties,anomalies [Chen, Huang, McGady ]



Scattering amplitudes at loop level

e What functions are needed to describe them?

e Example: integral appearing in Higgs production
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- multivalued function; two-particle threshold

- more generally: need integrals in a Laurent series about D = 4 - 2 eps.

* At one loop, only logarithm and dilogarithm needed
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- what functions will appear at higher loops!?

- how to compute them in an efficient way?




Feynman integrals as iterated integrals (1)

* Logarithm and dilogarithm are first examples of iterated integrals
with special 'd-log " integration kernels

dt —dt dt
o _ T — dlog(1 — O dlog(1 4+t

e these are called harmonic polylogarithms (HPL)  [Remiddi,Vermaseren]

T odx 1 dx
o 1—z1 )y 1+4x

e shuffle product algebra
e coproduct structure

e Mathematica implementation [Maitre]

e weight: number of integrations

* special values related to multiple zeta values (MZV) [cf. Duhrs talk]
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e.g. H(),l(l) — L12(1) = (2




Feynman integrals as iterated integrals (2)

* Natural generalization: multiple polylogarithms 56 called hyperlogarithms;
Goncharov polylogarithms]

allow kernels w = dlog(t — a)

Gal,...an(z):/ at Gag,...,an(t)
0

t—a1

numerical evaluation: GINAC [Vollinga, Weinzier!]

e Chen iterated integrals

/ Wiz .. .Wn C: [O, 1] —— M (space of kinematical variables)
C

Alphabet: set of differential forms w; = dlog «;

integrals we discuss will be monodromy invarianton M \ S
S (set of singularities)

more flexible than multiple polylogarithms!

e Uniform weight functions (pure functions):

@ -linear combinations of functions of the same weight




Goncharov weight four conjecture

* rewrite any multiple polylogarithm in terms of function basis [Goncharov]

e.g. at weight 4 (important for NNLO computations)

{log(z) log(y) log(z) log(w), log(x) log(y)Liz(2),
Lis (.CU)LIQ (?J), log(a’))ng (y), L14(£C), LiQ,Q(xv y)}

for set of arguments (to be found - symbol/coproduct provides guidance)

[in N=4 SYM related to cluster coordinates? cf.Vergu’s talk]

minimal set of integration kernels vs. minimal set of function arguments

e practical tool: 'symbol " useful projections [Goncharov, Spradlin,Vergu,Volovich]

[Brown]

e.g. proj

Goncharov] [Duhr, Gangl, Rhodes]

ecton Lis o(x, y) part

lecture notes: [Vergu]

e.g. proj

ect out all products [Brown][Zhao]

e symbol = Chen iterated integral without boundary information

diff. egs.

or other information can be used to fix this



d-log representations

e Can we make it manifest when integrals evaluate to pure functions?
b, D5

(=0 _ =0 d*l (p1+ p2)*(p1 + p3)° [Arkani-Hamed, Bourjaily, Cachzo,
A, X = A7 x [ : 5 5
7 G0+ p1)* (L4 pr+ p2)* (£ — pa) Goncharov, Postnikov, Trnka, 2012]
pl 4

[Caron-Huot, talk at Trento, 2012]

d*0 (p1 4 p2)*(p1 + ps)? [Lipstein, Mason, 2013]
(04 p1)? (4 pr + p2)? (£ — py)?

el 2

very suggestive! New ways of performing loop integrations!?

amplitude/Wilson loop duality: relation between momentum space
spacetime integrals and position space line integrals

t
b//

2 3

right number of d-logs

1 4 a\'s\ f isht 2 f '
S or welgnt unction
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algorithm for evaluating (multiple) Wilson line
integrals with any propagator exchanges J-M.H., Huber, 2013]




Cuts and integrated integrands

e discontinuities usually simpler than full answer  cf. talks by Badger, Britto, Mastrolia,...

e contain important information dispersive representations, e.g.
Mandelstam, optical theorem

e maximal cuts, leading singularities  [Cachzao, Skinner]

* integrals with simple cuts are expected to integrate to uniform

weight functions

idea: any cut that completely localizes the integral should
give just a rational number

* use cuts of integrals as guiding principle for [.M.H.,2013]
finding convenient integral basis




A word of caution: more exotic objects

* mathematicians like to consider single-scale Feynman integrals

* conjecture that certain periods only evaluate to
multiple zeta values (MZV) appear disproven by [Brown, Schnetz]

e Elliptic functions

relevant e.g.in top quark physics Czakon et al.
also appear in massless N=4 SYM [Caron-Huot, Larsen]

recent work Elliptic polylogairthms [Brown, Levin]
[Bloch,Vanhove] [Vanhove] [Remiddi, Tancredi] [Adams, Bogner, Weinzierl]

Note: weight property generalizes weight n -> (n/2,n/2)  mixed Hodge theory

systematic and practical way for dealing with them
for practical applications!?

* Here: cases where Chen iterated integrals are sufficient




differential equations,

uniform weight basis




Strategy for computing Feynman integrals
using differential equations

cf. Smirnov’s talk

o Useful facts:

(1) For a given problem, one can choose cf. Zhang’s talk
a finite basis of Feynman integrals

(2) Basis integrals satisfy coupled

first-order differential equations

(3) many classes of Feynman integrals
evaluate to iterated integrals

* |dea: choose basis such that the differential equations are simple,
and such that (3) is made obvious




Key points of the method  imHrruiio oz 2s)

o differential equations for master integrals f

* crucial: choose convenient basis (systematic procedure)
—— makes solution trivial to obtain

* elegant description: Feynman integrals specified by:
(1) set of ‘letters’ (related to singularities T, )
(2) set of constant matrices Ay

Example: one dimensionless variable *; D =4 — 2e

—

® expansion to any order in € is linear algebra
answer: multiple polylogarithms of uniform weight (‘transcendentality’)

* asymptotic behavior f(a:, €) ~ (x — xk)EAkﬁ(e)

¢ natural extension to multi-variable case




Example: massless 2 to 2 scattering

* basis f{>©<,§§, ) r=t/s

D =4 — 2¢

differential equations

a b
O — |
o Tl e e

* (regular) singular points s=0, t=0,
* asymptotic behavior governed by matrices a, b
e Solution: expand to any order in €
f=> ko€ f FF) s kefold iterated integral (uniform weight)
alphabet {dlogz,dlog(l+ )} orequivalenty {%,1+x}

* same egs. at 2,3 loops, only bigger matrices a,b (!)




Multi-variable case and the alphabet

e Natural generalization to multi-variable case

constant matrices |etters (alphabet)
e Examples of alphabets:

4-point on-shell a={zr,1+x}

two-variable example (from o — {3 14+ 2 ¢y, 14+y,z+y,1+ zy}
| -loop Bhabha scattering): [.M.H., Smirnov]

""hexagon functions " in @ =u, 0w, L= U, 1 =0, 1 =, Yo, Yo, Yo }

N :4 SYM [Goncharov, Spradlin,Vergu,Volovich] [Caron-Huot, He]

[Dixon, Drummond, ].M.H.] [Dixon et al.] [cf. Dixon’s talk]

e Matrices and letters determine solution

* Immediate to solve in terms of Chen iterated integrals




The alphabet and perfect bricks (I)

Can we parametrize variables such that alphabet is rational?
Not essential, but nice feature.

Higgs production

e Example: Higgs production i

.
»~

encounter /1 — 4m?2/s

choose —m?/s=z/(1—2x)?

a=1{zr,1—z,14+2x} (totwo loops)
Note: this is a purely kinematical question. Independent of basis choice.

* Related to diophantine equations
e.g. find rational solutions to equations such as

l+4a =0
here we found a |-parameter solution
x b 1+
(1—x)? Cl—=

a =




The alphabet and perfect brlcks (2)

e Classic example: Euler brick problem

Find a brick with sides @, b, c a’ + b? d
and diagonals d e f mtegers

smallest solution (P. Halcke):

(a,b,c)=(44,117,240)

b’ -

Perfect cuboid (add eq. g2 4 b? 4 ¢2 = 92 ): open problem in mathematics!

 Similar equations for particle kinematics [Caron-Huot JMH, 2014]
e.g encountered in 4-d light-by-light scattering

U = —4m2/8 U = —4m2/t az]"“_a[
= V14w, By =V1+v, Buw =V1+u-+v I—J

Need two-parameter solution to

B+ B

w+ z 1 +wz
& Bu , By = 0 — , Buw = :

more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order!

w —z

Find such solutions systematically? Minimal polynomial order?




Equivalent representations

e version |:Chen iterated integrals

v — Ba 8, Buw — B
Buw t B /‘“O% dlog g

[2 loops: 10 terms]

e version 2: Goncharov polylogarithms

(if alphabet rational in at least one variable)
gs =—G_10(w)+ Go —1(w) — Go1(w) + Gro(w) + H_19(2) —
+ Hy0(2) = Go(w)H_1(2) + G (w)Ho(2) — Gi(w)Ho(z) —

HO 1(2) H()J(Z)
Go(w)Hi(z) .

[2 loops: 2-3 pages]

¢ version 3: minimal function basis 96 = —fuv/211

[most compact]

[flexible: analytic
continuation, limits]

[easy to see DE, cuts]

ideas for numerics:

J-M.H., Caron-Huot]

[longer expressions;
requires rational
alphabet;

GINAC numerical

evaluation]

[arbitraryness;

2 6UU+6u Buv _Bu Buv _Bv o 7T_2
{210g (5% 5@) + log (Buv"’ﬁu) log <5uv+ﬁv) 5
61_1 . Buv_ﬁi 2 6i‘|‘1

(Buv Bz>_2L12 <_ Bi‘l‘l >_10g (Buv‘Fﬂ@)}}

[2 loops: several pages] =V1+u, 5,

e some examples from literature:

usually long expressions;
good at low weight;
fast numerical evaluation]

= V14w, 5uv:\/1‘|‘u‘|‘v

[Goncharov et al.] [Duhr] [Gehrmann et al.] ...




Important points differential equations

e Uniform weight basis can be found systematically using cuts
(related to d-log representations) [Arkani-Hamed et al]  [J.M.H.]

other algebraic ideas  [Mastrolia et al.] [Caron-Huot, |.M.H.] [Gehrmann et al.]

e DE provide information about integrals in compact form
(alphabet, matrices)

e contain more information than epsilon expansion: exact limits

* boundary conditions often for free (e.g. finiteness in certain limits)

[applications to single-scale integrals: cf. Smirnov’s talk]

e Chen iterated integrals give most compact form of answer

* To given weight, answer can be rewritten in terms of minimal
function basis [Goncharov]




On the QCD cusp
ahomalous dimension

based on work in progress with

A. Grozin G. Korchemsky P. Marquard




Cusp anomalous dimension

e Cusp anomalous dimension describes infrared divergences

[cf. L. Magnea’s talk on Friday]

e I'cusp(®) governs UV divergences at cusp [Polyakov: | loop]

ﬁm [2 loops: Korchemsky, Radyushkin (1987)]

(W) o 110 55 T

* relation to light-like anomalous dimension K [Korchemsky et al]

r — o' lim Teusp = —K logz + O(2)

x—0

* N=4 SYM susy/non-susy Wilson loop operator

1 4 x2

cosf — cos ¢ g _
N 1 — 22

.
i sin ¢ 9

— £ =




Beautiful answers

e Observation: constants in N=4 SYM anomalous dimensions
have uniform ‘transcendentality’ [Kotikov, Lipativ,Velizhanin]

e generalize: pure functions of uniform weight (UT)

* suggests iterative differential structure

e what about QCD?
ref. JMH,PRL 110 (2013)] suggests QCD integrals can also be chosen UT

do physical results look nice when expressed in a good basis!?




Perturbative results in N=4 SYM

e lloop AW (¢p)=—¢loga

°?) |OOPS [Makeenko, Oleson, Semenoff (2006)]
(2) L. o 3

A (¢) = §€ 7% log x + log” x|

_ | _
— &% |3+ Gloga §10g3$ log xLis(z?) — Lig(z?)] .

[Drukker, Forini (2012)]

* bosonic Wilson Ioc_>p in N=4 SYM, 2 loops

LG4(0) = AP (0) — AP(0) + BH(9) - BO(0), 6=
1

B@(¢) = [log2 T + §7T2:| — &G+ log®  + 2log xLi; () — Lis(z%)] .

3 |oops; f term at any |oop order [Correa,JMH, Maldacena, Sever (2012)]

* 4 loops planar; nonplanar ¢* term;

e d-log algorithm for ladder integrals MR, Fuber (20191




A new look at two loops in QCD

e QCD result [Korchemsky, Radyushkin (1987)]
nf [Braun, Beneke, 1995]

(1) _ O [A(l)(qb) B A(U(O)} [Kidonakis (2009)]

[ =CrCa [A@) (¢) — A®(0) + B®)(¢) — B® (0)}

+ <—§CFTFTL]'~‘ — 6—70FCA> [A(l)(gb) — A(l)(o)} ‘

9 36

Only functions from N=4 SYM needed!

e A uniform weight | : from susy WL

e B(2) uniform weight 2 : from bosonic WL

e A2 uniform weight 3 : from susy WL

* what happens at 3 loops!?

e why functions of uniform weight?




Why should we get pure functions!?

* For Wilson line integrals, this is easy to see [JMH, Huber, JHEP 1309 (2013) 147]
- key:‘d-log representations’

- make it obvious that result is given by pure functions

- provides algorithm for computing the answer

INP four—1oop () = — 2C2(18H1 1,12 +24H1 121+ 18H1 211 +30H111.1.1)
+48H1 114 +64H1 123 +64H1 132 +48H1213
+48H1 9222 +80H1 1113 +80H11122+24H1 1131
+64H1 1212 +32H11221 +32H1 1311 +48H121,1,2

- note: implies that all functions of this family have this property!
see this more generally: [[MH, PRL 110 (1013) 25]

e algorithm also works for the multi-line case. other method:
[cf. E. Gardi (2014)]




Master integrals

* abelian eikonal exponentiation° need only planar integrals

N\ _v2

/l\w W _

i

e 71 master integrals f(z;e) =4—2 g=¢?

JD
q
!

e differential equations in suitable basis [method: see JMH, PRL 110 (1013) 25]

—

- a b C
ax ; — — | 3
f(x;e) €[$+x—1+x 1]f(a:e)
a,b,c constant 71x7| matrices

one integral: [Chetyrkin,
Grozin, NP B666 (2003)]

* boundary conditions trivially from z =1

e solution in terms of harmonic polylogarithms

[cf.V.SmirnovV’s talk for applications to multi-scale cases]




Example

Jaa = € (G1.0,1,0,1,0,1,1,2,0,1,0

r = e'?
.

1 2
— EWQHO,O(CU) - §7T2H1,0($) —4Ho,—1,0,0(z) + 2Ho,0,-1,0(2)

(ZE) — 4H1,0’0,0(x) —|— 4C3H0(£E)

17W4}
3600

e all basis integrals are pure functions of uniform weight
e numerical checks with FIESTA

 confirmed previously known 'N=4 SYM" result




Calculation at three loops

(I) compute proper vertex function
(2) take into account renormalization of Lagrangian

(3) compute vertex renormalization

0

(4) extract Gamma cusp T'cusp = oz log Z

e color structures '), : ciCrC3 + c2Cr(Tyng)® + csCrTyns + caCrCaTrny

Cr(Trny)? [Braun, Beneke, 995]

C%Tpnf
CFCATan

this talk

CrC3 stay tuned!




RESUItS P((fl)sp ; chFCfl + CQCF(TfTLf)2 + CgC%Tfnf + C4CFCATFTLf

1 DO

5 1 209
_ _2 (4@ B<2>) 27l 2 222 4
“TTY ( i 6 |71 36

A = A(¢) — A(0) Only functions from N=4 SYM needed!

* Checks: expected divergence structure

logZ — L (a_) o) 4 (04_)2 [ﬁpm B ir<2>] N (04_)3 [_BgF(” BT 4450 @] |

2¢ \ 7 T 16€2 de T 96¢€3 06¢€2 Ge

e Known limit 11m I'cysp = — K logx + O(xo)

x—0

1 245 67 11 11 5
(3 = 2 (222 70 i T2 % T | ===
4OFCA(24 9<2+6<3+5C2 + Cpnslp 48+<3
1 209 10 7
- To | 227 4 22 C
+ 5CrCany F( 8 T G2 3C3> +

[Vogt (2001)] [Berger (2002)] [Moch,Vermeaseren,Vogt (2004)]




Iterative structure of loop integrals

cf. [Caron-Huot, |.M.H. (2014)
* The physical result is finite as D — 4

e Obtain it from a subset of finite integrals/functions?

graded by weight

0

* Note: functions appear already in ‘simpler’ N=4 SYM calculations!

* top-down vs. bottom-up approach




Massive scattering
amplitudes in N=4 SYM




Massive scattering amplitudes in N=4 SYM

e define analog of light-by-light scattering [Alday, ].M.H., Plefka, Schuster]

S, t, m2 [Schabinger]

e natural for dual conformal symmetry

P2 P3
\ra3j/

e previously studied only in limits: ]_ J
//Pl/ \P4\

use mass as regulator M2 <& S, T

Regge limit s > Tn27 t related to cusp anomalous dimension
[J.M.H., Naculich, Schnitzer, Spradlin]

 Systematic analysis for generic kinematics [Caron-Huot, .M.H.,2014]

2 Buv + Bu Buv - Bu Buv — va w2
one loop: " Buv {21ng (m + Bv) +os <Buv + Bu) o8 (Buv + Bv) 2

: 673_1 . 61“)_67) qu—|‘1
t2 [QLIQ (ﬂuv‘i‘ﬂi) —2lh (_ Bi+1 ) ~ log” (/%ﬁ&)“'

i=12
w=—4m?/s v=—4m?/t Bu=V14+u, Bo =V1+v, Buw =V1+u+tuv

two-loop and three-loop answer now also known.




transcendental
weight

4 Iterative structure
- for finite
loop integrals

[Caron-Huot, ].M.H. (2014)

uv

B R A v * block triangular matrix structure

(weight grading)

* algorithm for finding this form




Discussion and outlook

* iterative structure of finite loop integrals

perfect for finite physical objects, e.g.

- similar to structure for MHV and NMHYV hexagon
functions in N=4 SYM cf. [Dixon, Drummond, ].M.H. (2012)

- possible application: correlation functions in CFT [cf. e.g. Sokatchev’s talk]

* integrals and cross sections for light-by-like scattering in N=4 SYM

3 loops and 3 scales!

full calculation, no guesses

similar integrals appear in QCD for finite top quark mass

* results for Regge trajectories [Caron-Huot, ].M.H., to appear],
[cf. Caron-Huot’s talk]

* dual conformal symmetry is generalization of conservation of
Laplace-Runge-Lenz-(Pauli) vector for hydrogen atom!




Conclusions

* exciting results and techniques

e some already applicable in QCD
(e.g. uniform weight basis, Chen iterated integrals)

e more work needed for elliptic functions and generalizations

e New results:

oop QCD cusp anomalous dimension

oop light-by-light scattering in N=4 SYM




Thank you!



