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Calculating scattering amplitudes efficiently  

Remarkable efficiency of unitarity-based methods 
for calculation of amplitudes in various qft’s and various dimensions 
(non-abelian gauge theories, Chern-Simons theories, supergravity). 

[from a L. Dixon talk]

[Bern, Dixon, Dunbar, Kosower, 1994]



Calculating scattering amplitudes efficiently  

Remarkable efficiency of unitarity-based methods 
for calculation of amplitudes in various qft’s and various dimensions 
(non-abelian gauge theories, Chern-Simons theories, supergravity). 

[Bern, Dixon, Dunbar, Kosower, 1994]

Goal is apply  to evaluation amplitudes of two-dimensional cases of interest, where:
     

1. Feynman diagram calculations are problematic (divergencies do not cancel).
    

 2. Need of perturbative checks for integrability-based proposal.
     
 3. Need of alternative strategies to get (phases of) S-matrices.



   Natural set for the phenomenon of integrability, strong selection rules at work.

1+1 dimensional world: simpler

Highly constrained scattering kinematics,  no phase space for 2->2 amplitudes. 

Cut-constructibility might be expected!

Existence of local higher rank conserved charges

i)  No particle production or annihilation

ii) Conservation of set of momenta

n
in

= n
out

= n

{pin
1

, . . . , pinn } = {pout
1

, . . . , poutn }

iii) Factorization of              amplitudes into n ! n
products of              amplitudes2 ! 2

[Zamolodchikov & Zamolodchikov, 79]

= = 

Yang - Baxter



1+1 dimensional world: non-trivial 

Highly constrained scattering kinematics

> allows for existence of momentum configurations potentially singular



1+1 dimensional world: non-trivial 

Highly constrained scattering kinematics

   AdS/CFT- related models (string world-sheet) are non-trivial

> power-counting non-renormalizable
> non-relativistic

> non-supersymmetric as world-sheet theories
> massive
> integrability phenomenon: solid fact only classically!

> coupling constant subject to finite renormalization 
   (for target space with less-then-maximal susy)

> UV divergencies appear in standard calculations of 4-point amplitudes
> no clear symmetry-preserving regularization scheme

quantum checks are only

[McLoughlin, Roiban, unpublished]

[Bena, Polchinski, Roiban 2003]

>> in pure spinor language

> allows for existence of momentum configurations potentially singular

>> in simplifying limits                             

 infinite set of nonlocal charges (Z4 automorphism  of the coset action)



String worldsheet scattering

Non-trivial interactions due to highly non trivial background.
Worldsheet amplitudes  (              , free strings), scattering of the (2d) lagrangean excitations.N ! 1

flat space AdS5xS5 with RR fluxes



String worldsheet scattering

Non-trivial interactions due to highly non trivial background.
Worldsheet amplitudes  (              , free strings), scattering of the (2d) lagrangean excitations.N ! 1

Work on a gauge-fixed sigma model (uniform light-cone gauge)

Hws =

Z
d�Hws = �

Z
d� p� ⌘ E � J

embedded in
AdS5 ⇥ S5

Because of RR-background need a GS formulation

[Arutyunov, Frolov, 
Plefka, Zamaklar 2006]
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2⇡p
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loop counting
parameter



String worldsheet scattering

Non-trivial interactions due to highly non trivial background.
Worldsheet amplitudes  (              , free strings), scattering of the (2d) lagrangean excitations.N ! 1

Work on a gauge-fixed sigma model (uniform light-cone gauge)

Hws =

Z
d�Hws = �

Z
d� p� ⌘ E � J

embedded in
AdS5 ⇥ S5

Because of RR-background need a GS formulation

Gauge-fixed lagrangean  involves rescaling �⇡ J+p
�

< � <
⇡ J+p

�

Decompactification limit                    and large tension expansion  J+p
�
! 1

[Arutyunov, Frolov, 
Plefka, Zamaklar 2006]

sensible definition of a perturbative worldsheet S-matrix

ĝ =
2⇡p
�

loop counting
parameter

ĝ ! 1



This S-matrix is the perturbative expansion of the exact AdS5/CFT4 
S-matrix aka “spin chain S-matrix” :     the rhs of asymptotic Bethe eqs

AdS/CFT (internal) S-matrix I

(not spacetime scattering! however see Matthias talk)

Describe the exact asymptotic spectrum of anomalous dimensions of local 
composite operators and energies of their dual string configurations.

 

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]



This S-matrix is the perturbative expansion of the exact AdS5/CFT4 
S-matrix aka “spin chain S-matrix” :     the rhs of asymptotic Bethe eqs

AdS/CFT (internal) S-matrix I

...together with being the way to the first ever exact solution 
of a four-dimensional interacting gauge theory.

 

Back at the exact gauge-fixed lagrangean: hard to quantize, 
arbitrary order interactions, standard CFT methods do not help.

Integrability: most powerful tool to obtain string spectrum 
at finite coupling on non-trivial backgrounds.

(see also [2013: McEwan, Roiban] for very interesting lattice-discretization of GS string). 
 

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]



  derive exact dispersion relation

Assuming integrability (consistency with Yang-Baxter equation) and using 
global symmetries one can:

  derive two-particle S-matrix entering the Bethe equations

AdS/CFT (internal) S-matrix II

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]
S12 = S0 S12

 Various beautiful “upgrades” of Bethe equations exist: won’t play a role here.

[Beisert 2006]✏ =

r
1 + f(�) sin2
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Assuming integrability (consistency with Yang-Baxter equation) and using 
global symmetries one can:

  derive two-particle S-matrix entering the Bethe equations

AdS/CFT (internal) S-matrix II

S12 = S0 S12

   up to one (/more) scalar factor(/s), fixed with additional 
   constraints  like “crossing symmetry” and semiclassical string data.

Hardest thing to compute, crucial for the spectrum.

   Cusp anomaly: impressive calculation 
   establishing correctness of result for AdS5xS5.

✏ =

r
1 +

�

⇡2
sin2

p

2
  derive exact dispersion relation

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]

[Beisert 2006]

[Janik 2005]

[Beisert Eden Staudacher 2006]
[Bern Czakon Dixon Kosower 

Smirnov 2006]



Assuming integrability (consistency with Yang-Baxter equation) and using 
global symmetries one can:

  derive two-particle S-matrix entering the Bethe equations

AdS/CFT (internal) S-matrix II

S12 = S0 S12

   up to one (/more) scalar factor(/s), fixed with additional 
   constraints  like “crossing symmetry” and semiclassical string data.

Hardest thing to compute, crucial for the spectrum.

   Cusp anomaly: impressive calculation 
   establishing correctness of result for AdS5xS5.

Necessity for new strategies in case of models relevant in AdS3/CFT2
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  derive exact dispersion relation

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]
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Motivation

 Provide tests of quantum integrability for certain string backgrounds.  

Provide 2d scattering perturbation theory with efficient tools

  Extract information about the overall factors of scattering matrix.
  Expecially for worldsheet S-matrices for AdS3 backgrounds
  where solutions to crossing-like equations are difficult to determine.



Motivation

Methodological: techniques never really applied in two dimensions.

 Provide tests of quantum integrability for certain string backgrounds.  

  Extract information about the overall factors of scattering matrix.
  Expecially for worldsheet S-matrices for AdS3 backgrounds
  where solutions to crossing-like equations are difficult to determine.

Initiate the use of unitarity-based methods for perturbative S-matrix 
in massive two-dimensional field theories.

Construct one-loop 2 → 2 scattering amplitude with standard unitarity

directly from the corresponding on-shell tree-level amplitudes.

Apply to off-shell quantities

Provide 2d scattering perturbation theory with efficient tools



1. Method of unitarity cuts in d=2, general formula

2. Applications (mainly string worldsheet) and features

3. Concluding remarks

Outline



Two-dimensional scattering

Two-body scattering process of a theory invariant under space and time translations

described via the four-point amplitude

h�P (p3)�
Q(p4) |S|�M (p1)�N (p2)i = (2⇡)2�(d)(p1 + p2 � p3 � p4)APQ

MN (p1, p2, p3, p4)

For d=2 and in the single mass case,  scattering 2 → 2 is simple.

The Jacobian                                                                   depends on dispersion relation. 

Particles either preserve or exchange their momenta

J(p1, p2) = 1/(@✏p1/@p1 � @✏p2/@p2)



Two-dimensional scattering

Two-body scattering process of a theory invariant under space and time translations

described via the four-point amplitude

h�P (p3)�
Q(p4) |S|�M (p1)�N (p2)i = (2⇡)2�(d)(p1 + p2 � p3 � p4)APQ

MN (p1, p2, p3, p4)

For d=2 and in the single mass case,  scattering 2 → 2 is simple.

The Jacobian                                                                   depends on dispersion relation. 

Particles either preserve or exchange their momenta

J(p1, p2) = 1/(@✏p1/@p1 � @✏p2/@p2)

p1 > p2

S-matrix element defined by 

Dispersion relation for asymptotic states (equal masses =1):                      ✏2i = 1 + p2i

SPQ
MN (p1, p2) ⌘

J(p1, p2)

4✏1✏2
APQ

MN (p1, p2, p1, p2)

Fix ordering of incoming states               .



One-loop result from unitarity techniques: contributions from three cut-diagrams

Example: s-cut contribution.
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Figure 1: Diagrams representing s-, t- and u-channel cuts contributing to the four-point
one-loop amplitude.

cut-constructible piece of the amplitude
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where we have introduced the bubble integral

I(p) =

Z
d2q

(2⇡)2
1

(q2 � 1 + i✏)((q � p)2 � 1 + i✏)
(2.12)

The structure of (2.11) shows the di↵erence between the s-channel, for which there are
two solutions of the �-function constraints in (2.8) (for positive energies), and the t- and
u-channels, for which there is only one.
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s-channel t-channel u-channel

Scattering in d=2: unitarity cuts (1)

i⇡�+(l21 � 1) �! 1

l21 � 1
Glue tree-amplitudes and uplift:

A(1)PQ
MN (p1, p2, p3, p4)|s�cut =

1

2
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d2l1
(2⇡)2

Z
d2l2
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+(l22 � 1)

⇥A(0)RS
MN (p1, p2, l1, l2)A(0)PQ

SR (l2, l1, p3, p4)



Use 2-momentum conservation at the first vertex 

Scattering in d=2: unitarity cuts (2)
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i⇡�+(l21 � 1) �! 1

l21 � 1
Restore loop momentum off-shell 

Use the zeroes of    - functions in the         � eA(0)
f(x) �(x) = f(0) �(x)           (like                                     )
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Use 2-momentum conservation at the first vertex 

Scattering in d=2: unitarity cuts (2)
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i⇡�+(l21 � 1) �! 1

l21 � 1
Restore loop momentum off-shell 

Use the zeroes of    - functions in the         � eA(0)

Two-particle cuts in d=2 at one loop are maximal cuts.

(c) Develop the unitarity approach with massive particles. Di�culties with respect to the

massless case are related to point (b) above and to the fact that massive tadpoles cannot

be set to zero. Also, even in presence of supersymmetry, it has been less developed.

(d) some Feynman diagram calculations (R. Roiban, private communication) give a UV

divergent answer, and it is not clear why unitarity should give a di↵erent answer. And

if it does, how is one going to decide whether it is the right answer, given that Feynman

diagrams gave an answer that made no sense.

9 Quadrupole cuts/maximal cuts

To completely freeze the momentum, in 4d you do quadruple cuts. And then you find similar

coe�cients, just the product of tree-level things.

In 4d you can find the coe�cients of the box function by quadrupole cuts, and the coe�-

cients are just the product of tree-level, so you can write down a closed formula for any 4-point

function in 4d. The coe�cient coming with the boxes are the product of four tree-level. There

you can say that

A1�loop

4 =
X

(Atree

4 )4 I
box

(3)

where the sum is over possible boxes. Similar flavor! If you normally just do standard unitarity,

you start with 4-dimensional momentum integral, you have two delta functions which leaves

you 2 dimensions. But here, if you count you have 4 delta so that you completely localize

and there is no integral to be performed. In some sense we are saying, in the language of

generalized unitarity, that in 2d something similar happens.

We are bypassing all issues having to do with regularization. It gives the right answer for

supersymmetric and integrable theories. Certainly not for integrable theories. In general It is

very rare that people bother about calculating S-matrices by computations in 2 dimensions.

It does seem remarkable that nobody did this. However: The integrable field

theory story is actually rather subtle, because you can’t just.. If you do standard

perturbation theory, that it doesn’t actually give you the correct S-matrix. You

need to include some additional counter terms that can be understood in terms of

gauged WZW model, so doing some path integral formulation. This story is less

surprising that people spotted. But then string theory was only done recently,

than the only other theory we consider is N=2 supersymmetric Sine-Gordon (the

S-matrix was written down in 1991 using integrability), Witten and Shenkar had

a paper a bit earlier but not so many.

Notice that you couldn’t use this formalism for o↵-shell stu↵. This is heavily relying on ...

this is where Thomas and Tristan are trying to go with the form factor story. And also what

Roiban in 4 dimensions for correlations functions.

At one loop unitarity works for N=4 SYM,

6

Expect same as quadrupole cuts in d=4: 

f(x) �(x) = f(0) �(x)           (like                                     )

eA(1)PQ
MN (p1, p2, p3, p4)|s�cut =

1

2

Z
d2l1
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+((l1 � p1 � p2)

2 � 1)

⇥ eA(0)RS
MN (p1, p2, l1,�l1 + p1 + p2) eA(0)PQ

SR (�l1 + p1 + p2, l1, p3, p4)



A simple sum over discrete solutions of the on-shell conditions

weighted by scalar “bubble” integrals

4-points amplitude at one-loop 

eA(1)PQ
MN (p1, p2, p3, p4) =

I(p1 + p2)

2

h
eA(0)RS

MN (p1, p2, p1, p2) eA(0)PQ
SR (p2, p1, p3, p4)

+ eA(0)RS
MN (p1, p2, p2, p1) eA(0)PQ

SR (p1, p2, p3, p4)
i

+ I(p1 � p3) eA(0)SP
MR(p1, p3, p1, p3) eA(0)RQ

SN (p1, p2, p3, p4)

+ I(p1 � p4) eA(0)SQ
MR(p1, p4, p1, p4)

eA(0)RP
SN (p1, p2, p4, p3)

I(p) =

Z
d2q

(2⇡)2
1

(q2 � 1 + i✏)((q � p)2 � 1 + i✏)

Inherently FINITE formula.

Tree-level amplitudes can be pulled out of the integral, evaluated at those zeroes.



Final formula for the S-matrix (choose                               )

Sum of products of two tree-level amplitudes weighted by scalar bubble integrals

Final formula for the S-matrix

p3 = p1, p4 = p2

S(1)PQ
MN (p1, p2) =

1

4(✏2 p1 � ✏1 p2)

h
S̃(0)RS

MN (p1, p2)S̃
(0)PQ

RS (p1, p2)I(p1 + p2)

+S̃(0)SP
MR(p1, p1)S̃

(0)RQ
SN (p1, p2)I(0)

+S̃(0)SQ
MR(p1, p2)S̃

(0)PR
SN (p1, p2)I(p1 � p2)

i
,

S̃(0)(p1, p2) = 4(✏2 p1 � ✏1 p2)S
(0)(p1, p2)where

Possible absence of rational terms: formula cannot be completely general !
Needs to be tested on various examples.

Is ⌘ I(p1 + p2) =
1

✏2 p1 � ✏1 p2
� arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)

It ⌘ I(0) =
1

4⇡i

Iu ⌘ I(p1 � p2) =
arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)



Final formula for the S-matrix (choose                               )

Sum of products of two tree-level amplitudes weighted by scalar bubble integrals

Final formula for the S-matrix

p3 = p1, p4 = p2

S̃(0)(p1, p2) = 4(✏2 p1 � ✏1 p2)S
(0)(p1, p2)where

S(1)PQ
MN (p1, p2) =

1

4(✏2 p1 � ✏1 p2)

h
S̃(0)RS

MN (p1, p2)S̃
(0)PQ

RS (p1, p2)I(p1 + p2)

+(�1)[P ][S]+[R][S] S̃(0)SP
MR(p1, p1)S̃

(0)RQ
SN (p1, p2)I(0)

+(�1)[P ][R]+[Q][S]+[R][S]+[P ][Q]S̃(0)SQ
MR(p1, p2)S̃

(0)PR
SN (p1, p2)I(p1 � p2)

i

[M ] = 0

[M ] = 1

bosons
fermions

Possible absence of rational terms: formula cannot be completely general !
Needs to be tested on various examples.

Is ⌘ I(p1 + p2) =
1

✏2 p1 � ✏1 p2
� arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)

It ⌘ I(0) =
1

4⇡i

Iu ⌘ I(p1 � p2) =
arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)



Remarks

The t-channel cut is special.

- Using first  
  makes it ill-defined and requires a prescription: 
  use delta-function only at the end of the calculation

S̃(0)SP
MR(p1, p1) S̃

(0)RQ
SN (p1, p2) = S̃(0)PS

MR(p1, p2) S̃
(0)QR

SN (p2, p2)

- Asymmetrical wrt choice of the vertex 
  used to solve momenta:
  leads to a consistency condition 

We are NOT including contributions from tadpoles (no physical cuts)

A inherently  finite result says nothing about UV-finiteness or renormalizability.

Might be missing rational terms following from regularization procedure. 

At the next order we finds the following relation

[T(0)
12 ,T

(1)
13 ] + [T(0)

12 ,T
(1)
23 ] + [T(0)

13 ,T
(1)
23 ]� [T(0)

13 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
13 ] =

T(0)
23 T

(0)
13 T

(0)
12 � T(0)

12 T
(0)
13 T

(0)
23 . (2.32)

One can check that, assuming that the tree-level S-matrix satisfies the classical Yang-Baxter equation

(2.31), the rational s-channel contribution to the cut-constructible one-loop S-matrix precisely cancels the

terms cubic in the tree-level S-matrix on the right-hand side of eq. (2.32). Therefore, for the one-loop cut-

constructible S-matrix to respect integrability the remaining terms should satisfy (2.32) with the right-hand

side set to zero. In general, this condition is not easy to solve, but two solutions are clear. The first is the

tree-level S-matrix (which amounts to a shift in the coupling) itself, and the second is any contribution that

can be absorbed into the overall phase factors.

It will turn out that of the three theories we are interested in, two satisfy this property. For the

AdS3 ⇥ S

3 ⇥ S

3 ⇥ S

1 theory, the one-loop cut-constructible S-matrix as defined by (2.29) has a rational

piece coming from the t-channel that does not satisfy (2.32) with zero on the right-hand side. However,

there is a meaning to these terms – they are cancelled by corrections to the external legs, which we will now

discuss.

2.3 External leg corrections

In the construction outlined thus far we have not included any discussion of corrections to the external legs.

As shall become apparent, for the AdS3 ⇥ S

3 ⇥ S

3 ⇥ S

1 background, these will be important even at one

loop. These contributions will give a rational contribution to the S-matrix and can follow from two types

of Feynman diagrams:

p p

l1

l2
p p

l

Figure 2: Diagrams contributing to external leg corrections at one-loop.

We will be interested in external leg corrections at one-loop that are caught by unitarity. In order to

approach this problem let us first review how external leg corrections are usually dealt with in a standard

Feynman diagram calculation. We consider the one-loop self energy of a generic scalar propagator and denote

the one particle irreducible contribution to the one-loop self-energy as �ih

�1⌃(1)(p). After re-summing one

gets

=
i

p2 �m

2 � h

�1⌃(1)(p)
+ . . . . (2.33)

Expanding ⌃(1)(p) around the on-shell condition, ⌃(1)(p) = ⌃(1)
0 (p) + ⌃(1)

1 (p)(p2 � m

2) + O((p2 � m

2)2),

one obtains a spatial momentum dependent shift in the pole and a non vanishing residue Z(p) such that

=
iZ(p)

p2 �m

2 � h

�1⌃0(p)
+ . . . . (2.34)
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Figure 1: Diagrams representing s-, t- and u-channel cuts contributing to the four-point
one-loop amplitude.

cut-constructible piece of the amplitude

eA(1)

PQ
MN(p1, p2, p3, p4) =

I(p
1

+ p
2

)

2

h
eA(0)RS

MN(p1, p2, p1, p2) eA(0)

PQ
SR (p2, p1, p3, p4)

+ eA(0)RS
MN(p1, p2, p2, p1) eA(0)

PQ
SR (p1, p2, p3, p4)

i

+ I(p
1

� p
3

) eA(0)SP
MR(p1, p3, p1, p3) eA(0)

RQ
SN(p1, p2, p3, p4)

+ I(p
1

� p
4

) eA(0)

SQ
MR(p1, p4, p1, p4) eA(0)RP

SN(p1, p2, p4, p3) (2.11)

where we have introduced the bubble integral

I(p) =

Z
d2q

(2⇡)2
1

(q2 � 1 + i✏)((q � p)2 � 1 + i✏)
(2.12)

The structure of (2.11) shows the di↵erence between the s-channel, for which there are
two solutions of the �-function constraints in (2.8) (for positive energies), and the t- and
u-channels, for which there is only one.

5

�(p1 � p3)�(p2 � p4)

Cut-constructibility to be always checked 



Define  contractions in field space

use 

Final formula for the S-matrix II

| {z } | {z }
logarithmic terms rational real

| {z }
rational 

imaginary

with

S = 1+ i
X

n=1

g�nT (n�1)ĝand

To rewrite the one-loop unitarity cut result as T (0)(assuming         real) 

Is =
1

J
(1� ✓

i⇡
) It =

1

4⇡i
Iu =

1

J

✓

i⇡

J =
1

4(e0p� ep0)

✓ ⌘ arcsinh(e0p� ep0)



Another approach (Engelund, McKeown and Roiban 1304.4281)

Ignore potentially singular cuts.

The t-channel bubble integral is a constant (rational): ignore and determine 
all rational terms from symmetry considerations.

(In the Green Schwarz worldsheet string, no regularization is known which preserves
the symmetry of the theory: kappa-symmetry, Weyl-symmetry, integrability...) 

Determine logarithmic terms, up to two loops, staying in d=2.



Relativistic  models 

Bosonic models:

  generalized sine-Gordon: gauged WZW model for a coset G/H = SO(n + 1)/SO(n)  
  plus an integrable potential (n=1: sine-Gordon, n=2: complex sine-Gordon)

Supersymmetric generalizations (``Pohlmeyer reductions’’ of string theories):
N = 1, 2 supersymmetric sine-Gordon

 The method works up to a finite shift in the coupling.

 The method reproduces the full result.



Relativistic  models 

Bosonic models:

  generalized sine-Gordon: gauged WZW model for a coset G/H = SO(n + 1)/SO(n)  
  plus an integrable potential (n=1: sine-Gordon, n=2: complex sine-Gordon)

Supersymmetric generalizations (``Pohlmeyer reductions’’ of string theories):
N = 1, 2 supersymmetric sine-Gordon

 The method works up to a finite shift in the coupling.

 The method reproduces the full result.

Theory only integrable at classical level. Quantum counterterms restoring
various properties of integrability (e.g. Yang-Baxter equation).

In two cases (complex sine-Gordon and Pohlmeyer-reduced AdS3xS3 theory) 
cut-constructibility is highly non trivial!

It is this “quantum integrable” result that the unitarity method gives.



AdS/CFT S-matrix: exact and perturbative structure

In the asymptotic case, symmetry algebra is a (centrally extended) PSU(2|2)2

From symmetries and integrability follows a group factorization

Each factor has manifest                           invarianceSU(2)⇥ SU(2)

ei ✓S = ŜPSU(2|2) ⌦ ŜPSU(2|2)
ŜCD
AB =

8
>>>><

>>>>:

A�ca�
d
b +B�da�

c
b

D��↵�
�
� + E��↵�

�
�

C✏ab✏
�� F ✏↵�✏

cd

G�ca�
�
� H�da�

�
�

L��↵�
d
b K��↵�

c
b



Logarithms 

AdS/CFT S-matrix: exact and perturbative structure

In the asymptotic case, symmetry algebra is a (centrally extended) PSU(2|2)2

From symmetries and integrability follows a group factorization

Each factor has manifest                           invarianceSU(2)⇥ SU(2)

Matrix structure,
rational dependence on 
momenta

ei ✓S = ŜPSU(2|2) ⌦ ŜPSU(2|2)
ŜCD
AB =

8
>>>><

>>>>:

A�ca�
d
b +B�da�

c
b

D��↵�
�
� + E��↵�

�
�

C✏ab✏
�� F ✏↵�✏

cd

G�ca�
�
� H�da�

�
�

L��↵�
d
b K��↵�

c
b



The phase

with Zhukovsky variables encoding dispersion relation

Beyond one loop each contribution is rational.

Bilinear of local charges

Crossing equation



Perturbative structure of worldsheet S-matrix

✓ =
1X

n=1

g�n✓(n�1)

S = 1+
i

g
T̂ (0) +

i

g2
�
T̂ (1) + ✓(1) 1) +

1

g3
(T̂ (2) +

i

2
✓(1)T̂ (0) + ✓(2) 1

�

Ŝ = 1+ i
X

n=1

g�nT̂ (n�1)

requires one-loop logarithms to contribute only to the diagonal terms

(and two-loop logarithms to be proportional to the tree-level S-matrix
 - just the effect of two loop exponentiation - as         has no logs)✓(2)

Expansion of symmetry-determined  and phase parts T (0)✓(0)(       absorbed in        )

Goal: compute one loop worldsheet S-matrix 
“bootstrapping” it from tree level.



sigma-model

Green-Schwarz formulation for fermions

quadratic part

Classical limit:                  Sigma model coupling constant: � ! 1

Superstring action

Gauge-fixed lagrangean  involves rescaling �⇡ J+p
�

< � <
⇡ J+p

�

Decompactification limit                    and large tension expansion  J+p
�
! 1 ĝ ! 1

ĝ =
2⇡p
�



Gauge fixing

Use an interpolating lightcone -gauge

a = 1/2

a = 0

light-cone gauge
temporal gauge

AdS5 S5

Transverse coordinates zµ, µ = 1. . . 4 ym, m = 1. . . 4

AdS5 S5

Gauge choice preserves SO(8) at quadratic level, broken by interactions.

X+ = (1 + a) t+ a' ⌘ ⌧ + a�

 [Arutyunov Frolov Plefka Zamaklar 06]



Interacting lagrangean

 Lorentz invariance (quadratic part) broken by interactions.

Bosonic lagrangean to quartic order in the fields

✏ =
p

1 + p2Massive states with relativistic dispersion relation

loop corrections 

Bosonic part invariant under                             .SO(4)⇥ SO(4)

Exact dispersion relation known via symmetries

✏ =

r
1 +

�

⇡2
sin2

p

2

X = (Y, Z)

(Scattering ws particles,  for parametrically large momentum, become 
 solitonic solutions - giant magnons - with                      )   ✏ ⇠

p
�

⇡
sin

p

2



Worldsheet fields

Worldsheet fields (embedding coordinates in AdS5xS5)

T, �, Y m, Zm, fermions

Yaȧ = (�m)aȧ Y
m, Z↵↵̇ = (�µ)↵↵̇ Zµ

can be represented as bispinors   SO(4) ' (SU(2)⇥ SU(2))/Z2

Bosons and fermions form bi-fundamental representation of   

Formal definition of a  bi-fundamental supermultiplet            ,    

PSU(2|2)L ⇥ PSU(2|2)R

providing a basis for the definition of the S-matrix.

PSU(2,2)L PSU(2,2)R⇥

a, ȧ,↵, ↵̇ = 1, 2



Worldsheet S-matrix

Two-particle S-matrix is 256 x 256 

Integrability predicts

S-matrices parametrized in terms of the basic SU(2) invariants

and similar for the dotted one.



Tree level result: first non trivial order in the perturbative expansion 

Worldsheet S-matrix: explicit perturbative evaluation

Obtained applying LSZ reduction to quartic vertices of the lagrangean. 

 ✓ Coincide with the related expansion of the exact spin chain S-matrix. 

Expansion of worldsheet S-matrix in coupling: defines the T-matrix 

S = +
1

g
T(0) +

1

g2
T(1) + . . . = + T g =

p
�

2⇡

(0)

 [Klose McLoughlin Roiban Zarembo 06]

One-loop result  via standard Feynman diagrammatics: not existing! 
unsuccessful attempts (non-cancellation of UV divergences).

 [ McLoughlin Roiban 07]

 ✓ A test of group factorization

ĝ
ĝ ĝ



Worldsheet S-matrix at one loop via unitarity cuts: result

SCD
AB (p1, p2) = exp

�
i'a(p1, p2)

�
˜SCD
AB

= exp

�� i

2g
(e2p1 � e1p2)(a� 1

2 ) +
i

g2
'̃(p1, p2)

�
˜SCD
AB +O

⇣
1

g3

⌘

A(1) = 1 +
i

4 g

(p1 � p2)2

✏2p1 � ✏1p2
+

1

4 g2
�
p1p2 �

(p1 + p2)4

8(✏2p1 � ✏1p2)2
�

where 

Ex.

 ✓ All rational dependence coincides  with related expansion of  EXACT worldsheet S-matrix

and

 ✓ All logarithmic dependence encoded in the scalar factor (as required from integrability!) 

 ✓ All gauge dependence encoded in the scalar factor (as required from physical arguments!) 

ĝ ĝ ĝ

ĝĝ



Other string backgrounds: AdS3 x S3x M4 

Three light-cone gauge-fixed string theories (Type IIB)

relevant for the AdS3/CFT2  correspondence, interesting physics (e.g. BTZ black holes)  

with Z4 automorphism -> classical integrability. [Cagnazzo Zarembo 2011]
[Hoare Tseytlin 2012]

Super-coset sigma models

 -                                         supported by pure RR flux
AdS3 ⇥ S3 ⇥ S3 ⇥ S1

AdS3 ⇥ S3 ⇥ T 4

AdS3 ⇥ S3 ⇥ T 4

 -                                         supported by pure RR flux 
 -                                         supported by a mix RR and NS NS fluxes

Useful for connecting different working methods (CFT, integrability).



1. Multiple masses (also massless) in the asymptotic spectrum.

2. Expansion of the light-cone lagrangian contains odd powers in the field terms.

Other string backgrounds: AdS3 x S3x M4 II

3. Dispersion relation is in terms of a function  non trivially related to 

✏ =

r
m2 + 4f2(�) sin2

p

2

string tension:

New features



Exact S-matrices have been proposed, with conjectures for the phaseS 

Other string backgrounds: AdS3 x S3x M4 II

[Roiban Engelund 2013]
Logarithmic contributions for these phases were evaluated 
with unitarity-cuts up to two loops in 

Under global U(1) symmetry groups excitations are particles (+) or antiparticles (-),
++, +�, �+, ��.

Non-trivial modification of the ``crossing equations’’, which relate all of them.

SPQ
MN (p, p0) = exp[i!�M�N (p, p0)] ˆSPQ

MN (p, p0) [Borsato,  Ohlsson Sax, 
Sfondrini 2012, 2013]



Working with a tree-level integrable S-matrix (always verified)
         

Enlarging unitarity 2d program: different masses

Ignore massless particles in the loop 
if considers only external massive legs

[Bianchi Hoare, 2014]

> outgoing two-momenta = permutation of incoming two-momenta

 > scattering preserves these U(1) charges

Charge 
conjugation 
symmetry

focus on sectors ++,+�

Compact formula for the one-loop contribution (explicitating bubble integrals) 

The arguments of the second factor of eA(0) contain all four of the external momenta and therefore this part

is well-defined when we fix q = p and q

0 = p

0. Therefore, let us focus on the first factor of eA(0), whose

arguments only depend on two of the momenta. Recalling that in an integrable theory the amplitude should

vanish unless the set of outgoing momenta is a permutation of the set of incoming momenta, it follows that

this first factor vanishes unless ml = m. In this case (2.26) reduces to

(�1)[P ][S]+[R][S] eA(0)SP
MR(p, q, p, q) eA(0)RQ

SN (p, p0, q, q0) . (2.27)

Finally setting q = p and q

0 = p

0 this expression can then be written in terms of tree-level S-matrices.

A similar logic follows for the second solution (2.25), except that here the contribution vanishes unless

ml = m

0.

It therefore follows that the contribution from the t-channel is given by

T

(1)
t =

1

16⇡
(
1

m

2
e
T

(0) t
 

T

(0) +
1

m

02T
(0) t
!

e
T

(0)) , (2.28)

where e
T

(0) in the first term is built from the tree-level S-matrix for the scattering of two excitations of mass

m, while in the second term it is built from the tree-level S-matrix for two excitations of mass m0. We have

included an additional factor of 1/2 as we should still use both vertices to solve for the loop momenta and

take the average.

Combining eqs. (2.22) and (2.28) we find that the one-loop result in the case where an excitation of mass

m is scattered with an excitation of mass m0 is given by

T

(1) =
✓

2⇡
(T (0) u

T

(0) � T

(0) s
T

(0)) +
i

2
T

(0) s
T

(0) +
1

16⇡
(
1

m

2
e
T

(0) t
 

T

(0) +
1

m

02T
(0) t
!

e
T

(0)) , (2.29)

where, again under the assumption that T (0) is real, there is a natural split of the result into three pieces;

a logarithmic part, an imaginary rational part, and a real rational part. Setting m = m

0 = 1 we see that

this formula reduces to, and hence incorporates, the single-mass case given in eq. 2.21.

A key consequence of the results in this section is that the cut-constructible one-loop S-matrix for the

scattering of a particle of mass m with one of mass m

0 is built from the corresponding tree-level S-matrix

along with the tree-level S-matrices for the scattering of two particles of mass m and for two particles of

mass m

0, both evaluated at equal momenta. In particular there are no contributions containing tree-level

S-matrices for particles of masses other than m and m

0. This will be important in later sections as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without knowing the full

tree-level S-matrix.

The result (2.29) deserves a comment regarding its relation to integrability and the Yang-Baxter equation.

The Yang-Baxter equation is a cubic matrix equation that should be satisfied by S-matrices describing

scattering in integrable theories. Up to signs related to fermions, which we are not concerned with for this

schematic discussion, it can be written as

S12S13S23 = S23S13S12 , (2.30)

where these operators are acting on a three-particle state and the indices denote the particles that are

being scattered. The first non-trivial order in its perturbative expansion is called the classical Yang-Baxter

equation and is a relation that is quadratic in the tree-level S-matrix,

[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0 . (2.31)
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| {z } | {z }
logarithmic terms rational real

| {z }
rational 

imaginary

✓ ⌘ arcsinh
�e0p� ep0

mm0
�

e =
p

p2 +m2 , e0 =
p

p02 +m02

�M = �P



Unitarity-cut result and the Yang-Baxter equation

Cubic matrix equation that is necessarily satisfied by integrable theories
S12S13S23 = S23S13S12 ,

Classical Yang-Baxter[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0

[T(0)
12 ,T

(1)
13 ] + [T(0)

12 ,T
(1)
23 ] + [T(0)

13 ,T
(1)
23 ]� [T(0)

13 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
13 ] =

T(0)
23 T

(0)
13 T

(0)
12 � T(0)

12 T
(0)
13 T

(0)
23

= = ==



Unitarity-cut result and the Yang-Baxter equation

Cubic matrix equation that is necessarily satisfied by integrable theories

The arguments of the second factor of eA(0) contain all four of the external momenta and therefore this part

is well-defined when we fix q = p and q

0 = p

0. Therefore, let us focus on the first factor of eA(0), whose

arguments only depend on two of the momenta. Recalling that in an integrable theory the amplitude should

vanish unless the set of outgoing momenta is a permutation of the set of incoming momenta, it follows that

this first factor vanishes unless ml = m. In this case (2.26) reduces to

(�1)[P ][S]+[R][S] eA(0)SP
MR(p, q, p, q) eA(0)RQ

SN (p, p0, q, q0) . (2.27)

Finally setting q = p and q

0 = p

0 this expression can then be written in terms of tree-level S-matrices.

A similar logic follows for the second solution (2.25), except that here the contribution vanishes unless

ml = m

0.

It therefore follows that the contribution from the t-channel is given by

T

(1)
t =

1

16⇡
(
1

m

2
e
T

(0) t
 

T

(0) +
1

m

02T
(0) t
!

e
T

(0)) , (2.28)

where e
T

(0) in the first term is built from the tree-level S-matrix for the scattering of two excitations of mass

m, while in the second term it is built from the tree-level S-matrix for two excitations of mass m0. We have

included an additional factor of 1/2 as we should still use both vertices to solve for the loop momenta and

take the average.

Combining eqs. (2.22) and (2.28) we find that the one-loop result in the case where an excitation of mass

m is scattered with an excitation of mass m0 is given by

T

(1) =
✓

2⇡
(T (0) u

T

(0) � T

(0) s
T

(0)) +
i

2
T
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where, again under the assumption that T (0) is real, there is a natural split of the result into three pieces;

a logarithmic part, an imaginary rational part, and a real rational part. Setting m = m

0 = 1 we see that

this formula reduces to, and hence incorporates, the single-mass case given in eq. 2.21.

A key consequence of the results in this section is that the cut-constructible one-loop S-matrix for the

scattering of a particle of mass m with one of mass m

0 is built from the corresponding tree-level S-matrix

along with the tree-level S-matrices for the scattering of two particles of mass m and for two particles of

mass m

0, both evaluated at equal momenta. In particular there are no contributions containing tree-level

S-matrices for particles of masses other than m and m

0. This will be important in later sections as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without knowing the full

tree-level S-matrix.

The result (2.29) deserves a comment regarding its relation to integrability and the Yang-Baxter equation.

The Yang-Baxter equation is a cubic matrix equation that should be satisfied by S-matrices describing

scattering in integrable theories. Up to signs related to fermions, which we are not concerned with for this

schematic discussion, it can be written as

S12S13S23 = S23S13S12 , (2.30)

where these operators are acting on a three-particle state and the indices denote the particles that are

being scattered. The first non-trivial order in its perturbative expansion is called the classical Yang-Baxter

equation and is a relation that is quadratic in the tree-level S-matrix,

[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0 . (2.31)
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Unitarity-cut result and the Yang-Baxter equation

Cubic matrix equation that is necessarily satisfied by integrable theories

The arguments of the second factor of eA(0) contain all four of the external momenta and therefore this part

is well-defined when we fix q = p and q

0 = p

0. Therefore, let us focus on the first factor of eA(0), whose

arguments only depend on two of the momenta. Recalling that in an integrable theory the amplitude should

vanish unless the set of outgoing momenta is a permutation of the set of incoming momenta, it follows that

this first factor vanishes unless ml = m. In this case (2.26) reduces to

(�1)[P ][S]+[R][S] eA(0)SP
MR(p, q, p, q) eA(0)RQ

SN (p, p0, q, q0) . (2.27)

Finally setting q = p and q

0 = p

0 this expression can then be written in terms of tree-level S-matrices.

A similar logic follows for the second solution (2.25), except that here the contribution vanishes unless

ml = m

0.

It therefore follows that the contribution from the t-channel is given by
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where e
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(0) in the first term is built from the tree-level S-matrix for the scattering of two excitations of mass

m, while in the second term it is built from the tree-level S-matrix for two excitations of mass m0. We have

included an additional factor of 1/2 as we should still use both vertices to solve for the loop momenta and

take the average.
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External legs correction
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residue of first pert. correction
of self-energy around the on-shell condition



External legs correction

T (1)
ext

= (⌃(1)
1 (p) + ⌃(1)

1 (p0))T (0)p
Z

4
=

p
Z

4
⇣
1 +

1

g
T (0) +

1

g2
T (1) + ...

⌘

Contributions from external leg corrections 

ĝ ĝ
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In                                        model  cubic verticesAdS3 ⇥ S3 ⇥ S3 ⇥ S1

Self-energy via ``fusing’‘ two tree-level form factors      
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[Engelund Roiban 2013]
[Brandhuber Travaglini Yang 2012]
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In                                        model  cubic verticesAdS3 ⇥ S3 ⇥ S3 ⇥ S1

Self-energy via ``fusing’‘ two tree-level form factors      
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... leads to an agreement with the exact result where 
   “integrable coupling”  coincides with sigma model 
    coupling constant.

✏ =

r
m2 + 4f2(�) sin2

p

2



... leads to an agreement with the exact result where 
   “integrable coupling”  coincides with sigma model 
    coupling constant.

✏ =

r
m2 +

�

⇡2
sin2

p

2

 The unitarity construction here misses a shift in the coupling.



Summary of models analyzed

One-loop logarithmic and rational terms of 2     2 amplitudes reproduced:

✓ AdS5 x S5

AdS3xS3xT4

up to shifts in the coupling
✓

AdS3xS3xS3xS1✓

✓ Bosonic  relativistic models

Supersymmetric relativistic models
up to shifts in the coupling

✓

Shift in the coupling is not seen by integrability (indeed the result respects YB)!
                                                                                                   As expected.



A cut-constructibility criterion?

Not a ``uniqueness result’’ proving cut constructibility a’ la                                                  [Bern, Dixon, Dunbar, Kosower 1994]

Power-counting criterion: the m-point integrals have at most m-2 powers of the loop 
momentum in the numerator of the integrand, and the two-point (bubble) integrals have 
at most one power of the loop momentum can be completely determined from its cuts.                      

for one-loop amplitudes in massless supersymmetric gauge theories.

 >   Here  just scalar bubbles in the basis, and no m-point information yet.

 >   Here no 2d supersymmetry (GS string)

 

 >   Up to shift in the coupling: something missing is “expected”, 
      as we are in a massive theory in d=2 (issues tadpole- and regularization-related).



A cut-constructibility criterion?

Not a ``uniqueness result’’ proving cut constructibility a’ la                                                  [Bern, Dixon, Dunbar, Kosower 1994]

Power-counting criterion: the m-point integrals have at most m-2 powers of the loop 
momentum in the numerator of the integrand, and the two-point (bubble) integrals have 
at most one power of the loop momentum can be completely determined from its cuts.                      

for one-loop amplitudes in massless supersymmetric gauge theories.

 >   Here  just scalar bubbles in the basis, and no m-point information yet.

Clear interplay (including external legs corrections) 
between cut-constructibility and integrability.

 >   Here no 2d supersymmetry (GS string)

 

 >   Up to shift in the coupling: something missing is “expected”, 
      as we are in a massive theory in d=2 (issues tadpole- and regularization-related).



Concluding remarks and a wish list

Enough evidence that for large class of 2-d models (relativistic and not)
four-points one-loop amplitudes are cut-constructible  

 Cut-constructibility “criterion”

 > Standard unitarity (2-particle cuts) reproduces all rational terms,
    up to shifts in the coupling.

 > It bypasses issues of UV divergences emerging in Feynman diagrams

Efficient way for

 > Proposing/checking matrix structure and overall phases for models relevant 
    for the AdS/CFT correspondence. 

 > Checks of quantum integrability aspects (e.g. group factorization).

 > Integrability is crucial asset

 > External leg corrections required to meet the exact result (up to shifts):
    off-shell continuation of the unitarity method to include form factors 
    on either side of the cut

= = ==



Wish list

Two loops rational terms (all logarithms reproduced in 

[Engelund McEwan Roiban 2013]

Higher points: factorization should emerge

Extend to other interesting integrable string backgrounds  
 

Extend to off-shell objects, including correlation functions. 

(require a tree-level S-matrix! and massless modes treatment)
 

[Basso 2010]

[Klose McLoughlin 2012/2013]

[Engelund McEwan Roiban 2013]



EXTRA



 Other string backgrounds I: “ABJM” worldsheet S-matrix

Same S-matrix as in                     despite elementary excitations (BMN modes) differ.AdS5 ⇥ S5

[Grignani, Harmark, Orselli 2008][Grignani, Harmark, Orselli Semenoff 2008]
[Astolfi, GM Puletti, Grignani, Harmark, Orselli 2009]

Modes are (4|4) light + (4|4) heavy.

[Gaiotto Giombi Yin 2008]

[Zarembo 2009]

Consistent with Bethe ansatz solution where heavy modes are interpreted as 
stacks of Bethe roots.

dissolve in the continuum
[Kalousios Vergu Volovich 2009]

No direct check of our method (also not in                                  ).[Roiban Engelung 2013]

h(�)

[Gromov Sizov 2014]

requires treatment of tadpoles.

✏ =

r
1 + h(�) sin2

p

2
A unitarity-cut check of recent proposal for          in           



Two loops I

Simply gluing T0 and T1 and uplifting seems to fail (you don’t capture all contrs 
that at the end give you the expected result in terms of logs or double logs)

Since there is no integral basis ->strategy of maximal cuts 

Begin with the generalized cuts imposing D L = 2 L = 4 cut conditions 
proceed by releasing the on-shell condition for one propagator at a time (near-maximal cuts). 

[Engelund McEwan Roiban 2013]
[Bern Carrasco Johansson Kosower 2007]
[Bern Carrasco Dixon Johansson Roiban 2008/10]

[Engelund McEwan Roiban 2013]



Two loops II

Get coefficients by comparing with maximal cuts

Get coefficients by comparing with near-maximal (here 2) cuts

[Engelund McEwan Roiban 2013]

Successfully reproduces expected logarithms behavior

To be improved to catch all (+rational) terms.

= 0

Successfully reproduces expected logarithms behavior


