Mathematical structures and tools for Feynman amplitudes

Johannes M. Henn Institute for Advanced Study

supported in part by the Department of Energy grant DE-SC0009988 Marvin L. Goldberger Member

Ideal and realistic scattering amplitudes

• N=4 SYM is 'hydrogen atom of quantum field theory'

dualities, dual conformal/Yangian symmetry, AdS/CFT, integrability, twistor space, simple integrands...

what further surprises does it hold for us? what can we learn from it for QCD?

• Higgs discovery at the LHC

more theory predictions needed for precision measurements!

this talk: tools for loop-level scattering amplitudes (building on tree/integrand insights)

Techniques for loop integrands

• unitarity cut based techniques [Bern, Dixon, Dunbar, Kosower] [...] cf. talks by Badger, Britto, Larsen, Mastrolia, Penante, Roiban, Yang,...

used for many I-loop phenomenological studies; multi-loop in super Yang-Mills and supergravity

• on-shell recursion relations and diagrams

[Britto, Cachazo, Feng, (Witten)] [Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka] very useful, compact answers, helps make symmetries manifest challenges for the future: apply to N<4 SYM, non-planar, D=4-2eps recent development: 'amplituhedron' [Arkani-Hamed, Trnka]

• physical properties of loop integrands

make infrared (IR) properties manifest [Arkani-Hamed et al.] [Drummond, J.M.H.][Bourjaily, DiRe, Shaikh, Spradlin, Volovich] closely related to (generalized) cut structure

UV properties, anomalies [Chen, Huang, McGady]

Scattering amplitudes at loop level

- What functions are needed to describe them?
- Example: integral appearing in Higgs production

$$\int \frac{d^4k}{i\pi^2} \frac{1}{(m_t^2 - k^2)(m_t^2 - (k + p_1)^2)(m_t^2 - (k - p_2)^2)}$$

$$= -\frac{1}{2s} \log^2 \left(\frac{\sqrt{1 - 4m_t^2/s} - 1}{\sqrt{1 - 4m_t^2/s} + 1} \right)$$

$$s = (p_1 + p_2)^2$$

- multivalued function; two-particle threshold
- more generally: need integrals in a Laurent series about D = 4 2 eps.
- At one loop, only logarithm and dilogarithm needed

$$\log z = \int_{1}^{z} \frac{dt}{t} \qquad \qquad \text{Li}_{2}(z) = \int_{0}^{z} \frac{dt_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{dt_{2}}{1 - t_{2}}$$

- what functions will appear at higher loops?
- how to compute them in an efficient way?

=

Feynman integrals as iterated integrals (1)

• Logarithm and dilogarithm are first examples of iterated integrals with special ``d-log`` integration kernels

$$\frac{dt}{t} = d\log t$$
 $\frac{-dt}{1-t} = d\log(1-t)$ $\frac{dt}{1+t} = d\log(1+t)$

• these are called harmonic polylogarithms (HPL) [Remiddi, Vermaseren]

e.g.
$$H_{1,-1}(x) = \int_0^x \frac{dx_1}{1-x_1} \int_0^{x_1} \frac{dx_2}{1+x_2}$$

- shuffle product algebra
- coproduct structure
- Mathematica implementation [Maitre]
- weight: number of integrations
- special values related to multiple zeta values (MZV) [cf. Duhr's talk]

$$\zeta_{i_1,i_2,\ldots,i_k} = \sum_{a_1 > a_2 > \ldots a_k \ge 1} \frac{1}{a_1^{i_1} a_2^{i_2} \ldots a_k^{i_k}}$$

e.g. $H_{0,1}(1) = \operatorname{Li}_2(1) = \zeta_2$

cf. e.g. [Bluemlein, Broadhurst, Vermaseren]

Feynman integrals as iterated integrals (2)

• Natural generalization: multiple polylogarithms

 $G_{a_1,\dots,a_n}(z) = \int_0^z \frac{dt}{t - a_1} G_{a_2,\dots,a_n}(t)$

allow kernels $w = d \log(t - a)$

[also called hyperlogarithms; Goncharov polylogarithms]

• Chen iterated integrals
$$\int_C \omega_1 \omega_2 \dots \omega_n \qquad C: [0,1] \longrightarrow M \quad \text{(space of kinematical variables)}$$

Alphabet: set of differential forms $\omega_i = d \log \alpha_i$

integrals we discuss will be monodromy invariant on $\ M \setminus S$

S (set of singularities)

more flexible than multiple polylogarithms!

• Uniform weight functions (pure functions):

 $\ensuremath{\mathbb{Q}}$ -linear combinations of functions of the same weight

Goncharov weight four conjecture

rewrite any multiple polylogarithm in terms of function basis [Goncharov]
 e.g. at weight 4 (important for NNLO computations)

 $\{\log(x)\log(y)\log(z)\log(w),\log(x)\log(y)\mathrm{Li}_2(z),$

 $Li_2(x)Li_2(y), log(x)Li_3(y), Li_4(x), Li_{2,2}(x, y)\}$

for set of arguments (to be found - symbol/coproduct provides guidance) [in N=4 SYM related to cluster coordinates? cf.Vergu's talk]

minimal set of integration kernels vs. minimal set of function arguments

• practical tool: ``symbol`` useful projections [Goncharov, Spradlin, Vergu, Volovich] [Brown] [Goncharov] [Duhr, Gangl, Rhodes]

e.g. project on $\operatorname{Li}_{2,2}(x,y)$ part e.g. project out all products

lecture notes: [Vergu] [Brown][Zhao]

• ``symbol`` = Chen iterated integral without boundary information diff. eqs. or other information can be used to fix this

d-log representations

• Can we make $n_{p_1}^{p_1}$ it manifest when integrals evaluate to pure functions?

$$\mathcal{A}_{4}^{\ell=0} \times \underbrace{\int_{p_{1}}^{\ell=0} \times \int_{p_{4}}^{\ell=0} \times \int_{q_{4}}^{\ell=0} \times \int_{p_{4}}^{d^{4}\ell} \frac{(p_{1}+p_{2})^{2}(p_{1}+p_{3})^{2}}{\ell^{2}(\ell+p_{1})^{2}(\ell+p_{1}+p_{2})^{2}(\ell-p_{4})^{2}}$$

[Arkani-Hamed, Bourjaily, Cachzo, Goncharov, Postnikov, Trnka, 2012]

[Caron-Huot, talk at Trento, 2012] [Lipstein, Mason, 2013]

$$\frac{d^4\ell \ (p_1+p_2)^2(p_1+p_3)^2}{\ell^2(\ell+p_1)^2(\ell+p_1+p_2)^2(\ell-p_4)^2} = d\log\left(\frac{\ell^2}{(\ell-\ell^*)^2}\right) d\log\left(\frac{(\ell+p_1)^2}{(\ell-\ell^*)^2}\right) d\log\left(\frac{(\ell+p_1+p_2)^2}{(\ell-\ell^*)^2}\right) d\log\left(\frac{(\ell-p_4)^2}{(\ell-\ell^*)^2}\right)$$

very suggestive! New ways of performing loop integrations?

 amplitude/Wilson loop duality: relation between momentum space spacetime integrals and position space line integrals

right number of d-logs for weight 2 function

algorithm for evaluating (multiple) Wilson line integrals with any propagator exchanges

[J.M.H., Huber, 2013]

Cuts and integrated integrands

- discontinuities usually simpler than full answer cf. talks by Badger, Britto, Mastrolia,...
- contain important information

dispersive representations, e.g. Mandelstam, optical theorem

maximal cuts, leading singularities

[Cachzao, Skinner]

 integrals with simple cuts are expected to integrate to uniform weight functions

idea: any cut that completely localizes the integral should give just a rational number

 use cuts of integrals as guiding principle for finding convenient integral basis

[J.M.H., 2013]

A word of caution: more exotic objects

- mathematicians like to consider single-scale Feynman integrals
- conjecture that certain periods only evaluate to multiple zeta values (MZV) appear disproven by [Brown, Schnetz]

• Elliptic functions

relevant e.g. in top quark physics Czakon et al. also appear in massless N=4 SYM [Caron-Huot, Larsen]

recent work Elliptic polylogairthms [Brown, Levin]
 [Bloch, Vanhove] [Vanhove] [Remiddi, Tancredi] [Adams, Bogner, Weinzierl]
Note: weight property generalizes weight n -> (n/2,n/2) mixed Hodge theory

systematic and practical way for dealing with them for practical applications?

• Here: cases where Chen iterated integrals are sufficient

differential equations, uniform weight basis

Strategy for computing Feynman integrals using differential equations

cf. Smirnov's talk

• Useful facts:

(1) For a given problem, one can choose a finite basis of Feynman integrals

cf. Zhang's talk

(2) Basis integrals satisfy coupled first-order differential equations

(3) many classes of Feynman integrals evaluate to iterated integrals

• Idea: choose basis such that the differential equations are simple, and such that (3) is made obvious

Key points of the method

[JMH, PRL 110 (2013) 25]

- ullet differential equations for master integrals $ec{f}$
- crucial: choose convenient basis (systematic procedure) \longrightarrow makes solution trivial to obtain
- elegant description: Feynman integrals specified by:
 - (1) set of 'letters' (related to singularities x_k)

(2) set of constant matrices A_k

Example: one dimensionless variable
$$x$$
; $D = 4 - 2\epsilon$
 $\partial_x \vec{f}(x;\epsilon) = \epsilon \sum_k \frac{A_k}{x - x_k} \vec{f}(x;\epsilon)$

• expansion to any order in ϵ is linear algebra answer: multiple polylogarithms of uniform weight ('transcendentality')

- asymptotic behavior $\vec{f}(x;\epsilon) \sim (x-x_k)^{\epsilon A_k} \vec{f_0}(\epsilon)$
- natural extension to multi-variable case

- (regular) singular points s = 0, t = 0, u = -s t = 0
- \bullet asymptotic behavior governed by matrices $\ a,b$
- Solution: expand to any order in ϵ

 $f = \sum_{k \ge 0} \epsilon^k f^{(k)} \qquad f^{(k)} \qquad \text{is k-fold iterated integral (uniform weight)}$ alphabet $\{d \log x, d \log(1+x)\}$ or equivalently $\{x, 1+x\}$ • same eqs. at 2,3 loops, only bigger matrices a,b (!)

Multi-variable case and the alphabet

• Natural generalization to multi-variable case

$$d\vec{f}(\vec{x};\epsilon) = \epsilon d \left[\sum_{k} A_k \log \alpha_k(\vec{x}) \right] \vec{f}(\vec{x};\epsilon)$$

constant matrices letters (alphabet)

• Examples of alphabets:

4-point on-shell

$$\alpha = \{x, 1+x\}$$

two-variable example (from I-loop Bhabha scattering):

``hexagon functions`` in N=4 SYM

$$\label{eq:alpha} \begin{split} \alpha = \{x\,,1\pm x\,,y\,,1\pm y\,,x+y\,,1+xy\} \\ \text{[J.M.H., Smirnov]} \end{split}$$

$$\alpha = \{u, v, w, 1 - u, 1 - v, 1 - w, y_u, y_v, y_w\}$$

[Goncharov, Spradlin, Vergu, Volovich][Caron-Huot, He][Dixon, Drummond, J.M.H.][Dixon et al.][cf. Dixon's talk]

Matrices and letters determine solution

Immediate to solve in terms of Chen iterated integrals

The alphabet and perfect bricks (I)

Can we parametrize variables such that alphabet is rational? Not essential, but nice feature.

• Example: Higgs production

encounter $\sqrt{1-4m^2/s}$ choose $-m^2/s = x/(1-x)^2$ $\alpha = \{x, 1-x, 1+x\}$ (to two loops)

Note: this is a purely kinematical question. Independent of basis choice.

Related to diophantine equations
 e.g. find rational solutions to equations such as

 $1 + 4 a = b^2$

here we found a 1-parameter solution

$$a = \frac{x}{(1-x)^2}$$
 $b = \frac{1+x}{1-x}$

The alphabet and perfect bricks (2)

• Classic example: Euler brick problem Find a brick with sides a, b, c $a^2 + b^2 = d^2$, and diagonals d, e, f integers smallest solution (P. Halcke): (a,b,c)=(44,117,240) $b^2 + c^2 = f^2$. c a

Perfect cuboid (add eq. $a^2 + b^2 + c^2 = g^2$): open problem in mathematics!

• Similar equations for particle kinematics e.g encountered in 4-d light-by-light scattering $u = -4m^2/s$ $v = -4m^2/t$ $\beta_u = \sqrt{1+u}, \ \beta_v = \sqrt{1+v}, \ \beta_{uv} = \sqrt{1+u+v}$ Need two-parameter solution to $\beta_u^2 + \beta_v^2 = \beta_{uv}^2 + 1$

$$\text{e.g.} \quad \beta_u = \frac{1 - wz}{w - z} \,, \quad \beta_v = \frac{w + z}{w - z} \,, \quad \beta_{uv} = \frac{1 + wz}{w - z}$$

more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order! Find such solutions systematically? Minimal polynomial order?

Equiv_{$p_4}lent representations$ </sub>

• version I: Chen iterated integrals

$$g_6 = \int_{\gamma} d \log \frac{\beta_u - 1}{\beta_u + 1} d \log \frac{\beta_{uv} - \beta_u}{\beta_{uv} + \beta_u} + \int_{\gamma} d \log \frac{\beta_v - 1}{\beta_v + 1} d \log \frac{\beta_{uv} - \beta_v}{\beta_{uv} + \beta_v}$$

[2 loops: 10 terms]

• version 2: Goncharov polylogarithms

(if alphabet rational in at least one variable) $g_6 = -G_{-1,0}(w) + G_{0,-1}(w) - G_{0,1}(w) + G_{1,0}(w) + H_{-1,0}(z) - H_{0,-1}(z) - H_{0,1}(z) + H_{1,0}(z) - G_0(w)H_{-1}(z) + G_{-1}(w)H_0(z) - G_1(w)H_0(z) - G_0(w)H_1(z).$

[2 loops: 2-3 pages]

[2 loops: several pages]

• version 3: minimal function basis $g_6 = -\beta_{uv}/2I_1$

$$I_{1} = \frac{2}{\beta_{uv}} \left\{ 2\log^{2} \left(\frac{\beta_{uv} + \beta_{u}}{\beta_{uv} + \beta_{v}} \right) + \log \left(\frac{\beta_{uv} - \beta_{u}}{\beta_{uv} + \beta_{u}} \right) \log \left(\frac{\beta_{uv} - \beta_{v}}{\beta_{uv} + \beta_{v}} \right) - \frac{\pi^{2}}{2} \right. \\ \left. + \sum_{i=1,2} \left[2\operatorname{Li}_{2} \left(\frac{\beta_{i} - 1}{\beta_{uv} + \beta_{i}} \right) - 2\operatorname{Li}_{2} \left(-\frac{\beta_{uv} - \beta_{i}}{\beta_{i} + 1} \right) - \log^{2} \left(\frac{\beta_{i} + 1}{\beta_{uv} + \beta_{i}} \right) \right] \right\}$$

[most compact] [flexible: analytic continuation, limits] [easy to see DE, cuts]

[ideas for numerics: J.M.H., Caron-Huot]

[longer expressions; requires rational alphabet; GINAC numerical evaluation]

[arbitraryness; usually long expressions; good at low weight; fast numerical evaluation]

$$\beta_u = \sqrt{1+u}, \ \beta_v = \sqrt{1+v}, \ \beta_{uv} = \sqrt{1+u+v}$$

• some examples from literature: [Goncharov et al.] [Duhr] [Gehrmann et al.] ...

Important points differential equations

- Uniform weight basis can be found systematically using cuts (related to d-log representations) [Arkani-Hamed et al.] [J.M.H.] other algebraic ideas [Mastrolia et al.] [Caron-Huot, J.M.H.] [Gehrmann et al.]
- DE provide information about integrals in compact form (alphabet, matrices)
- contain more information than epsilon expansion: exact limits
- boundary conditions often for free (e.g. finiteness in certain limits)
 [applications to single-scale integrals: cf. Smirnov's talk]
- Chen iterated integrals give most compact form of answer
- To given weight, answer can be rewritten in terms of minimal function basis [Goncharov]

On the QCD cusp anomalous dimension

based on work in progress with

A. Grozin

G. Korchemsky

P. Marquard

• Cusp anomalous dimension descrit

(a) [cf. L. Magnea's talk on Friday]

• $\Gamma_{\text{cusp}}(\phi)$ governs UV divergences at (ψ_{angle}) Wilson line that makes a turn by an angle map, the same line is mapped to a quark anti-quark configuration of π are sitting at two points of $\mathcal{S}_{\text{angle}}$ and π and π

along the time direction.

$$\langle W \rangle \sim e^{-|\ln \frac{\mu_{UV}}{\mu_{IR}}| \Gamma_{\rm cusp}}$$

The cusp anomalous dimension is an interesting quar

- relation to light-like anomalous dimension K [Korchemsky et al] Originally it was defined in [12] as the logarithmic d
 - Originally it was defined in [12] as the logarithmic d $\Gamma_{\rm cusp}^{x} \stackrel{i\phi}{(\phi, \lambda, N)^{x \to 0}} \lim_{X \to 0} \Gamma_{\rm cusp} \stackrel{=}{\to} \stackrel{=}{\to} \stackrel{=}{\to} \stackrel{Kplong of }{\to} \stackrel{Kplong of }{\to} \stackrel{=}{\to} \stackrel{=}{\to} \stackrel{=}{\to} \stackrel{Kplong of }{\to} \stackrel{=}{\to} \stackrel{=}$
- N=4 SYM susy/non-susy Wilsom to be not the form

 $\xi = \frac{\cos \theta - \cos \phi}{i \sin \phi} \qquad \qquad \theta = \frac{\pi}{2} \longrightarrow \qquad \xi = \frac{1 + x^2}{1 - x^2} \qquad \langle W \rangle \sim e^{-\Gamma_{\text{cusp}}(\phi, \lambda) \log \frac{L}{\tilde{\epsilon}}} \\ \text{where } L \text{ is an IR cutoff and } \tilde{\epsilon} \text{ a UV cutoff. One can also that now } \varphi \text{ is a boost angle in Lorentzian signature.}$

Beautiful answers

- Observation: constants in N=4 SYM anomalous dimensions have uniform 'transcendentality' [Kotikov, Lipativ, Velizhanin]
- generalize: pure functions of uniform weight (UT)
- suggests iterative differential structure
- what about QCD?

ref. [JMH, PRL 110 (2013)] suggests QCD integrals can also be chosen UT

do physical results look nice when expressed in a good basis?

Perturbative results in N=4 SYM

• I loop $A^{(1)}(\phi) = -\xi \log x$

• 2 loops

[Makeenko, Oleson, Semenoff (2006)] [Drukker, Forini (2012)]

$$-\xi^{2} \left[\zeta_{3} + \zeta_{2} \log x + \frac{1}{3} \log^{3} x + \log x \operatorname{Li}_{2}(x^{2}) - \operatorname{Li}_{3}(x^{2}) \right]$$

[JMH, Huber (2013)]

bosonic Wilson loop in N=4 SYM, 2 loops

 $A^{(2)}(\phi) = \frac{1}{3}\xi \left[\pi^2 \log x + \log^3 x\right]$

$$\Gamma_{\text{cusp}}^{(2)g}(\phi) = A^{(2)}(\phi) - A^{(2)}(0) + B^{(2)}(\phi) - B^{(2)}(0), \qquad \theta = \frac{\pi}{2}$$
$$B^{(2)}(\phi) = \left[\log^2 x + \frac{1}{3}\pi^2\right] - \xi \left[\zeta_2 + \log^2 x + 2\log x \text{Li}_1(x^2) - \text{Li}_2(x^2)\right].$$

- 3 loops; ξ term at any loop order [Correa, JMH, Maldacena, Sever (2012)]
- 4 loops planar; nonplanar ξ^4 term;
- d-log algorithm for ladder integrals

A new look at two loops in QCD

• QCD result

[Korchemsky, Radyushkin (1987)] nf [Braun, Beneke, 1995] [Kidonakis (2009)]

$$\Gamma^{(1)} = C_F \left[A^{(1)}(\phi) - A^{(1)}(0) \right]$$

$$\Gamma^{(2)} = C_F C_A \left[A^{(2)}(\phi) - A^{(2)}(0) + B^{(2)}(\phi) - B^{(2)}(0) \right]$$

$$+ \left(-\frac{5}{9} C_F T_F n_f - \frac{67}{36} C_F C_A \right) \left[A^{(1)}(\phi) - A^{(1)}(0) \right]$$
[Kidonakis (2009)]

Only functions from N=4 SYM needed!

- $A^{(1)}$ uniform weight I : from susy WL
- $B^{(2)}$ uniform weight 2 : from bosonic WL
- $A^{(2)}$ uniform weight 3 : from susy WL
- what happens at 3 loops?
- why functions of uniform weight?

Why should we get pure functions?

- For Wilson line integrals, this is easy to see [JMH, Huber, JHEP 1309 (2013) 147]
 - key: 'd-log representations' first correction appear at four loops - make it obvious that result is given by pure functions $\sim \xi^4 \times I_{\text{NP,four-loop}}(x)$ - provides algorithm for computing the answer $I_{\text{NP,four-loop}}(x) = -2\zeta_2(18H_{1,1,2} + 24H_{1,1,2,1} + 18H_{1,2,1,1} + 30H_{1,1,1,1})$ $+ 48H_{1,1,1,4} + 64H_{1,1,2,3} + 64H_{1,1,3,2} + 48H_{1,2,1,3}$ $+ 48H_{1,2,2,2} + 80H_{1,1,1,1,3} + 80H_{1,1,1,2,2} + 24H_{1,1,1,3,1}$ $+ 64H_{1,1,2,1,2} + 32H_{1,1,2,1,1} + 62H_{1,1,1,1,1} + 48H_{1,2,1,1,2}$ $+ 24H_{1,2,1,2,1} + 24H_{1,2,2,1,1} + 62H_{1,1,1,1,1} + H_{1,1,1,1,1,1}$ $H_{\text{NP,four-loop}}(x) = -2\zeta_2(18H_{1,1,1,2,1,1} + 6H_{1,2,1,1,1,1} + H_{1,1,1,1,1,1,1})$
- note: implies that all functions of this family have this property! $\lim_{x \to 0} I_{\text{NP,four-loop,NP}} = -\frac{8}{315}L^7 - \frac{8}{15}L^5\zeta_2 - 16L^3\zeta_4 - 102L_{\text{see}} \stackrel{\text{his}}{3} \text{more generally: [JMH, PRL 110} (1013) \stackrel{\text{hos}}{25} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{10} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{10} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{10} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{15} \stackrel{\text{hos}}{10} \stackrel{\text{hos$

$$\lim_{t \to 0} I_{\rm NP, four-loop, NP} = -\frac{8}{315}L^7 - \frac{8}{10}L^7 - \frac{1}{10}L^2 \left[16\zeta_2\zeta_3\right]$$

Master integrals

• abelian eikonal exponentiation: need only planar integrals

- 71 master integrals $\vec{f}(x;\epsilon)$ $D = 4 2\epsilon$ $x = e^{i\phi}$
- differential equations in suitable basis $\partial_x \vec{f}(x;\epsilon) = \epsilon \left[\frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1} \right] \vec{f}(x;\epsilon)$

a, b, c constant 71x71 matrices

- boundary conditions trivially from x = 1
- solution in terms of harmonic polylogarithms

one integral: [Chetyrkin, Grozin, NP B666 (2003)]

[method: see JMH, PRL 110 (1013) 25]

[cf.V. Smirnov's talk for applications to multi-scale cases]

Example

$$f_{44} = \epsilon^4 \left[-\frac{1}{6} \pi^2 H_{0,0}(x) - \frac{2}{3} \pi^2 H_{1,0}(x) - 4H_{0,-1,0,0}(x) + 2H_{0,0,-1,0}(x) + 2H_{0,0,0}(x) - 4H_{1,0,0,0}(x) + 4\zeta_3 H_0(x) - \frac{17\pi^4}{360} \right] + \mathcal{O}(\epsilon^5)$$

- all basis integrals are pure functions of uniform weight
- numerical checks with FIESTA
- confirmed previously known `N=4 SYM` result

Calculation at three loops

(I) compute proper vertex function

(2) take into account renormalization of Lagrangian

- (3) compute vertex renormalization
- (4) extract Gamma cusp $\Gamma_{\text{cusp}} = \frac{\partial}{\partial \log \mu} \log Z$
- color structures $\Gamma_{\text{cusp}}^{(3)}: c_1 C_F C_A^2 + c_2 C_F (T_f n_f)^2 + c_3 C_F^2 T_f n_f + c_4 C_F C_A T_F n_f$

 $C_{F}(T_{F}n_{f})^{2}$ $C_{F}^{2}T_{F}n_{f}$ $C_{F}C_{A}T_{F}n_{f}$ $C_{F}C_{A}^{2}$ this talk $C_{F}C_{A}^{2}$ stay tuned!

Results
$$\Gamma_{\text{cusp}}^{(3)}: c_1 C_F C_A^2 + c_2 C_F (T_f n_f)^2 + c_3 C_F^2 T_f n_f + c_4 C_F C_A T_F n_f$$

$$c_{2} = -\frac{1}{27}A^{(1)} \qquad c_{3} = \left(\zeta_{3} - \frac{55}{48}\right)A^{(1)}$$
$$c_{4} = -\frac{5}{9}\left(A^{(2)} + B^{(2)}\right) - \frac{1}{6}\left(7\zeta_{3} + \frac{209}{36}\right)A^{(1)}$$

 $A = A(\phi) - A(0) \quad \text{Only functions from N=4 SYM needed!}$

• Checks: expected divergence structure

$$\log Z = -\frac{1}{2\epsilon} \left(\frac{\alpha_s}{\pi}\right) \Gamma^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left[\frac{\beta_0}{16\epsilon^2} \Gamma^{(1)} - \frac{1}{4\epsilon} \Gamma^{(2)}\right] + \left(\frac{\alpha_s}{\pi}\right)^3 \left[-\frac{\beta_0^2 \Gamma^{(1)}}{96\epsilon^3} + \frac{\beta_1 \Gamma^{(1)} + 4\beta_0 \Gamma^{(2)}}{96\epsilon^2} - \frac{\Gamma^{(3)}}{6\epsilon}\right] \,.$$

• Known limit $\lim_{x \to 0} \Gamma_{\text{cusp}} = -K \log x + \mathcal{O}(x^0)$

$$K^{(3)} = \frac{1}{4} C_F C_A^2 \left(\frac{245}{24} - \frac{67}{9} \zeta_2 + \frac{11}{6} \zeta_3 + \frac{11}{5} \zeta_2^2 \right) + C_F^2 n_f T_F \left(-\frac{55}{48} + \zeta_3 \right)$$
$$+ \frac{1}{2} C_F C_A n_f T_F \left(-\frac{209}{108} + \frac{10}{9} \zeta_2 - \frac{7}{3} \zeta_3 \right) + C_F n_f^2 T_F^2 \left(-\frac{1}{27} \right)$$

[Vogt (2001)] [Berger (2002)] [Moch, Vermeaseren, Vogt (2004)]

Iterative structure of loop integrals cf. [Caron-Huot, J.M.H. (2014)

- The physical result is finite as $D \rightarrow 4$
- Obtain it from a subset of finite integrals/functions?

- Note: functions appear already in `simpler` N=4 SYM calculations!
- top-down vs. bottom-up approach

Massive scattering amplitudes in N=4 SYM

Massive scattering amplitudes in N=4 SYM

 \bullet define analog of light-by-light scattering s,t,m^2

 a_2

- natural for dual conformal symmetry
- previously studied only in limits:

use mass as regulator $m^2 \ll s, t$

Regge limit $s \gg m^2, t$ related to cusp anomalous dimension

Systematic analysis for generic kinematics

[Caron-Huot, J.M.H., 2014]

[J.M.H., Naculich, Schnitzer, Spradlin]

[Schabinger]

one loop:
$$I_{1} = \frac{2}{\beta_{uv}} \left\{ 2\log^{2} \left(\frac{\beta_{uv} + \beta_{u}}{\beta_{uv} + \beta_{v}} \right) + \log \left(\frac{\beta_{uv} - \beta_{u}}{\beta_{uv} + \beta_{u}} \right) \log \left(\frac{\beta_{uv} - \beta_{v}}{\beta_{uv} + \beta_{v}} \right) - \frac{\pi^{2}}{2} \right. \\ \left. + \sum_{i=1,2} \left[2\operatorname{Li}_{2} \left(\frac{\beta_{i} - 1}{\beta_{uv} + \beta_{i}} \right) - 2\operatorname{Li}_{2} \left(-\frac{\beta_{uv} - \beta_{i}}{\beta_{i} + 1} \right) - \log^{2} \left(\frac{\beta_{i} + 1}{\beta_{uv} + \beta_{i}} \right) \right] \right\}.$$
$$u = -4m^{2}/s \quad v = -4m^{2}/t \qquad \beta_{u} = \sqrt{1 + u}, \ \beta_{v} = \sqrt{1 + v}, \ \beta_{uv} = \sqrt{1 + u + v}$$

two-loop and three-loop answer now also known.

[Alday, J.M.H., Plefka, Schuster]

Iterative structure for finite loop integrals

[Caron-Huot, J.M.H. (2014)

• block triangular matrix structure (weight grading)

• algorithm for finding this form

Discussion and outlook

• iterative structure of finite loop integrals

perfect for finite physical objects, e.g.

- similar to structure for MHV and NMHV hexagon functions in N=4 SYM cf. [Dixon, Drummond, J.M.H. (2012)

- possible application: correlation functions in CFT [cf. e.g. Sokatchev's talk]
- integrals and cross sections for light-by-like scattering in N=4 SYM

3 loops and 3 scales!

full calculation, no guesses

similar integrals appear in QCD for finite top quark mass

results for Regge trajectories

[Caron-Huot, J.M.H., to appear], [cf. Caron-Huot's talk]

• dual conformal symmetry is generalization of conservation of Laplace-Runge-Lenz-(Pauli) vector for hydrogen atom!

Conclusions

- exciting results and techniques
- some already applicable in QCD
 (e.g. uniform weight basis, Chen iterated integrals)
- more work needed for elliptic functions and generalizations
- New results:
 - 3-loop QCD cusp anomalous dimension
 - 3-loop light-by-light scattering in N=4 SYM

Thank you!