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Some features of closed string 
scattering amplitudes  	




CONSTRAINTS ON CLOSED STRING EFFECTIVE	

ACTION FROM AMPLITUDE CALCULATIONS	


Comments on relation to supergravity field theory amplitudes.	


•  FEATURES OF CLOSED STRING PERTURBATION THEORY:	


•  NON-PERTURBATIVE FEATURES - DUALITY: 	

Connects perturbative with non-perturbative effects.	


Powerful constraints imposed by SUSY, Duality, Unitarity	


Connections with quantum eleven-dimensional supergravity.	


I will consider narrowly-focused aspects of the low energy effective 	

string action obtained from closed string scattering amplitudes.	


•  CONNECTIONS WITH BEAUTIFUL MATHEMATICS: 	

        Modular Forms;  Automorphic forms for higher-rank groups;  Multi-Zeta Values; …….	
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THE LOW ENERGY EXPANSION OF STRING THEORY	


Expanding the curvature in small fluctuations of the metric around D=10 Minkowski	

space gives contributions to “classical” MULTI-GRAVITON scattering amplitudes. 	


EINSTEIN-HILBERT 	


1
α′4

∫
d10x

√
− det G e−2φ R + . . . several other supergravity fields	


•  LOWEST ORDER TERM reproduces the results of classical supergravity 	


•  Expansion in powers of  	
 α′R , α′D2 , . . .

α′ = ℓ2s
ℓs      is STRING 	

LENGTH SCALE	
 e−φ =

1
gs

STRING COUPLING 	

      CONSTANT	
SCALAR FIELD	


  - DILATON	

METRIC  – 	
Gµν

•  HIGHER ORDER TERMS:   	


 Moduli-dependent coefficient	


1
α′

∫
d10x

√
− det G F(φ, . . . ) R4 + . . .



d8R4
�

Mass dimension	


11 dimensions	

   M-theory	


  N-graviton scattering	


6	
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DISCRETE DUALITY GROUPS	


D space-time	

dimensions	
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SL(2, Z)
SL(2, Z)

SL(3, Z)⇥ SL(2, Z)

SL(5, Z)

SO(5, 5, Z)

10B 	


E6(6)(Z)

E7(7)(Z)
E8(8)(Z)

N=8 supergravity	


THE LOW ENERGY EXPANSION OF (TYPE IIB) STRING THEORY	

HIGHER DERIVATIVE CORRECTIONS to Einstein theory	


d6 R5

d4 R6

R5 d2 R5

R6

d4 R5

d2 R6

R4 d2R4 d4R4 d6R4

BPS interactions	


          -violating	

(Not present in SUGRA)	


�16

G8

U(1)



G(R)/K(R)

SCALAR FIELDS (MODULI) AND DUALITY	


Scalar fields parameterize a symmetric space 	


SUPERGRAVITY (low energy limit of string theory): 	


G(Z)\G(R)/K(R)
STRING THEORY:	


Discrete identifications of scalar fields	


groups in     series 	

 (real split forms) 	


En
(Cremmer, Julia)	


+
 +
 +  ….
g�2
s g0

s g2
s

Sum of functional integrals over Riemann surfaces	


g2h�2
s � (genus-h Riemann surface)	


Only a discrete arithmetic subgroup 	

of          is symmetry of string theory 	

           – even at tree level.  	


G(Z)DUALITY GROUP	

G(R)

STRING PERTURBATION THEORY:  Expansion around boundary of moduli space.	

e.g. in powers of                      (c.f. FEYNMAN DIAGRAMS of quantum field theory) :	
gs = eφ ≪ 1



HOW POWERFUL ARE THE CONSTRAINTS IMPOSED BY	

SUSY,  DUALITY AND UNITARITY ??	


The aim is to investigate the exact moduli dependence of low lying terms in the 	

low energy expansion.	


Duality relates different regions of moduli space –	

connects perturbative and non-perturbative features in a highly nontrivial manner.	




FOUR-GRAVITON SCATTERING IN TYPE II STRING THEORY	
e.g.	


(non-analytic pieces are essential, but will be ignored here)	


TO WHAT EXTENT CAN WE DETERMINE THESE COEFFICIENTS?	


BOUNDARY DATA:  STRING PERTURBATION THEORY	


inverse string coupling constant	


Ω = Ω1 + iΩ2Type IIA:	
 Ω = g−1
A = e−φA Type IIB:	


For now focus on the ten-dimensional cases with one modulus: 	


SL(2, Z) duality	


Ω2 = g−1
B = e−φB

moduli	


Linearized curvature 	
 ⇠ kµk⌫⇣⇢�R

AD(s, t, u;µD) = R4 TD(s, t, u; µD)

Symmetric function of Mandelstam invariants          (with                     ).	
s, t, u s + t + u = 0
Has an expansion in power series of                             and                             .	
�2 = s2 + t2 + u2 �3 = s3 + t3 + u3

⇠ s2p+3q + . . .

Coefficients are duality invariant functions of 	

scalar fields (moduli, or coupling constants).	


TD(s, t, u; µD) =
∑

p,q

E(D)
(p,q)(µD)σp

2σq
3



g = e�coupling	


TREE-LEVEL: (VIRASORO AMPLITUDE)	


dilaton	

Polarisation	

    tensor	


=
3
�3

+ 2�(3)��3 + �(5)��5 �2 +
2�(3)2

3
��6 �3 +

�(7)
2

��7 �2
2

+
2�(3)�(5)

3
��8 �2�3 +

�(9)
4

��8 �3
2 +

2
27

(2�(3)3 + �(9))��9 �2
3 + . . .

Tree-level SUPERGRAVITY	


�2 = s2 + t2 + u2

�3 = s3 + t3 + u3 = 3stu

R4 d4R4 d6R4

d10R4

d12R4

d8R4

skR4 � d2kR4

INFINITE SERIES of             terms.  Coefficients are powers of    values 	

with rational coefficients – as in loop amplitudes in quantum field theory	


d2kR4 ⇣

A(4)
0 (�r, kr;�) = e�2� R4 T (4)

0 (s, t, u)

T (4)
0 =

4
stu

�(1� ��s)�(1� ��t)�(1� ��u)
�(1 + ��s)�(1 + ��t)�(1 + ��u)



Integral over complex structure	


GENUS ONE	


These coefficients look analogous to the tree-level coefficients:	


 WHAT IS THE CONNECTION BETWEEN THEM??	


Low energy expansion - integrate powers of the genus-one Green function over the torus 	

and over the modulus of the torus – difficult! 	


Genus-one	

lattice factor 	

for d-torus;	

moduli	
 ρd

A(4)
1 (ϵr, kr;φ, ρd) =

π

16
R4

∫

M1

|dτ |2

(Im τ)2
B1(s, t, u; τ)Γd,d,1(ρd; τ)

(MBG,  Russo,  Vanhove)	
A(4)
1 an =

(
π

3
+ 0 σ2 +

πζ(3)
9

σ3 + . . .

)
R4e.g	
 d = 0 , D = 10

moduli	
 ∈ SO(d, d)/(SO(d) × SO(d))

B1(s, t, u; τ) =
∫

Σ4

∏i=4
i=1 d2z

(Im τ)4
exp

⎛

⎝−α′

2

∑

i<j

ki · kj G(zi, zj)

⎞

⎠



α′Expand in powers of      :	


GENUS TWO :	


B2(s, t, u;Ω) =
∫

Σ4

|YS |2

(detY )2
exp

⎧
⎨

⎩−α′

2

∑

i<j

ki · kj G(zi, zj)

⎫
⎬

⎭

An invariant of genus-h	

 Riemann surface defined 	

by Zhang and Kawazumi.	


D’Hoker, MBG	
Bi-form (projection operator)	

contains	
 |ω(x)ω(y) |2

ϕ(Σ) = −1
8

∫

Σ2
P (x, y)G(x, y)

d6 R4
d4 R4

A(4)
2 (ϵr, kr;φ, ρd) =

π

64
e2φ R4

∫

M2

dµ2 B2(s, t, u; Ω)Γd,d,2(ρd;Ω)

Genus-two Green function	


| �(z1) �(z2) �(z3) �(z4) |2Sp(4, Z)-invariant measure proportional to                                           and 	
O(s2)
ω(z)where         is holomorphic abelian differential	


D’Hoker, Gutperle, Phong	


 Lowest-order term 	
O(s2)

A(4)
2 = g2

s
4
3
ζ(4) σ2R

4

Proportional to volume of 	

genus-two moduli space	


(
O(s3) Next term 	


+ 64
∫

M2

dµ2 ϕ σ3 R4 + . . .
)



 Recently evaluated.     	
 D’Hoker, MBG, Pioline, R.Russo 

(
A(4)

2 = g2
s

4
3
ζ(4) σ2R

4 +4ζ(4)σ3R
4 + . . .

)

d6 R4d4 R4

Result:	


 Strikingly, it turns out that :	
 (∆
Sp(4) − 5) ϕ = 0

So integrate by parts: 	

∫

M2

dµ2 ϕ =
1
5

∫

M2

dµ2 ∆
Sp(4) ϕ

Integral picks up non-zero boundary contribution from the limit in which the 	

genus-two surface degenerates into the union of two genus one surfaces 	


Using expression for 	
ϕ ϕ



GENUS THREE AND HIGHER	


•  Problems with singularities in the pure spinor formalism at genus > 4 	

    (for four-graviton amplitude) remain to be resolved.	


•  New issues for genus > 4 (for four-graviton amplitude) in Ramond-Neveu-
Schwarz formalism (integration over super-Riemann surfaces).  Superspace is 
non-projected so cannot express the amplitude as an integral over bosonic 
moduli.  (Donagi, Witten)	


BUT!  There may be a spurious factor of 3	


Alternative to supermoduli 	

space of RNS formalism  	


Technical difficulties analysing 3-loops.   Recently, Gomez and Mafra constructed the 
genus-three amplitude using Berkovits’ PURE SPINOR FORMALISM.  They evaluated the 
leading low energy behaviour,  giving,	


A3−loop
10 = g4

(
4
27

ζ(6) σ3 + . . .

)
R4

d6 R4



EXTENSIONS TO N-PARTICLE AMPLITUDES	


    Non-trivial MZV’s with odd weights arise, starting at weight 	

w = 11 ⇣(5, 3, 3) + . . .

w = 8⇣(5, 3) + . . . weight	
First case is	


•  OPEN-STRING TREES:  For            coefficients of higher derivative interactions involve 	

          (Yang-Mills)                non-trivial multi-zeta values (MZV’s)	
 (Mafra, Schlotterer, Stieberger)	


N > 4

weight, w =
�

i ni; depth = r

ζ(n1 . . . , nr) =
∑

0<k1<...<kr

r∏

l=1

k−nl
l

             component basis vector of 	

colour-ordered Yang-Mills tree amplitudes.	

(N-3)! -•  CLOSED-STRING TREE amplitudes	


           (gravity) 	


(N � 3)!⇥ (N � 3)!

Atree
N = A�

Y M Stree
�� ({sij)}) Ã�

Y M

matrix	


Very brief summary	


……………AND MUCH MORE	


(MBG, Mafra, Schlotterer)	
•  CLOSED-STRING 1-LOOP 5-POINT AMPLITUDE 	


“DOUBLING” OF YANG-MILLS THEORY TREE AMPLITUDES  	


A1�loop
5 = A�

Y M S1�loop
�� ({sij)}) Ã�

Y M

2 × 2 matrix	


Pure spinor formalism	




NON-PERTURBATIVE EXTENSION	


Duality, supersymmetry and unitarity constraints	


Focus here on the simplest nontrivial duality group	
SL(2, Z)
Type IIB in D=10 dimensions	




TYPE IIB SUPERGRAVITY	


u� : −2 , −3/2 , −1 , −1/2 , 0 , 0

Ten-dimensional supersymmetric extension of Einstein theory. 	


U(1)

Pµ , λ , Gµνρ , ψµ, gµν , F5

@µ⌦/⌦2 ⌦�
1
2

2 (Fµ⌫⇢ + i⌦2Hµ⌫⇢)

dilaton          dilatino           3-form              gravitino           metric            5-form       	


•  Fields carry          charges	
 u� :

•  Pattern of      non-conserving higher-order interactions.	
u�

•  Scalars	
 Ω = Ω1 + iΩ2 , Ω2 = e−φ = g−1
B

SL(2, Z)\SL(2, R)/U(1)span coset space                                        	


( )−1
string coupling	


•                duality symmetry     	
SL(2, Z)

Higher-derivative terms in IIB:

Ω→ aΩ+b
cΩ+d

How is            constrained by supersymmetry??

SL(2,Z) - invariant action:

Consider composite operator            :  U(1) charge u, 
dimension ∆ = 2n+ 2

∓u/2

F (u) in (Ω, Ω̄)→

cΩ̄+d
cΩ+d

u/2
F (u) in (Ω, Ω̄)

F (u) in

e.g.

P(u)2n+2

Index i labels degenerate terms

has holomorphic and antiholomorphic weights          .

S(n) = α′
n−4 

u i


d10xF (u) in (Ω, Ω̄)P(−u) i2n+2

F (u) in

R4 u = 0 , ∆ = 8;

λ16 u = −24 , ∆ = 8;

(GḠ)pR4 u = 0 , ∆ = 2p+ 8;

a, b, c, d ∈ Z ad − bc = 1



 HIGHER-DERIVATIVE INTERACTIONS 	

Higher-derivative terms in IIB:

Ω→ aΩ+b
cΩ+d

How is            constrained by supersymmetry??

SL(2,Z) - invariant action:

Consider composite operator            :  U(1) charge u, 
dimension ∆ = 2n+ 2

∓u/2

F (u) in (Ω, Ω̄)→

cΩ̄+d
cΩ+d

u/2
F (u) in (Ω, Ω̄)

F (u) in

e.g.

P(u)2n+2

Index i labels degenerate terms

has holomorphic and antiholomorphic weights          .

S(n) = α′
n−4 

u i


d10xF (u) in (Ω, Ω̄)P(−u) i2n+2

F (u) in

R4 u = 0 , ∆ = 8;

λ16 u = −24 , ∆ = 8;

(GḠ)pR4 u = 0 , ∆ = 2p+ 8;

Higher-derivative terms in IIB:

Ω→ aΩ+b
cΩ+d

How is            constrained by supersymmetry??

SL(2,Z) - invariant action:

Consider composite operator            :  U(1) charge u, 
dimension ∆ = 2n+ 2

∓u/2

F (u) in (Ω, Ω̄)→

cΩ̄+d
cΩ+d

u/2
F (u) in (Ω, Ω̄)

F (u) in

e.g.

P(u)2n+2

Index i labels degenerate terms

has holomorphic and antiholomorphic weights          .

S(n) = α′
n−4 

u i


d10xF (u) in (Ω, Ω̄)P(−u) i2n+2

F (u) in

R4 u = 0 , ∆ = 8;

λ16 u = −24 , ∆ = 8;

(GḠ)pR4 u = 0 , ∆ = 2p+ 8;

P(u)
2n+2 U(1) u ∆ = 2n + 2Consider a composite operator             of           charge    , dimension                    . 	


SL(2, Z)-invariant action (Einstein frame)	


S(n) = ℓ2n−8
s

∑

u,i

∫
d10x eF (u) i

n (Ω)P(−u) i
2n+2

F (u) i
n ±u/2has holomorphic and anti-holomorphic weights	


iIndex   labels degeneracy of the term.	


HOW IS          CONSTRAINED BY SUPERSYMMETRY?	
F (u) i
n

e.g.	
 R4 : u = 0 , ∆ = 8 ; λ16 : u = −24 , ∆ = 8 ;

(GḠ)p R4 : u = 0 , ∆ = 2p + 8



CONSEQUENCES OF SUPERSYMMETRY	


Invariance 	

of action	


Difficult to implement in detail in absence of off-shell superspace formalism.	


i.e,	


Consequences of supersymmetry

[δ , δ]Φ = [δ(0) + α′
3
δ(3) + . . . , δ(0) + α′

3
δ(3) + . . . ]Φ

Invariance 
of action

On-shell
algebra

= a · P Φ + Φ eqn. of motion + δgaugeΦ

Difficult to implement in detail in absence of off-shell 
superspace formalism.   Modified torsion constraints.

Strongly constrains the form of

i.e,

∞

m=0

δ(m)
∞

n=0

S(n) = 0

(δ(0) + α′
3
δ(3) + . . . )(S(0) + α′

3
S(3) + . . . ) = 0

F (u)n , δ(m)

Consider general form of component supersymmetry.

Consequences of supersymmetry

[δ , δ]Φ = [δ(0) + α′
3
δ(3) + . . . , δ(0) + α′

3
δ(3) + . . . ]Φ

Invariance 
of action

On-shell
algebra

= a · P Φ + Φ eqn. of motion + δgaugeΦ

Difficult to implement in detail in absence of off-shell 
superspace formalism.   Modified torsion constraints.

Strongly constrains the form of

i.e,

∞

m=0

δ(m)
∞

n=0

S(n) = 0

(δ(0) + α′
3
δ(3) + . . . )(S(0) + α′

3
S(3) + . . . ) = 0

F (u)n , δ(m)

Consider general form of component supersymmetry.

Strongly constrains the form of	
 S(n) δ(n)

Leads to expression of general form  :    (suppressing superscripts and  coefficients)	


	


Classical supersymmetry :

Classical IIB supersymmetry transformations

Compensating U(1) transform. 
δ(0)Ω = 2λǫΩ2

where         is any field with U(1) charge u and Φ(u)
δ(0)Φ(u) = δ̂(0)Φ(u) + δ̃

(0)
u Φ(u)

δ̃
(0)
u Φ(u) = u (λǫ− λ∗ǫ∗)Φ(u)

δ(0)S(n) = α′
n−4


d10x



u


F (u) in δ̂(0)


P(−u) i2n+2



−2iDF (u) in λǫP(−u) i2n+2 + 2iD̄ F
(u) i
n λ∗ǫ∗ P(−u) i2n+2



where is modular covariant derivative on charge u.D = iΩ2 ∂
∂Ω −

u
4

Df (u) = f (u+1)
Modular covariant derivative	


D Fn = Fn + Fm1 Fn�m1 + Fm1 Fm2 Fn�m2�m1

+ · · · + Fm1 Fm2 . . . Fn�m1�···�mn�1 + . . .

Consequences of supersymmetry

[δ , δ]Φ = [δ(0) + α′
3
δ(3) + . . . , δ(0) + α′

3
δ(3) + . . . ]Φ

Invariance 
of action

On-shell
algebra

= a · P Φ + Φ eqn. of motion + δgaugeΦ

Difficult to implement in detail in absence of off-shell 
superspace formalism.   Modified torsion constraints.

Strongly constrains the form of

i.e,

∞

m=0

δ(m)
∞

n=0

S(n) = 0

(δ(0) + α′
3
δ(3) + . . . )(S(0) + α′

3
S(3) + . . . ) = 0

F (u)n , δ(m)

Consider general form of component supersymmetry.

On-shell	

algebra	




Solution is NON-HOLOMORPHIC EISENSTEIN SERIES	


(a)  Simple examples non-degenerate examples                                     :	
�MRHI\ i SR F (u) i
n MW�VIHYRHERX

 i)            preserving:   e.g.	
 d4 R4U(1) R4

DF (u)
n = cu F (u+2)

n D̄ F (u+2)
n = c̄u+2 F (u+2)

n

Implies  LAPLACE EIGENVALUE EQUATION :	


D̄D F (u)
n = cuc̄u+2 F (u)

n

∆Ω = 4Ω2
2 ∂Ω ∂Ω̄∆Ω F (0)

n = s(s − 1)F (0)
n

where	
u = 0 , c0 c̄2 = s(s − 1) n = 2s = 1
2∆ − 1

Parabolic subgroup	


Poincare series –	

manifest 	


Es(Ω) =
∑

gcd(p,q)=1

Ωs
2

|p + qΩ|2s
=

∑

γ∈Γ∞\SL(2,Z)

(Im γΩ)s

SL(2, Z)



NON-HOLOMORPHIC EISENSTEIN SERIES	


•               - INVARIANT  (generalises to higher rank duality groups)	
SL(2, Z)

F0 = Ωs
2 +

√
πΓ(s − 1

2 )ζ(2s − 1)
ζ(2s)Γ(s)

Ω1−s
2

•  ZERO MODE             - TWO POWER-BEHAVED TERMS (perturbative) :  	
k = 0

•  NON-ZERO MODES            - D-INSTANTON SUM	
k > 0

Fk =
2�s

�(2s)�(s)
|k|s� 1

2 �2s�1(k) �
1
2
2 Ks� 1

2
(2�|k|�2)

K-Bessel function	

Ks(y) � e�y y�1/2

y >> 1

�n(k) =
X

p|k

pn

divisor sum	


� �s� 1
2

�(2s)�(s)
|k|s�1 �2s�1(k) e�2�|k|�2

•  Solution of LAPLACE EIGENVALUE EQN. (consequence of maximal supersymmetry)	


�� = �2
2(�

2
�1

+ �2
�2

)�� Es(�) = s(s � 1) Es(�)

•  FOURIER SERIES	
 Es(Ω) = 2
∞∑

k=0

Fk(Ω2) cos(2πikΩ1)



ILLUSTRATED BY FOUR-GRAVITON AMPLITUDE                                  (Einstein frame)	
E(D)
(p,q)(Ω)σp

2σq
3 R4

TREE-LEVEL	
 D-INSTANTONS	


2ζ(2s) Es(Ω) ∼ 2ζ(2s) Ωs
2+(. . . ) 2ζ(2s−1) Ω1−s

2 +
∞∑

k=1

µ(k, s)
(
e2πikΩ + c.c.

) (
1 + O(Ω−1

2

)

GENUS-	
(s − 1/2)

NON-RENORMALIZATION AT HIGHER LOOPS	


D=10 examples (in string frame):	


TREE + 1-LOOP	


∆ = 8 , s = 3
21/2-BPS

Ω
1
2
2 E(0,0) R4 E(0,0) = 2ζ(3)E 3

2
(Ω)

TREE + 2-LOOP	


∆ = 12 , s = 5
21/4-BPS

Ω
3
2
2 E(1,0) d4R4 E(1,0) = ζ(5)E 5

2
(Ω)

examples :	


Modular covariant derivative	


F (u)
3 = Du F (0)

3 = Du E 3
2

F (8)
3 G8 , F (24)

3 λ16

ii)           - violating processes at order          :	
U(1) n = 3



A NOTE ON THE                     CORRESPONDENCE.                     	
AdS5 × S5

α′2

L4
=

1
g2

Y MN
≡ 1

λ

AdS/CFT 	

dictionary	


Ω2 ≡ e−ϕ =
4π

g2
Y M

YM coupling	


‘t Hooft coupling	


Inverse string	

    coupling	


AdS length scale	


Type IIB STRING THEORY in       	

D=5 Anti de-Sitter space       	


 ⇔ 	
 D=4 SU(N) YANG-MILLS 	

 on boundary of AdS5	


= 2ζ(3) N2 λ− 3
2 + 4ζ(2) N0 λ

1
2 + 2

√
πN

∑

k

|k|σ2(k)e−2π|k|/g2
Y M

+2πikΩ1

1 ≪ λ ≪ N

N → ∞

PLANAR contribution   	
 measure obtained from              Yang-Mills 	

              k-INSTANTON as 	


SU(N)
N → ∞

(Dorey, Hollowood, Khoze)	

λ ≫ 1

Effective       string action	
R4 1
α′

∫
d10x

√
− det G Ω− 1

2
2 E 3

2
(Ω) R4

Coefficient of gauge invariant Yang-Mills correlator, e.g.	
 ⟨O(x1) . . . O(x4)⟩

N
1
2

⎛

⎝2ζ(3)g−3/2
s + 4ζ(2)g

1
2
s + 2

√
π

∑

k ̸=0

|k|σ2(k)e−2π|k|/gs+2πikΩ1

⎞

⎠

 ⇔ 	




Detailed structure not yet derived in detail from supersymmetry but is based on	

duality with M-theory : 	


iii) HIGHER ORDER  	

(F (0)

6 (Ω) ≡ E(0,1)(Ω))Next order  	


(∆ = 14 , n = 6 , u = 0)1/8-BPS

Ω−1
2 F (0)

6 (Ω) σ3 R4

d6 R4

R4
The square of the	

coefficient of  	


Expand integrand to next order in          ,  leads to an integral that satisfies	
s, t, u

INHOMOGENEOUS LAPLACE EQUATION: 	
 (MBG,  Vanhove)	


(∆Ω − 12) F (0)
6 (Ω) = −

(
2ζ(3) E 3

2
(Ω)

)2

 11-dimensional supergravity on two-torus = Type IIB on a circle	


The inhomogeneous Laplace equation was obtained by evaluation of two-loop 	

    11-dimensional supergravity compactified on two-torus.	




SOLUTION OF THE INHOMOGENEOUS LAPLACE EQUATION	

MBG, Miller, Vanhove	


(∆Ω − 12) f(Ω) = −
(
2ζ(3) E 3

2
(Ω)

)2

FOURIER SERIES:	
 f(Ω) =
∑

n

f̂n(Ω2) e2πinΩ1 .

BOUNDARY CONDITIONS :  	
 f̂n(Ω2) = O(Ω3
2) , Ω2 → ∞

Weak coupling (TREE LEVEL) power behaviour	


Weak coupling	


f̂n(Ω2) = O(Ω−2
2 ) , Ω2 → 0

SUBTLE consequence of                invariance	
SL(2, Z)

Strong coupling	


These b.c.’s determine a unique solution by fixing the coefficient of the solution of the 	

homogeneous equation,                                ,   for each value of   .  	
αn

√
y K 7

2
(2π|n|y) R

EQUATION FOR FOURIER MODES :	
 Fourier mode 	

   of source	
(Ω2

2 ∂2
Ω2

− 12 − 4π2n2Ω2
2) f̂(Ω2) = Sn(Ω2)



GENUS	
 0 1 2 3    Non-Perturbative	


•  ALL PERTURBATIVE CONTRIBUTIONS AGREE WITH EXPLICIT CALCULATIONS	

(although GENUS 3 string calculation needs RE-CHECKING)	


ZERO MODE - four power-behaved terms :	


f̂0(Ω2) =
2 ζ(3)2

3
Ω3

2 +
4 ζ(2) ζ(3)

3
Ω2 +

4 ζ(4)
Ω2

+
4 ζ(6)

27
Ω−3

2 +
∑

m̸=0

f̂m
0 (Ω2)

∼ 945 ζ(3)2 ζ(5)
4 π5

1
Ω2

2

+ O(log Ω2)Ω2 → 0 cancellation of          term by	

infinite number of  “instantons”. 	


Ω−3
2

� e�4�|m|�2
��2(|m|)2

|m|5 �2
2

+ O(��3
2 )

�
�2 � �

•  NON-PERTURBATIVE TERMS	
 2 X 2 matrix of polynomial coefficients	


�fm
0 (�2)=

32 � �2(|m|)2

315 |m|3
�

i,j=0,1

ri,j(�|m|�2) Ki(2�|m|�2) Kj(2�|m|�2)

Bilinear in 	
K0 , K1

� e�4�m�2

Behaviour suggestive of charge-zero INSTANTON / ANTI-INSTANTON pairs.	




NON-ZERO MODES:	


�fn(�2) = �n

�
�2 K 7

2
(2�|n|�2) +

�

n1+n2 = n
(n1,n2) �= (0,0)

M ij
n1,n2

(�|n|�2) Ki(2�|n1|�2) Kj(2�|n2|�2)

2 X 2 matrix of polynomial coefficients	


i.j = 0, 1

'SRWXERX �n HIXIVQMRIH�F]�GERGIPPEXMSR
SJ�XLI ��3

2 XIVQ�MR�XLI �2 � 0 PMQMX� � e�2�(|n1|+|n2|)�2
�2 >> 1

|n1| + |n2| < |n|“INSTANTON / ANTI-INSTANTON” pair if 	
 (sign n1 = �sign n2)

charge < action	


(sign n1 = sign n2)|n1| + |n2| = |n| = |n1 + n2|BPS INSTANTON PAIR if 	

charge = action	


�fn(�2) � e�2�|n|�2

�
8

�2(|n|)
|n|5/2

�(3) �1/2
2 + O(1)

�
+ c e�2�(|n|+1)�2(. . . ) + . . .

�2 >> 1



•  Solution can be expressed as a Poincare series: 	


where 	
 Φ(Ω) = a0(Ω2) +
∑

n ̸=0

an(Ω2) e2πinΩ1

f(Ω) =
∑

γ ∈Γ∞\SL(2,Z)

Φ(γΩ)

(            is linear in              )	
an(Ω2) K0 , K1

•  D-instantons contribute with distinctive leading powers of       (      ) – origin 	

     not understood in detail.	


Ω2 g−1

(b) Higher order in     (non-trivial degeneracy)	
α′

Laplace eigenvalue  equation generalizes to inhomogeneous simultaneous 	

equations : 	


Lower order source coefficients	


(δij D̄D − λ(u)
n;ij)F

(u) j
n =

∑

j,k,m,v

F (v) j
m F (u−v) k

n−m + . . .

[Some examples  (e.g. Basu + Sethi; MBG, Russo,  Vanhove).]	




Automorphic functions for higher-rank groups ;	


Langlands Eisenstein series’ associated with	

maximal parabolic subgroups of G.	


HIGHER-RANK DUALITY GROUPS	

MBG, Miller, Russo, Vanhove	


Pioline	


•  Encodes perturbative string results in compactified theories. 	


Duality Group	


6	


7	


space-time	

dimension	


9	


8 	


5	


4	


3	


SL(2, Z)
SL(2, Z)

SL(3, Z)⇥ SL(2, Z)

SL(5, Z)

SO(5, 5, Z)

10B 	


E6(6)(Z)

E7(7)(Z)
E8(8)(Z)

G(Z)

10A 	
1

•  D-INSTANTONS fill out expected fractional BPS orbits – minimal, next-to-minimal, …. 	


EG
3
2 ,0,...,0 R4 EG

5
2 ,0,...,0 D4R4

EG
(0,1) D6R4 Satisfies inhomogeneous 	


Laplace equation for G	


EG
s1,...,sr

rank r	

labels associated with nodes of Dynkin diagram	


s1, . . . , sr ∈ C

Compactify M-theory on a d-torus to D=11-d dimensions 	




S-DUALITY OF N-PARTICLE AMPLITUDES	

are zero at all loops	
D2R4 , R5

E(0,1)(Ω) (D6R4 + D4R5 + D2R6)

E 5
2
(�) (D4R4 + D2R5 + R6)

Non-BPS.  Only partially understood.  	

Is there a 5-loop contribution? 	


E(2,0)(Ω) (D8R4 + D6R5 + D4R6)

Detailed agreement at tree and 	

one loop in any dimension.	


 	

We know from perturbative information that there must be at least one new modular 	

function for                        that starts at one loop and has no tree contribution.	

	


D6R5 , D4R6 , . . .

MBG, Mafra, Schlotterer	


Vanish at one loop in D=10 	


Modular coefficient            unknown but (rather impressively) the ratio 	

of tree to one loop is the same in each case for terms with the same	

kinematic structure.  	


E(2,0)

BUT 	

there must be at least one  new coefficient function for                               that starts 	

at one loop and has no tree contribution.	

	


D6R5 , D4R6 , . . .



•  To what extent do string theory dualities constrain the structure of 	

     perturbative supergravity? – ultraviolet divergences??	


•  Some results on higher derivative interactions for N<8 SUSY	
 e.g. Tourquine, Vanhove	


Need more information regarding higher orders in the low energy expansion.	


   String theory is free of  UV divergences,  How do such divergences arise in the 	

   field theory limit?   	


COMMENTS:	


DOES IT HAVE A 5-LOOP CONTRIBUTION? (Is it protected from higher loop corrections)?	


What is the structure of                      ?	
E(2,0)(Ω) D8R4


