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• The dominant Higgs production mechanism 
at the LHC is gluon fusion.

The gluon fusion cross section

➡ Loop-induced process.

• For a light Higgs boson, the dimension five operator 
describing a tree-level coupling of the gluons to the Higgs 
boson

L = LQCD,5 �
1
4v

C1 H Ga
µ⌫ Gµ⌫

a

• In the rest of the talk, I will only concentrate on the 
effective theory.

• Top-mass corrections known at NNLO.
[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, 
Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]
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• The gluon fusion cross section is given in perturbation 
theory by

The gluon fusion cross section

• The (partonic) cross section depends up to an overall scale 
only on the ratio

• The partonic cross section
known at NLO and NNLO.

�(p p! H + X) = ⌧
X

ij

Z 1

⌧
dz Lij(z) �̂ij(⌧/z)

z =
m2

ŝ
⌧ =

m2

s

      [8 TeV]     [%]
LO 9.6 pb ~ 25%

NLO 16.7 pb ~ 20%
NNLO 19.6 pb ~ 7 - 9%
N3LO ??? ~ 4 - 8%

� ��

[Dawson; Djouadi, Spira, Zerwas; 
Harlander, Kilgore; Anastasiou, Melnikov; 

Ravindran, Smith, van Neerven]

[Fixed order only
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• So far no complete computation is available.

The gluon fusion cross section

➡ Approximate N3LO results exist.
[Moch, Vogt; Ball, Bonvini, Forte, Marzani, Ridolfi; Bühler, Lazopulos

➡ Scale variation at N3LO.
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• So far no complete computation is available.

• Can we push the state of the art one order higher?

The gluon fusion cross section

➡ Approximate N3LO results exist.
[Moch, Vogt; Ball, Bonvini, Forte, Marzani, Ridolfi; Bühler, Lazopulos

• Challenge: 
performed so far...
➡ Uncharted territory!	



➡ New conceptual challenges.

➡ Scale variation at N3LO.
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Prime example of how new 
developments from the 

amplitude community can have 
impact on phenomenology.
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Outline

• The inclusive gluon-fusion cross section.

• Ingredients entering the cross section at threshold:

• Conclusion & outlook.

➡ Soft triple-real emission.	



➡ Soft double-virtual-real emission.	



➡ Soft virtual-double-real emission.

• The gluon-fusion cross section in the soft limit.
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• A cross section computation requires two ingredients:

The gluon fusion cross section

�̂ =
Z

d� |M|2



!
!

!
!

• A cross section computation requires two ingredients:

The gluon fusion cross section

�̂ =
Z

d� |M|2

Matrix 
element



!
!

!
!

• A cross section computation requires two ingredients:

The gluon fusion cross section

�̂ =
Z

d� |M|2

Phase space 
integration

Matrix 
element



!
!

!
!

• A cross section computation requires two ingredients:

The gluon fusion cross section

�̂ =
Z

d� |M|2

Phase space 
integration

Matrix 
element

• Example:



!
!

!
!

• A cross section computation requires two ingredients:

The gluon fusion cross section

�̂ =
Z

d� |M|2

Phase space 
integration

Matrix 
element

• Example:

Z
d�1M(0)M(0)⇤
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• At 

The gluon fusion cross section

Virtual corrections (‘loops’) Real emission

[Dawson; Djouadi, Spira, Zerwas]
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• At 

The gluon fusion cross section

Virtual corrections (‘loops’) Real emission

• Both contributions are individually divergent:

➡ UV divergences are handled by renormalization.

➡ IR divergences cancelled by PDF counterterms.

[Dawson; Djouadi, Spira, Zerwas]
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• At 

The gluon fusion cross section

Double virtual Real-virtual

Double real

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
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• At 

The gluon fusion cross section

Triple virtual

Double real 
virtual

Real-virtual 
squared

Double virtual 
real

Triple real
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• The triple virtual corrections are directly related to the 
QCD form factor

Triple virtual corrections

• The QCD form factor is known
➡ at one loop.

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; 
Gehrmann, Glover, Huber, Ikizlerli, Studerus]

➡ at two loops.
[Gonsalves; Kramer, Lampe; 
Gehrmann, Huber, Maître]

➡ at three loops.

• It is not the loops that are the problem!
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Unitarity
• Optical theorem:

➡ Discontinuities of loop amplitudes are phase space 
integrals.

=
Z

d�Im

• Discontinuities of loop integrals are given by 
rule

1
p2 �m2 + i"

! �+(p2 �m2) = �(p2 �m2) ✓(p0)

➡ See Ruth Britto’s talk.
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Reverse-unitarity

• We can read the optical theorem ‘backwards’ and write 
inclusive phase space integrals as unitarity cuts of loop 
integrals.

➡ Rather than computing phase-space integrals, we can 
compute loop integrals with cuts!

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

➡ Makes inclusive phase space integrals accessible to all the 
technology developed for multi-loop computations!
‣ Integration-by-parts & differential equations.

• Optical theorem:

=
Z

d�Im
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Reverse-unitarity @ N3LO

LO

NLO

NNLO

N3LO

1 diagram

Growth in complexity for real emission

1 integral
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Reverse-unitarity @ N3LO

LO

NLO

NNLO

N3LO

1 diagram

Growth in complexity for real emission

1 integral

10 diagrams 1 integral

381 diagrams 18 integrals

26565 diagrams ~500 integrals
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• ~ 500 master integrals only for triple real
double real NNLO).	



• Concentrate on some approximation first!

➡ Tough nut to crack!

The threshold expansion
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• ~ 500 master integrals only for triple real
double real NNLO).	



• Concentrate on some approximation first!

➡ Tough nut to crack!

• The gluon fusion cross section depends on one single 
parameter:

z =
m2

s
z̄ = 1� z

• Close to threshold (          ), we can approximate the triple 
real cross section by a power series:

z ⇠ 1

• Goal:

The threshold expansion

�̂(z) = ��1 + �0 + (1� z)�1 +O(1� z)2
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• Formally, this expansion corresponds to ‘expansion by 
regions’.
➡ In the limit:

momenta are, e.g., ‘hard’, ‘soft’ or ‘collinear’.	



➡ Extend this to inclusive phase space.	



➡ Advantage:
themselves.

• Higgs production at threshold (soft-virtual):

• N.B.:
virtual and/or real gluon!

The threshold expansion

[Beneke, Smirnov

➡ Every real gluon is soft.	



➡ Every virtual gluon is either hard or soft.

➡ Universality of soft emissions!
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• ~500 master integrals.

• Subprocesses:

Triple real emission

g g ! H g g g

g g ! H g q q̄

g q ! H g g q

g q ! H q q̄ q

g q ! H QQ̄ q

q q̄ ! H g g g

q q̄ ! H g q q̄

q q̄ ! H gQQ̄

q q ! H g q q

q Q ! H g q Q

q Q̄ ! H g q Q̄

{ {
Soft-virtual Next-to-soft-virtual

• If we concentrate on the first two terms in the expansion, all 
~500 master integrals can be reduced to only 10 integrals!
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NNLO example

phase space measure of eq. (2.16). In addition, the invariants appearing in the integrands

of the soft integrals are defined with respect to the rescaled momenta defined in eq. (2.6),

sij = (τipi + τjpj)
2 , τi =

{
−1 , if i = 1, 2 ,

+1 , if i = 3 . . . N .
(3.7)

Our method does not only allow us to compute the leading soft behavior, but we can

consistently expand around the soft limit z̄ = 0. In the following we show that we can

correctly reproduce the first few terms in the soft expansion of double and triple emission

phase space volumes, as well as for the NNLO master integral X18 of refs. [55, 67,68].

Let us start with the phase space volume for H +2 partons in the limit where the two

partons are soft. On the one hand, from eq. (3.2) we immediately see that Φ3 admits the

expansion

Φ3(z̄; ϵ) = z̄3−4ϵ ΦS
3 (ϵ)

∞∑

n=0

(1− ϵ)n(2− 2ϵ)n
(4− 4ϵ)n

z̄n

= z̄3−4ϵ ΦS
3 (ϵ)

[
1 +

1− ϵ

2
z̄ +

(1− ϵ)(2− ϵ)(3− 2ϵ)

4(5 − 4ϵ)
z̄2 +O(z̄3)

]
.

(3.8)

On the other hand, using eq. (2.13) we obtain the diagrammatic expansion

Φ3(z̄; ϵ) = z̄3−4ϵ

[

− z̄ + z̄2 +O(z̄3)

]

, (3.9)

where the dashed lines indicate numerator factors and dots represent additional powers

of the propagators or the numerators. The diagrams appearing in eq. (3.9) are in one-to-

one correspondence with the terms in the expansion (3.8). Indeed, IBP reduction of the

integrals in eq. (3.9) reveals

= −1− ϵ

2
, (3.10)

=
(1− ϵ)(2 − ϵ)(3− 2ϵ)

4(5− 4ϵ)
, (3.11)

in perfect agreement with eq. (3.8). We checked explicitly that our method reproduces

correctly the first ten terms of the soft expansion of the phase space volume for H + 2

partons.

As a second example we derive the subleading terms in the soft expansion of the

double real emission master integral X18. Unlike for the phase space volume, no result is

known for X18 valid to all orders in ϵ in general kinematics, but the integral was evaluated

explicitly up to O(ϵ) in terms of harmonic polylogarithms [69] in ref. [55, 67, 68]. We can

– 8 –

• NNLO integral:
Z

d�3

As there is only one master integral which is a monomial in z̄, our method trivially gives

the correct answer at NLO.

At NNLO all double real emission phase space integral can be reduced in general

kinematics to a linear combination of 18 master integrals [55]. The leading contribution

of all master integrals in the soft limit to all orders in ϵ was computed in ref. [67], and it

was observed that in this limit 17 master integrals are proportional to the soft limit of the

phase space volume for H + 2 partons,

Φ3(z̄; ϵ) =
1

2(4π)3−2ϵ
z̄3−4ϵ Γ(1− ϵ)2

Γ(4− 4ϵ) 2
F1(1− ϵ, 2− 2ϵ; 4 − 4ϵ; z̄)

= z̄3−4ϵ ΦS
3 (ϵ) +O(z̄4) ,

(3.2)

where we defined

ΦS
3 (ϵ) =

1

2(4π)3−2ϵ

Γ(1− ϵ)2

Γ(4− 4ϵ)
. (3.3)

More precisely, it was shown in ref. [67] that if XS
i (z̄; ϵ) denotes the leading term in the

soft limit of the double real emission master integrals, then we can write4

XS
i (z̄; ϵ) = Si(z̄; ϵ)Φ

S
3 (ϵ) , 1 ≤ i ≤ 17 ,

XS
18(z̄; ϵ) = −4 z̄−1−4ϵ (1− 2ϵ)(3 − 4ϵ)(1 − 4ϵ)

ϵ3 3F2(1, 1,−ϵ; 1 − ϵ, 1− 2ϵ; 1)ΦS
3 (ϵ) ,

(3.4)

where Si(z̄; ϵ) are monomials in z̄ and rational functions of ϵ. Using the method described

in the previous section, we can easily explain the structure of eq. (3.4). Indeed, we observe

that in the soft limit all the double real emission phase space integrals can be reduced

to only two master integrals. In particular, the IBP identities in the soft limit allow us

to express all but one of the XS
i in terms of the phase space volume, and the coefficients

appearing in the reduction are precisely the functions Si. In other words, in the soft limit

all double real emission phase space integrals can be reduced to linear combinations of the

following two soft master integrals

1
2

1
2 =

∫
dΦS

3 , (3.5)

1

2

1

2
=

∫
dΦS

3

s14s23s34
. (3.6)

Our method thus provides the correct leading soft behavior of the double real emission

contribution at NNLO. We emphasize that all the diagrams in this paper represent soft

phase space integrals, i.e., all the diagrams represent integrals with respect to the soft

4Note that the normalization differs slightly from the normalization of ref. [67].

– 7 –

• Diagrammatic expansion:

➡ The coefficients themselves have a loop interpretation.

phase space measure of eq. (2.16). In addition, the invariants appearing in the integrands

of the soft integrals are defined with respect to the rescaled momenta defined in eq. (2.6),

sij = (τipi + τjpj)
2 , τi =

{
−1 , if i = 1, 2 ,

+1 , if i = 3 . . . N .
(3.7)

Our method does not only allow us to compute the leading soft behavior, but we can

consistently expand around the soft limit z̄ = 0. In the following we show that we can

correctly reproduce the first few terms in the soft expansion of double and triple emission

phase space volumes, as well as for the NNLO master integral X18 of refs. [55, 67,68].

Let us start with the phase space volume for H +2 partons in the limit where the two

partons are soft. On the one hand, from eq. (3.2) we immediately see that Φ3 admits the

expansion

Φ3(z̄; ϵ) = z̄3−4ϵ ΦS
3 (ϵ)

∞∑

n=0

(1− ϵ)n(2− 2ϵ)n
(4− 4ϵ)n

z̄n

= z̄3−4ϵ ΦS
3 (ϵ)

[
1 +

1− ϵ

2
z̄ +

(1− ϵ)(2− ϵ)(3− 2ϵ)

4(5 − 4ϵ)
z̄2 +O(z̄3)

]
.

(3.8)

On the other hand, using eq. (2.13) we obtain the diagrammatic expansion

Φ3(z̄; ϵ) = z̄3−4ϵ

[

− z̄ + z̄2 +O(z̄3)

]

, (3.9)

where the dashed lines indicate numerator factors and dots represent additional powers

of the propagators or the numerators. The diagrams appearing in eq. (3.9) are in one-to-

one correspondence with the terms in the expansion (3.8). Indeed, IBP reduction of the

integrals in eq. (3.9) reveals

= −1− ϵ

2
, (3.10)

=
(1− ϵ)(2 − ϵ)(3− 2ϵ)

4(5− 4ϵ)
, (3.11)

in perfect agreement with eq. (3.8). We checked explicitly that our method reproduces

correctly the first ten terms of the soft expansion of the phase space volume for H + 2

partons.

As a second example we derive the subleading terms in the soft expansion of the

double real emission master integral X18. Unlike for the phase space volume, no result is

known for X18 valid to all orders in ϵ in general kinematics, but the integral was evaluated

explicitly up to O(ϵ) in terms of harmonic polylogarithms [69] in ref. [55, 67, 68]. We can

– 8 –

Z
d�3



!
!

!
!

NNLO example

phase space measure of eq. (2.16). In addition, the invariants appearing in the integrands

of the soft integrals are defined with respect to the rescaled momenta defined in eq. (2.6),

sij = (τipi + τjpj)
2 , τi =

{
−1 , if i = 1, 2 ,

+1 , if i = 3 . . . N .
(3.7)

Our method does not only allow us to compute the leading soft behavior, but we can

consistently expand around the soft limit z̄ = 0. In the following we show that we can

correctly reproduce the first few terms in the soft expansion of double and triple emission

phase space volumes, as well as for the NNLO master integral X18 of refs. [55, 67,68].

Let us start with the phase space volume for H +2 partons in the limit where the two

partons are soft. On the one hand, from eq. (3.2) we immediately see that Φ3 admits the

expansion

Φ3(z̄; ϵ) = z̄3−4ϵ ΦS
3 (ϵ)

∞∑

n=0

(1− ϵ)n(2− 2ϵ)n
(4− 4ϵ)n

z̄n

= z̄3−4ϵ ΦS
3 (ϵ)

[
1 +

1− ϵ

2
z̄ +

(1− ϵ)(2− ϵ)(3− 2ϵ)

4(5 − 4ϵ)
z̄2 +O(z̄3)

]
.

(3.8)

On the other hand, using eq. (2.13) we obtain the diagrammatic expansion

Φ3(z̄; ϵ) = z̄3−4ϵ

[

− z̄ + z̄2 +O(z̄3)

]

, (3.9)

where the dashed lines indicate numerator factors and dots represent additional powers

of the propagators or the numerators. The diagrams appearing in eq. (3.9) are in one-to-

one correspondence with the terms in the expansion (3.8). Indeed, IBP reduction of the

integrals in eq. (3.9) reveals

= −1− ϵ

2
, (3.10)

=
(1− ϵ)(2 − ϵ)(3− 2ϵ)

4(5− 4ϵ)
, (3.11)

in perfect agreement with eq. (3.8). We checked explicitly that our method reproduces

correctly the first ten terms of the soft expansion of the phase space volume for H + 2

partons.

As a second example we derive the subleading terms in the soft expansion of the

double real emission master integral X18. Unlike for the phase space volume, no result is

known for X18 valid to all orders in ϵ in general kinematics, but the integral was evaluated

explicitly up to O(ϵ) in terms of harmonic polylogarithms [69] in ref. [55, 67, 68]. We can

– 8 –
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NNLO example

• Using IBP identities:

phase space measure of eq. (2.16). In addition, the invariants appearing in the integrands

of the soft integrals are defined with respect to the rescaled momenta defined in eq. (2.6),

sij = (τipi + τjpj)
2 , τi =

{
−1 , if i = 1, 2 ,

+1 , if i = 3 . . . N .
(3.7)

Our method does not only allow us to compute the leading soft behavior, but we can

consistently expand around the soft limit z̄ = 0. In the following we show that we can

correctly reproduce the first few terms in the soft expansion of double and triple emission

phase space volumes, as well as for the NNLO master integral X18 of refs. [55, 67,68].

Let us start with the phase space volume for H +2 partons in the limit where the two

partons are soft. On the one hand, from eq. (3.2) we immediately see that Φ3 admits the

expansion

Φ3(z̄; ϵ) = z̄3−4ϵ ΦS
3 (ϵ)

∞∑

n=0

(1− ϵ)n(2− 2ϵ)n
(4− 4ϵ)n

z̄n

= z̄3−4ϵ ΦS
3 (ϵ)

[
1 +

1− ϵ

2
z̄ +

(1− ϵ)(2− ϵ)(3− 2ϵ)

4(5 − 4ϵ)
z̄2 +O(z̄3)

]
.

(3.8)

On the other hand, using eq. (2.13) we obtain the diagrammatic expansion

Φ3(z̄; ϵ) = z̄3−4ϵ

[

− z̄ + z̄2 +O(z̄3)

]

, (3.9)

where the dashed lines indicate numerator factors and dots represent additional powers

of the propagators or the numerators. The diagrams appearing in eq. (3.9) are in one-to-

one correspondence with the terms in the expansion (3.8). Indeed, IBP reduction of the

integrals in eq. (3.9) reveals

= −1− ϵ

2
, (3.10)

=
(1− ϵ)(2 − ϵ)(3− 2ϵ)

4(5− 4ϵ)
, (3.11)

in perfect agreement with eq. (3.8). We checked explicitly that our method reproduces

correctly the first ten terms of the soft expansion of the phase space volume for H + 2

partons.

As a second example we derive the subleading terms in the soft expansion of the

double real emission master integral X18. Unlike for the phase space volume, no result is

known for X18 valid to all orders in ϵ in general kinematics, but the integral was evaluated

explicitly up to O(ϵ) in terms of harmonic polylogarithms [69] in ref. [55, 67, 68]. We can

– 8 –

phase space measure of eq. (2.16). In addition, the invariants appearing in the integrands

of the soft integrals are defined with respect to the rescaled momenta defined in eq. (2.6),

sij = (τipi + τjpj)
2 , τi =

{
−1 , if i = 1, 2 ,

+1 , if i = 3 . . . N .
(3.7)

Our method does not only allow us to compute the leading soft behavior, but we can

consistently expand around the soft limit z̄ = 0. In the following we show that we can

correctly reproduce the first few terms in the soft expansion of double and triple emission

phase space volumes, as well as for the NNLO master integral X18 of refs. [55, 67,68].

Let us start with the phase space volume for H +2 partons in the limit where the two

partons are soft. On the one hand, from eq. (3.2) we immediately see that Φ3 admits the

expansion

Φ3(z̄; ϵ) = z̄3−4ϵ ΦS
3 (ϵ)

∞∑

n=0

(1− ϵ)n(2− 2ϵ)n
(4− 4ϵ)n

z̄n

= z̄3−4ϵ ΦS
3 (ϵ)

[
1 +

1− ϵ

2
z̄ +

(1− ϵ)(2− ϵ)(3− 2ϵ)

4(5 − 4ϵ)
z̄2 +O(z̄3)

]
.

(3.8)

On the other hand, using eq. (2.13) we obtain the diagrammatic expansion

Φ3(z̄; ϵ) = z̄3−4ϵ

[

− z̄ + z̄2 +O(z̄3)

]

, (3.9)

where the dashed lines indicate numerator factors and dots represent additional powers

of the propagators or the numerators. The diagrams appearing in eq. (3.9) are in one-to-

one correspondence with the terms in the expansion (3.8). Indeed, IBP reduction of the

integrals in eq. (3.9) reveals

= −1− ϵ

2
, (3.10)

=
(1− ϵ)(2 − ϵ)(3− 2ϵ)

4(5− 4ϵ)
, (3.11)

in perfect agreement with eq. (3.8). We checked explicitly that our method reproduces

correctly the first ten terms of the soft expansion of the phase space volume for H + 2

partons.

As a second example we derive the subleading terms in the soft expansion of the

double real emission master integral X18. Unlike for the phase space volume, no result is

known for X18 valid to all orders in ϵ in general kinematics, but the integral was evaluated

explicitly up to O(ϵ) in terms of harmonic polylogarithms [69] in ref. [55, 67, 68]. We can
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NNLO example

• Using IBP identities:

• To be compared with exact result:

phase space measure of eq. (2.16). In addition, the invariants appearing in the integrands

of the soft integrals are defined with respect to the rescaled momenta defined in eq. (2.6),

sij = (τipi + τjpj)
2 , τi =

{
−1 , if i = 1, 2 ,

+1 , if i = 3 . . . N .
(3.7)

Our method does not only allow us to compute the leading soft behavior, but we can

consistently expand around the soft limit z̄ = 0. In the following we show that we can

correctly reproduce the first few terms in the soft expansion of double and triple emission

phase space volumes, as well as for the NNLO master integral X18 of refs. [55, 67,68].

Let us start with the phase space volume for H +2 partons in the limit where the two

partons are soft. On the one hand, from eq. (3.2) we immediately see that Φ3 admits the

expansion

Φ3(z̄; ϵ) = z̄3−4ϵ ΦS
3 (ϵ)

∞∑

n=0

(1− ϵ)n(2− 2ϵ)n
(4− 4ϵ)n

z̄n

= z̄3−4ϵ ΦS
3 (ϵ)

[
1 +

1− ϵ

2
z̄ +

(1− ϵ)(2− ϵ)(3− 2ϵ)

4(5 − 4ϵ)
z̄2 +O(z̄3)

]
.

(3.8)

On the other hand, using eq. (2.13) we obtain the diagrammatic expansion

Φ3(z̄; ϵ) = z̄3−4ϵ

[

− z̄ + z̄2 +O(z̄3)

]

, (3.9)
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leading-order cross sections for H plus five partons. More details about the construction of

the amplitude in this limit will be given in Section 7. Here it suffices to say that we have

computed the squared amplitude and we have checked that in the limit where we only keep

the first two terms in the threshold expansion, all the phase space integrals can be reduced

to linear combinations of the following ten soft master integrals,
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1

2

1

2

=

∫
dΦS

4

(s23 + s24)(s24 + s25)s34s45
= ΦS

4 (ϵ)F10(ϵ) . (6.10)

We have normalized all the integrals to the soft phase space volume for H+3g defined

in eq. (3.16). In the remainder of this section we give the dimensional recurrence relations

satisfied by the master integrals and present the analytic results for each master integral

as a Laurent expansion in the dimensional regulator ϵ. Technical details about how to

compute the master integrals analytically will be given in Section 8.

6.2 Dimensional recurrence relations

Using the technique described in Section 4, we can derive dimensional recurrence relations

for all the master integrals defined in the previous section. The knowledge of these recur-

rence relations provides us with a strong check on our results. In addition, it turns out

that the master integral F9(D) is easier to compute in D = 6− 2ϵ dimensions, where it is

finite, and the dimensional recurrence relations allow us to relate the six-dimensional and

four-dimensional results in an easy way.

The recurrence relation for the soft phase space volume is trivial to obtain from the

recurrence relation for the Γ function,

ΦS
4 (D + 2) =

(D − 4)(D − 3)(D − 2)3

72(D − 1)(3D − 5)(3D − 4)(3D − 2)(3D − 1)

Γ(D − 4)

64π3Γ(D − 1)
ΦS
4 (D) . (6.11)

As we have defined all our master integrals relative to the phase space volume ΦS
4 , we can

simplify their recurrence relations by factoring out the above result. We therefore define

the ratio

R =
ND

3

ND+2
3

ΦS
4 (D + 2)

ΦS
4 (D)

=
(D − 4)(D − 3)(D − 2)3

72(D − 1)(3D − 5)(3D − 4)(3D − 2)(3D − 1)
, (6.12)

where N was defined in eq. (4.4). We give the results for the remaining master integrals

– 16 –

[Anastasiou, Dulat, CD, Mistlberger]
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• We were able to compute all the master integrals analytically.

• General strategy: 
➡ There is a canonical way to turn each of these 

integrals into a Mellin-Barnes integral.

8.4 The master integral F4

The integral F4 is defined by

ΦS
4 (ϵ)F4(ϵ) =

∫
dΦS

4

s13s15s34s45
. (8.16)

The integrand only contains two-particle invariants and we can immediately integrate out

the energy and angular variables in the usual way. We obtain a one-fold MB representation,

F4(ϵ) =
Γ(6− 6ϵ)Γ(−2ϵ)

ϵ4Γ(−6ϵ)Γ(−ϵ)2

∫ +i∞

−i∞

dz1
2πi

Γ (−z1)

× Γ (z1 + 1)2 Γ (z1 − 2ϵ)Γ (−z1 − ϵ− 1)Γ (z1 − ϵ+ 1)

Γ (z1 − 2ϵ+ 1)2
.

(8.17)

Closing the integration contour to the right and summing up residues at z1 = n and

z1 = −1− ϵ+ n, n ∈ N×, we immediately see that F4 can be expressed as a combination

of hypergeometric functions,

F4(ϵ) = −3Γ(6 − 6ϵ)Γ(1 − 2ϵ)

2ϵ4Γ(1− 6ϵ)

×
[
3Γ(1 − 2ϵ)Γ(ϵ+ 1)

(1 + 3ϵ)Γ(1 − 3ϵ) 3F2(−3ϵ− 1,−2ϵ,−ϵ;−3ϵ,−3ϵ; 1)

+
1

(1 + ϵ)Γ(1− 2ϵ) 4F3(1, 1, 1 − ϵ,−2ϵ; 1− 2ϵ, 1 − 2ϵ, 2 + ϵ; 1)

]

.

(8.18)

8.5 The master integral F6

The integral F6 contains two sums in the denominator, which we can replace by products

to the price of introducing two MB integrations,

ΦS
4 (ϵ)F6(ϵ) =

∫
dΦS

4

(s13 + s14)(s14 + s15)s23s34

=

∫ +i∞

−i∞

dz1dz2
(2πi)2

Γ (−z1)Γ (z1 + 1)Γ (−z2)Γ (z2 + 1)

∫
dΦS

4

s−z1
13 sz1+z2+2

14 s−z2
15 s23s34

.

(8.19)

We then proceed in the by now familiar way and integrate out the energies and the angles,

and we arrive at the following two-fold MB representation for F6,

F6(ϵ) =
Γ(6− 6ϵ)

ϵΓ(1− 6ϵ)Γ(1− ϵ)2

∫ +i∞

−i∞

dz1dz2
(2πi)2

Γ (−z1)Γ (z1 + 1)Γ (−z2)Γ (z2 + 1)

× Γ (−ϵ+ z1 − z2)Γ (z2 − ϵ)Γ (−2ϵ− z1 + z2)Γ (−ϵ− z1 + z2)

Γ (−ϵ+ z2 + 1)Γ (−2ϵ− z1 + z2 + 1)
.

(8.20)

Unlike in the previous cases, we were not able to reduce this integral for generic ϵ to

simple hypergeometric functions. We therefore only compute the Laurent expansion of the

integral. We proceed in the standard way: we apply the packages MB [90], MBresolve [91]

and barnesroutines [92] to resolve singularities in ϵ and to expand the resulting integrals

– 35 –

➡ All of the integrals can be computed as a Laurent 
series in dimensional regularization.

➡ One of the integrals required use of symbols and 
coproducts
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under the integration sign and apply Barnes’ lemmas in an automated way. The resulting

MB integrals are at most two-fold, and all of them can easily be done by closing the

contours to the right and summing up residues in terms of nested harmonic sums defined

recursively by [93]

Si(n) =
n∑

k=1

1

ki
and Si⃗ȷ(n) =

n∑

k=1

Sȷ⃗(k)

ki
. (8.21)

Note that in the limit n → ∞ harmonic sums immediately reduce to combinations of

multiple zeta values. The result for F6 reads

F6(ϵ) =
10

ϵ5
− 137

ϵ4
+

1

ϵ3

(
40 ζ2 + 675

)
+

1

ϵ2

(
320 ζ3 − 548 ζ2 − 1530

)

+
1

ϵ

(
1500 ζ4 − 4384 ζ3 + 2700 ζ2 + 1620

)
+ 5160 ζ5 + 320 ζ2 ζ3 − 20550 ζ4

+ 21600 ζ3 − 6120 ζ2 − 648 + ϵ
(
18340 ζ6 + 1280 ζ23 − 70692 ζ5 − 4384 ζ2 ζ3

+ 101250 ζ4 − 48960 ζ3 + 6480 ζ2
)
+O(ϵ2) .

(8.22)

8.6 The master integral F10

The integrand of F10 involves two sums in the denominator, so we start by introducing

two MB representations,

ΦS
4 (ϵ)F10(ϵ) =

∫
dΦS

4

(s23 + s24)(s24 + s25)s34s45

=

∫ +i∞

−i∞

dz1dz2
(2πi)2

Γ (−z1)Γ (z1 + 1)Γ (−z2)Γ (z2 + 1)

∫
dΦS

4

s−z1
23 s2+z1+z2

24 s−z2
25 s34s45

.

(8.23)

Integrating over the angles of the particles three and four yields two hypergeometric func-

tions, and we introduce an MB representation for each of them. Performing the integration

over the last angle, we obtain a four-fold MB representation for F10. Two integrations can

immediately be perfumed using Barnes’ lemmas, and we obtain

F10(ϵ) = 6
Γ(6− 6ϵ)

Γ(1− ϵ)3Γ(1− 6ϵ)

∫ +i∞

−i∞

dz2dz3
(2πi)2

Γ (−z2)Γ (−z3)Γ (z2 + 1)Γ (z3 + 1)

× Γ (−2ϵ− z2 − 1)Γ (−ϵ+ z2 + 1)Γ (−2ϵ− z3 − 1)Γ (−ϵ− z2 − z3 − 1)Γ (z3 − ϵ)

Γ (−2ϵ− z2)Γ (−2ϵ− z3)
.

(8.24)

After resolving the singularities in ϵ and expanding under the integration sign, all the

twofold integrals can be reduced to onefold integrals using Barnes’ lemmas and their corol-

laries. The remaining onefold integrals are trivial to compute by closing the contour and

summing up residues. We find,

F10(ϵ) = −120

ϵ4
+

2004

ϵ3
− 14112

ϵ2
+

1

ϵ

(
240 ζ3 + 60696

)
+ 1980 ζ4 − 4008 ζ3

− 201528 + ϵ
(
6960 ζ5 + 1680 ζ2 ζ3 − 33066 ζ4 + 28224 ζ3 + 612360

)

+ ϵ2
(
32700 ζ6 + 6840 ζ23 − 116232 ζ5 − 28056 ζ2 ζ3 + 232848 ζ4 − 121392 ζ3

− 1837080
)
+O(ϵ3) .

(8.25)
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• Intriguing observation: 
➡ All

all

• How can we be sure that we have obtained the correct 
results..?



!
!

!
!

Soft triple real emissions

• We can compute the Mellin-Barnes integrals numerically and 
compare to our analytic results.
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• We can compute the Mellin-Barnes integrals numerically and 
compare to our analytic results.

• The integrals in four dimensions are related to the integrals in 
six dimensions:

relative to R. The dimensional recurrence relations for the non-trivial master integrals are

F2(D + 2)R = − (D − 4)(7D − 18)

3(3D − 5)(3D − 4)
− (D − 4)2(3D − 10)

24(3D − 7)(3D − 5)(3D − 4)
F2(D) , (6.13)

F3(D + 2)R =

(
38 − 28D + 5D2

)

3(D − 4)(3D − 5)

− (D − 4)3(D − 3)

18(3D − 10)(3D − 8)(3D − 7)(3D − 5)
F3(D) , (6.14)

F4(D + 2)R = −
4
(
386− 387D + 128D2 − 14D3

)

(D − 4)2(D − 3)

− (D − 4)2(3D − 14)

24(3D − 11)(3D − 8)(3D − 7)
F4(D) , (6.15)

F5(D + 2)R = −
(D − 4)

(
4752 − 9636D + 6706D2 − 1962D3 + 207D4

)

72(D − 3)(D − 1)(3D − 10)(3D − 8)(3D − 5)

+
(D − 4)2(D − 2)

96(D − 1)(3D − 7)(3D − 5)
F5(D) , (6.16)

F6(D + 2)R =

(
4256 − 6684D + 4224D2 − 1345D3 + 216D4 − 14D5

)

3(D − 4)2(D − 3)(D − 2)2

+
(D − 4)(3D − 10)

9(D − 2)2(3D − 7)
F2(D) (6.17)

− (D − 4)3

24(D − 2)(3D − 11)(3D − 7)
F6(D) ,

F7(D + 2)R = − 4(2D − 7)

(D − 4)(D − 3)

+
(D − 4)4

72(3D − 11)(3D − 10)(3D − 8)(3D − 7)
F7(D) , (6.18)

F8(D + 2)R =
2
(
231 − 114D + 14D2

)

3(D − 4)(D − 3)
+

2(D − 4)2(7D − 24)

9(D − 3)(3D − 8)(3D − 7)
F2(D)

+
(D − 4)4

72(3D − 11)(3D − 10)(3D − 8)(3D − 7)
F8(D) , (6.19)

F9(D + 2)R =
2(3D − 7)

(
6672 − 7824D + 3460D2 − 684D3 + 51D4

)

3(D − 4)2(D − 3)2(3D − 10)

+
(D − 4)(3D − 10)(5D − 17)

12(D − 3)2(3D − 8)
F2(D) +

(D − 4)

6(D − 3)(3D − 8)
F5(D)

+
(D − 4)3(3D − 14)

96(D − 3)(3D − 13)(3D − 11)(3D − 8)
F9(D) , (6.20)

F10(D + 2)R = −
4
(
26− 39D + 16D2 − 2D3

)

(D − 4)2(D − 3)
− (D − 4)2(3D − 10)

3(D − 3)(3D − 8)(3D − 7)
F2(D)

− (D − 4)2(3D − 14)

24(3D − 11)(3D − 8)(3D − 7)
F10(D) . (6.21)

– 17 –

➡ Similar to dimensional shift identities for loops. [Tarasov]

• The integrals are finite in six dimensions.
➡ Strong constraint!
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• The integrals immediately allow us to write down the first two 
terms in the soft expansion of the cross section, e.g.,

In the case that two final-state partons are a quark anti-quark pair we sum over all

possible quark flavours and obtain a factor Nf . The corresponding cross-section is then

given by

σS(0)g g→H+g q q̄ =
1

8(1 − ϵ)2(N2
c − 1)2

(4παS)
3ΦS

4 (ϵ)CACF c
2
HNf (7.6)

×
{

C2
A

[
F1(ϵ)32

1

(3 − 2ϵ)2(ϵ− 1)ϵ4(ϵ+ 1)(2ϵ − 1)

×
(
288ϵ11 − 18288ϵ10 + 129712ϵ9 − 347128ϵ8 + 408738ϵ7 − 107919ϵ6

−271140ϵ5 + 359705ϵ4 − 210605ϵ3 + 66680ϵ2 − 10853ϵ + 690
)

+ F2(ϵ)
32

3

(
−108ϵ6 + 180ϵ5 − 201ϵ4 − 14ϵ3 + 67ϵ2 − 22ϵ+ 2

−4ϵ5 + 8ϵ4 + ϵ3 − 8ϵ2 + 3ϵ

)

− F5(ϵ)32
ϵ− 6ϵ2

−2ϵ2 + ϵ+ 3

]

− F1(ϵ)64
72ϵ7 − 396ϵ6 + 982ϵ5 − 1377ϵ4 + 1134ϵ3 − 527ϵ2 + 122ϵ− 10

ϵ4(2ϵ− 3)

}

=
25

37
1

8(N2
c − 1)2

(4παS)
3ΦS

4 (ϵ)CACF c
2
HNf

×
{

153090

ϵ4
− 1604043

ϵ3
+

1

ϵ2
(
− 29160ζ2 + 4903902

)

+
1

ϵ

(
− 204120ζ3 + 321732ζ2 − 4833675

)
− 874800ζ4 + 2252124ζ3 − 911088ζ2

+ 203535 + ϵ
(
− 2711880ζ5 − 233280ζ2ζ3 + 9651960ζ4 − 6290136ζ3 − 492210ζ2

+ 1667109
)
+ ϵ2

(
− 9360360ζ6 − 816480ζ23 + 29921076ζ5 + 2573856ζ2ζ3

− 26589060ζ4 − 4323186ζ3 + 4693212ζ2 + 1294731
)

+ 2CACF

[
167670

ϵ4
− 1743039

ϵ3
+

1

ϵ2
(
− 29160ζ2 + 5267592

)
+

1

ϵ

(
− 204120ζ3

+ 321732ζ2 − 5183163
)
− 874800ζ4 + 2252124ζ3 − 911088ζ2 + 337959

+ ϵ
(
− 2711880ζ5 − 233280ζ2ζ3 + 9651960ζ4 − 6290136ζ3 − 492210ζ2 + 1651749

)

+ ϵ2
(
− 9360360ζ6 − 816480ζ23 + 29921076ζ5 + 2573856ζ2ζ3 − 26589060ζ4

− 4323186ζ3 + 4693212ζ2 + 1284491
)
]

+O(ϵ3)

}

.

In the soft limit only the processes with gluons in the initial state contribute. All other

contributions containing at least one (anti-) quark in the initial state vanish in this limit.

This can be understood in terms of soft factorisation: there is no born-level process with

a massless initial state fermion in Higgs production.
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− 9360360ζ6 − 816480ζ23 + 29921076ζ5 + 2573856ζ2ζ3

− 26589060ζ4 − 4323186ζ3 + 4693212ζ2 + 1294731
)

+ 2CACF

[
167670

ϵ4
− 1743039

ϵ3
+

1

ϵ2
(
− 29160ζ2 + 5267592

)
+

1

ϵ

(
− 204120ζ3

+ 321732ζ2 − 5183163
)
− 874800ζ4 + 2252124ζ3 − 911088ζ2 + 337959

+ ϵ
(
− 2711880ζ5 − 233280ζ2ζ3 + 9651960ζ4 − 6290136ζ3 − 492210ζ2 + 1651749

)

+ ϵ2
(
− 9360360ζ6 − 816480ζ23 + 29921076ζ5 + 2573856ζ2ζ3 − 26589060ζ4

− 4323186ζ3 + 4693212ζ2 + 1284491
)
]

+O(ϵ3)

}

.

In the soft limit only the processes with gluons in the initial state contribute. All other

contributions containing at least one (anti-) quark in the initial state vanish in this limit.

This can be understood in terms of soft factorisation: there is no born-level process with

a massless initial state fermion in Higgs production.
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[Anastasiou, Dulat, 
CD, Mistlberger]
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• Subprocesses:

Double-virtual-real emission

{Soft-virtual Next-to-soft-virtual

• The phase space is trivial (2-body phase space).

g g ! H g g q ! H q q q̄ ! H g{
• If the final-state gluon is soft

into the soft current:

• The soft current had previously been computed
➡ at one loop.	



➡ at two loops, up to finite terms.

• At N3LO, we need higher-order terms at two loops.

[Catani, Grazzini

[Badger, Glover

|M(L)(g g ! H g)i =
LX

k=0

"µ Ja(k)
µ |M(L�k)(g g ! H)i
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• Two parallel computations of these higher-order terms (for the 
interference with the Born soft current):

The two-loop soft current

➡ Two-loop Wilson line computation up to weight 6.	



➡ Extraction from the two-loop matrix element for             
to all orders in epsilon. 

�⇤ ! q q̄ g

[Li, Zhu

[CD, Gehrmann
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• Two parallel computations of these higher-order terms (for the 
interference with the Born soft current):

The two-loop soft current

• Method: 
integrals as an expansion in the soft limit while keeping the 
coefficients exact in epsilon:

➡ Two-loop Wilson line computation up to weight 6.	



➡ Extraction from the two-loop matrix element for             
to all orders in epsilon. 

�⇤ ! q q̄ g

[Li, Zhu

[CD, Gehrmann
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To obtain the two-loop coefficient r(2)soft to all orders in
ϵ, we return to the differential equations (15) and con-
struct for each master integral a power series solution in
y and z close to the origin (y, z) = (0, 0) in the (y, z)
plane. The differential equations may, however, have
poles whenever y or z vanish, translating into branch-
ing points for the master integrals starting from points
where one of the two expansion parameters is zero. In
other words, the solutions to eq. (15) are not meromor-
phic in a neighborhood of the origin of the (y, z) plane,
and so we cannot make a simple Laurent series ansatz in
y and z for the master integrals. The correct ansatz for
each master integral rather takes the form

Fi(y, z; ϵ) =
2

∑

m,n=0

y−mϵ z−nϵ fi,mn(y, z; ϵ) , (16)

where the fi,mn(y, z; ϵ) are meromorphic in a neighbor-
hood of the origin. As such they admit a Laurent series
expansion,

fi,mn(y, z; ϵ) =
∞
∑

k=ry

∞
∑

l=rz

ckli,mn(ϵ) y
k zl , (17)

where the ckli,mn(ϵ) are meromorphic functions of ϵ and
ry, rz ∈ Z. Inserting the ansätze (16) and (17) into the
differential equations (15) and expanding the functions
Ak

ij(y, z; ϵ) into a Laurent series around the origin, we

obtain a linear system for the coefficients ckli,mn(ϵ). The
solution to the linear system then provides us with the
desired (truncated) Laurent series solution close to the
origin. Since we did not expand in ϵ at any stage, the
solutions for the coefficients are exact in ϵ.
Since eq. (15) is a system of first-order differential

equations, one coefficient per master integral is related
to boundary conditions, and thus not fixed by solving
the linear system. In many cases the boundary condition

can either be inferred because the homogeneous solution
does not take the form (16) or by requiring consistency
when solving the linear system. In the remaining cases,
an explicit integral representation for the leading term in
the soft expansion of the integral can be derived using
the technique of expansion by regions [9], which allows
one to compute asymptotic expansions of Feynman in-
tegrals when some of the external parameters are small.
The initial condition for a given master integral can then
be fixed by requiring the leading term of the general so-
lution to the differential equation to agree with the result
obtained from expansion by regions.
We have applied this strategy to obtain the first few

terms in the expansion of all the master integrals in a
neighborhood of the origin. We have checked that in all
cases our results agree, after expanding the coefficients
ckli,mn(ϵ) in ϵ, with the soft expansion of the known results
for the master integrals [8] in terms of two-dimensional
harmonic polylogarithms.
Having obtained the expansions of all master integrals

in the soft limit, we can immediately extract the function

r
(2)
soft from the two-loop matrix element for γ∗ → QQ̄g.
After inserting the expansions of the master integrals in
the soft limit, we see that the leading term of the expan-
sion takes the form

⟨M(0)
3 |M(2)

3 ⟩ ≃
2

∑

k=0

Ak(ϵ) y
−1−kϵ z−1−kϵ , (18)

in agreement with eq. (12). Comparing eq. (18) to
eq. (12), we can read off the result for the two-loop co-

efficient r
(2)
soft. Amazingly, we observe that only planar

master integrals contribute to r
(2)
soft. We obtain,

r
(2)
soft = N Nf R1(ϵ) +N2R2(ϵ) , (19)

with

R1(ϵ) =
2Γ(−2ϵ)

(1 + ϵ)Γ(4− 2ϵ)

Γ(1− 2ϵ)2 Γ(1 + 2ϵ)2

Γ(1− ϵ)2Γ(1 + ϵ)2

[

3
Γ(1− ϵ)Γ(1− 2ϵ)

Γ(1− 3ϵ)
−

(

1 + ϵ3
)

ϵ2 (1 + ϵ)

Γ(1− 2ϵ)2

Γ(1 − 4ϵ)

]

, (20)

R2(ϵ) =
Γ(1− 2ϵ)3Γ(1 + 2ϵ)2

6 ϵ4 Γ(1− ϵ)Γ(1 + ϵ)2Γ(1− 3ϵ)

{

(1 + 4ϵ) 4F3(1, 1, 1− ϵ,−4ϵ; 2, 1− 3ϵ, 1− 2ϵ; 1) (21)

− 6ϵ
[

ψ(1− 3ϵ) + ψ(1 − 2ϵ)− ψ(1− ϵ)− ψ(1 + ϵ)
]

+

(

14ϵ3 + 4ϵ2 + 5ϵ− 3
)

2(1 + ϵ)(3− 2ϵ)(1− 2ϵ)

}

+
(1 + 4ϵ)

3 ϵ4 (1 + 2ϵ)

Γ(1− 2ϵ)4Γ(1 + 2ϵ)2

Γ(1− ϵ)2Γ(1 + ϵ)2Γ(1− 4ϵ)

{

2 3F2(1,−2ϵ, 2ϵ+ 1; 1− ϵ, 2ϵ+ 2; 1)

−
Γ(1 + ϵ)Γ(1− 2ϵ)

Γ(1− ϵ)
3F2(−2ϵ, ϵ+ 1, 2ϵ+ 1; 1− ϵ, 2ϵ+ 2; 1) +

(1 + 2ϵ)
(

6ϵ4 + 13ϵ3 − 16ϵ2 − 38ϵ+ 3
)

4(1 + 4ϵ)(1 + ϵ)(3− 2ϵ)(1− 2ϵ)

}

,
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To obtain the two-loop coefficient r(2)soft to all orders in
ϵ, we return to the differential equations (15) and con-
struct for each master integral a power series solution in
y and z close to the origin (y, z) = (0, 0) in the (y, z)
plane. The differential equations may, however, have
poles whenever y or z vanish, translating into branch-
ing points for the master integrals starting from points
where one of the two expansion parameters is zero. In
other words, the solutions to eq. (15) are not meromor-
phic in a neighborhood of the origin of the (y, z) plane,
and so we cannot make a simple Laurent series ansatz in
y and z for the master integrals. The correct ansatz for
each master integral rather takes the form

Fi(y, z; ϵ) =
2

∑

m,n=0

y−mϵ z−nϵ fi,mn(y, z; ϵ) , (16)

where the fi,mn(y, z; ϵ) are meromorphic in a neighbor-
hood of the origin. As such they admit a Laurent series
expansion,

fi,mn(y, z; ϵ) =
∞
∑

k=ry

∞
∑

l=rz

ckli,mn(ϵ) y
k zl , (17)

where the ckli,mn(ϵ) are meromorphic functions of ϵ and
ry, rz ∈ Z. Inserting the ansätze (16) and (17) into the
differential equations (15) and expanding the functions
Ak

ij(y, z; ϵ) into a Laurent series around the origin, we

obtain a linear system for the coefficients ckli,mn(ϵ). The
solution to the linear system then provides us with the
desired (truncated) Laurent series solution close to the
origin. Since we did not expand in ϵ at any stage, the
solutions for the coefficients are exact in ϵ.
Since eq. (15) is a system of first-order differential

equations, one coefficient per master integral is related
to boundary conditions, and thus not fixed by solving
the linear system. In many cases the boundary condition

can either be inferred because the homogeneous solution
does not take the form (16) or by requiring consistency
when solving the linear system. In the remaining cases,
an explicit integral representation for the leading term in
the soft expansion of the integral can be derived using
the technique of expansion by regions [9], which allows
one to compute asymptotic expansions of Feynman in-
tegrals when some of the external parameters are small.
The initial condition for a given master integral can then
be fixed by requiring the leading term of the general so-
lution to the differential equation to agree with the result
obtained from expansion by regions.
We have applied this strategy to obtain the first few

terms in the expansion of all the master integrals in a
neighborhood of the origin. We have checked that in all
cases our results agree, after expanding the coefficients
ckli,mn(ϵ) in ϵ, with the soft expansion of the known results
for the master integrals [8] in terms of two-dimensional
harmonic polylogarithms.
Having obtained the expansions of all master integrals

in the soft limit, we can immediately extract the function

r
(2)
soft from the two-loop matrix element for γ∗ → QQ̄g.
After inserting the expansions of the master integrals in
the soft limit, we see that the leading term of the expan-
sion takes the form

⟨M(0)
3 |M(2)

3 ⟩ ≃
2

∑

k=0

Ak(ϵ) y
−1−kϵ z−1−kϵ , (18)

in agreement with eq. (12). Comparing eq. (18) to
eq. (12), we can read off the result for the two-loop co-

efficient r
(2)
soft. Amazingly, we observe that only planar

master integrals contribute to r
(2)
soft. We obtain,

r
(2)
soft = N Nf R1(ϵ) +N2R2(ϵ) , (19)

with

R1(ϵ) =
2Γ(−2ϵ)

(1 + ϵ)Γ(4− 2ϵ)

Γ(1− 2ϵ)2 Γ(1 + 2ϵ)2

Γ(1− ϵ)2Γ(1 + ϵ)2

[

3
Γ(1− ϵ)Γ(1− 2ϵ)

Γ(1− 3ϵ)
−

(

1 + ϵ3
)

ϵ2 (1 + ϵ)

Γ(1− 2ϵ)2

Γ(1 − 4ϵ)

]

, (20)

R2(ϵ) =
Γ(1− 2ϵ)3Γ(1 + 2ϵ)2

6 ϵ4 Γ(1− ϵ)Γ(1 + ϵ)2Γ(1− 3ϵ)

{

(1 + 4ϵ) 4F3(1, 1, 1− ϵ,−4ϵ; 2, 1− 3ϵ, 1− 2ϵ; 1) (21)

− 6ϵ
[

ψ(1− 3ϵ) + ψ(1 − 2ϵ)− ψ(1− ϵ)− ψ(1 + ϵ)
]

+

(

14ϵ3 + 4ϵ2 + 5ϵ− 3
)

2(1 + ϵ)(3− 2ϵ)(1− 2ϵ)

}

+
(1 + 4ϵ)

3 ϵ4 (1 + 2ϵ)

Γ(1− 2ϵ)4Γ(1 + 2ϵ)2

Γ(1− ϵ)2Γ(1 + ϵ)2Γ(1− 4ϵ)

{

2 3F2(1,−2ϵ, 2ϵ+ 1; 1− ϵ, 2ϵ+ 2; 1)

−
Γ(1 + ϵ)Γ(1− 2ϵ)

Γ(1− ϵ)
3F2(−2ϵ, ϵ+ 1, 2ϵ+ 1; 1− ϵ, 2ϵ+ 2; 1) +

(1 + 2ϵ)
(

6ϵ4 + 13ϵ3 − 16ϵ2 − 38ϵ+ 3
)

4(1 + 4ϵ)(1 + ϵ)(3− 2ϵ)(1− 2ϵ)

}
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• The two-loop soft current to all orders in dimensional 
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To obtain the two-loop coefficient r(2)soft to all orders in
ϵ, we return to the differential equations (15) and con-
struct for each master integral a power series solution in
y and z close to the origin (y, z) = (0, 0) in the (y, z)
plane. The differential equations may, however, have
poles whenever y or z vanish, translating into branch-
ing points for the master integrals starting from points
where one of the two expansion parameters is zero. In
other words, the solutions to eq. (15) are not meromor-
phic in a neighborhood of the origin of the (y, z) plane,
and so we cannot make a simple Laurent series ansatz in
y and z for the master integrals. The correct ansatz for
each master integral rather takes the form

Fi(y, z; ϵ) =
2

∑

m,n=0

y−mϵ z−nϵ fi,mn(y, z; ϵ) , (16)

where the fi,mn(y, z; ϵ) are meromorphic in a neighbor-
hood of the origin. As such they admit a Laurent series
expansion,

fi,mn(y, z; ϵ) =
∞
∑

k=ry

∞
∑

l=rz

ckli,mn(ϵ) y
k zl , (17)

where the ckli,mn(ϵ) are meromorphic functions of ϵ and
ry, rz ∈ Z. Inserting the ansätze (16) and (17) into the
differential equations (15) and expanding the functions
Ak

ij(y, z; ϵ) into a Laurent series around the origin, we

obtain a linear system for the coefficients ckli,mn(ϵ). The
solution to the linear system then provides us with the
desired (truncated) Laurent series solution close to the
origin. Since we did not expand in ϵ at any stage, the
solutions for the coefficients are exact in ϵ.
Since eq. (15) is a system of first-order differential

equations, one coefficient per master integral is related
to boundary conditions, and thus not fixed by solving
the linear system. In many cases the boundary condition

can either be inferred because the homogeneous solution
does not take the form (16) or by requiring consistency
when solving the linear system. In the remaining cases,
an explicit integral representation for the leading term in
the soft expansion of the integral can be derived using
the technique of expansion by regions [9], which allows
one to compute asymptotic expansions of Feynman in-
tegrals when some of the external parameters are small.
The initial condition for a given master integral can then
be fixed by requiring the leading term of the general so-
lution to the differential equation to agree with the result
obtained from expansion by regions.
We have applied this strategy to obtain the first few

terms in the expansion of all the master integrals in a
neighborhood of the origin. We have checked that in all
cases our results agree, after expanding the coefficients
ckli,mn(ϵ) in ϵ, with the soft expansion of the known results
for the master integrals [8] in terms of two-dimensional
harmonic polylogarithms.
Having obtained the expansions of all master integrals
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r
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soft from the two-loop matrix element for γ∗ → QQ̄g.
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3 |M(2)
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2

∑

k=0

Ak(ϵ) y
−1−kϵ z−1−kϵ , (18)

in agreement with eq. (12). Comparing eq. (18) to
eq. (12), we can read off the result for the two-loop co-

efficient r
(2)
soft. Amazingly, we observe that only planar

master integrals contribute to r
(2)
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r
(2)
soft = N Nf R1(ϵ) +N2R2(ϵ) , (19)

with

R1(ϵ) =
2Γ(−2ϵ)

(1 + ϵ)Γ(4− 2ϵ)

Γ(1− 2ϵ)2 Γ(1 + 2ϵ)2

Γ(1− ϵ)2Γ(1 + ϵ)2

[

3
Γ(1− ϵ)Γ(1− 2ϵ)

Γ(1− 3ϵ)
−

(

1 + ϵ3
)

ϵ2 (1 + ϵ)

Γ(1− 2ϵ)2

Γ(1 − 4ϵ)

]

, (20)

R2(ϵ) =
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6 ϵ4 Γ(1− ϵ)Γ(1 + ϵ)2Γ(1− 3ϵ)

{
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]

+
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)
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}
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To obtain the two-loop coefficient r(2)soft to all orders in
ϵ, we return to the differential equations (15) and con-
struct for each master integral a power series solution in
y and z close to the origin (y, z) = (0, 0) in the (y, z)
plane. The differential equations may, however, have
poles whenever y or z vanish, translating into branch-
ing points for the master integrals starting from points
where one of the two expansion parameters is zero. In
other words, the solutions to eq. (15) are not meromor-
phic in a neighborhood of the origin of the (y, z) plane,
and so we cannot make a simple Laurent series ansatz in
y and z for the master integrals. The correct ansatz for
each master integral rather takes the form

Fi(y, z; ϵ) =
2

∑

m,n=0

y−mϵ z−nϵ fi,mn(y, z; ϵ) , (16)

where the fi,mn(y, z; ϵ) are meromorphic in a neighbor-
hood of the origin. As such they admit a Laurent series
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fi,mn(y, z; ϵ) =
∞
∑

k=ry

∞
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k zl , (17)

where the ckli,mn(ϵ) are meromorphic functions of ϵ and
ry, rz ∈ Z. Inserting the ansätze (16) and (17) into the
differential equations (15) and expanding the functions
Ak
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obtain a linear system for the coefficients ckli,mn(ϵ). The
solution to the linear system then provides us with the
desired (truncated) Laurent series solution close to the
origin. Since we did not expand in ϵ at any stage, the
solutions for the coefficients are exact in ϵ.
Since eq. (15) is a system of first-order differential

equations, one coefficient per master integral is related
to boundary conditions, and thus not fixed by solving
the linear system. In many cases the boundary condition

can either be inferred because the homogeneous solution
does not take the form (16) or by requiring consistency
when solving the linear system. In the remaining cases,
an explicit integral representation for the leading term in
the soft expansion of the integral can be derived using
the technique of expansion by regions [9], which allows
one to compute asymptotic expansions of Feynman in-
tegrals when some of the external parameters are small.
The initial condition for a given master integral can then
be fixed by requiring the leading term of the general so-
lution to the differential equation to agree with the result
obtained from expansion by regions.
We have applied this strategy to obtain the first few

terms in the expansion of all the master integrals in a
neighborhood of the origin. We have checked that in all
cases our results agree, after expanding the coefficients
ckli,mn(ϵ) in ϵ, with the soft expansion of the known results
for the master integrals [8] in terms of two-dimensional
harmonic polylogarithms.
Having obtained the expansions of all master integrals

in the soft limit, we can immediately extract the function

r
(2)
soft from the two-loop matrix element for γ∗ → QQ̄g.
After inserting the expansions of the master integrals in
the soft limit, we see that the leading term of the expan-
sion takes the form

⟨M(0)
3 |M(2)

3 ⟩ ≃
2

∑
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Ak(ϵ) y
−1−kϵ z−1−kϵ , (18)

in agreement with eq. (12). Comparing eq. (18) to
eq. (12), we can read off the result for the two-loop co-

efficient r
(2)
soft. Amazingly, we observe that only planar

master integrals contribute to r
(2)
soft. We obtain,
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with
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)
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{
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− 6ϵ
[
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]

+

(
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)
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}

+
(1 + 4ϵ)
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• The soft-virtual RVV contribution to Higgs@N3LO is easily 
obtained from this by multiplying by the phase space.
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Real-virtual squared
• Contribution from one-loop-squared can easily be computed 

exactly.

[Anastasiou, CD, Dulat, Herzog, Mistlberger]

• We did the computation in four different ways:
➡ Threshold expansion by expanding hypergeometric 

functions.	



➡ Threshold expansion from expansion by regions.	



➡ Reverse-unitarity and differential equations.	



➡ Direct integration of the matrix element over phase space.

• Confirmed by independent computation. [Kilgore]

• Full two-loop matrix element is also known.
➡ Can be done in the same way, but need two-loop collinear 

counterterms.

[Glover, Gehrmann, 
Jaquier, Koukoutsakis



!
!

!
Soft virtual-double-real

emissions

!
!

!



!
!

!
!

• Subprocesses:

Virtual-double-real emission

g g ! H g g

g g ! H q q̄

g q ! H g q q q̄ ! H g g

q q̄ ! H q q̄

q q̄ ! H QQ̄

q q ! H q q

q Q ! H qQ

q Q̄ ! H q Q̄



!
!

!
!

• Subprocesses:

Virtual-double-real emission

• The soft-virtual term receives contributions from two regions:

• The hard region is trivial (tree-level emission of two soft 
gluons).

g g ! H g g

g g ! H q q̄

g q ! H g q q q̄ ! H g g

q q̄ ! H q q̄

q q̄ ! H QQ̄

q q ! H q q

q Q ! H qQ

q Q̄ ! H q Q̄

➡ The virtual gluon is hard.	



➡ The virtual gluon is soft.

• The soft region can be dealt with in a way similar to the soft 
triple real emission.

➡ IBP reduction in soft limit and soft master integrals.



!
!

!
!

VRR soft master integrals

because the virtual integral is scaleless for a soft loop momentum. In addition, we have

the following relations:
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M4 = M8[k → k + p3] ,

M6 = M16[p1 ↔ p2][k → k + p3]

= M18[p3 ↔ p4][k → −k − p3] ,

M12 = M13[p1 ↔ p2; p3 ↔ p4][k → −k]

= M25[p3 ↔ p4][k → k − p3] ,

M15 = M20[p1 ↔ p2][k → −k − p4] ,

M19 = M21[p1 ↔ p2; p3 ↔ p4][k → −k] ,

M23 = M30[p3 ↔ p4][k → k − p3 + p4] .

(6.2)

This leaves us with the following 10 master integrals to compute:

M1 =
1

1

2
2

=

∫

dΦS
3 Box1m,S1(s23, s13,m

2
H) ,

M2 =

1

2
2

1
=

∫

dΦS
3 Tri3m,S(s13, s24,m

2
H) ,

M4 =

11

22

=

∫

dΦS
3 Bub(s34) ,

M6 =

11

22

=

∫

dΦS
3

s13
Box1m,S2(s34, s24, s23 + s24) ,

M10 =
1

1

2
2

=

∫

dΦS
3 Box2me,S(s23 + s24, s13 + s14, s34,m

2
H) ,

M12 =

1

2

2

1

=

∫

dΦS
3

s23
Box2mh,S(s13, s23 + s24, s24,m

2
H) ,
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22
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∫

dΦS
3

s13 s24
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2
2
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∫

dΦS
3

s34
Tri3m,S(s13, s24,m

2
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1
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∫

dΦS
3

s13 s34
Box2mh,S(s24, s13 + s14, s13,m

2
H) ,

M23 =

1

2

1

2

=

∫

dΦS
3

s13 s24 s34
Box2me,S(s23 + s24, s13 + s14, s34,m

2
H) ,

The double line denotes the Higgs boson, and the dashed line represents the phase-

space cut. All other internal uncut lines are scalar propagators. Note that, by construction,

the loop momentum is always soft, and so we work in the eikonal approximation. The soft

phase-space measure is given by [?]

dΦS
3 =

1

2π
δ+(p

2
12 − 2p12 · p34)

dDp3
(2π)D−1

dDp4
(2π)D−1

δ+(p
2
3)δ+(p

2
4) . (6.3)

! CD: check normalisation.

Note that we work with the rescaled momenta pi, defined by [?]

qi = z̄ pi . (6.4)

The virtual one-loop integral appearing inside the master integrals are defined as follows:

We know that the soft virtual term of the RRV cross section can only receive contributions

from the tree-level and one-loop soft-currents for the emission of two soft gluons, where

the soft limit is defined by the scaling (6.4). The one-loop correction to the soft-current

only receives contributions from eikonal virtual gluons, which correspond to the soft region

of the loop momentum, k ∼ z̄. The loop-integration measure then scales like dDk ∼ z̄−2ϵ.

Hence, the virtual integrals correspond to the leading term of region with scaling z̄−2ϵ. We

use the code [?, ?] to identify regions in Feynman parameter space corresponding to the

scaling (6.4), and we only keep the leading term of the region with overall scaling z̄−2ϵ. In

all cases, the result is a parametric integral the is trivial to perform. In the following we

summarise the virtual integral that enter our master integrals. We only present the result
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because the virtual integral is scaleless for a soft loop momentum. In addition, we have

the following relations:

M2 = M7[p1 ↔ p2; p3 ↔ p4][k → −k − p3] ,

M4 = M8[k → k + p3] ,

M6 = M16[p1 ↔ p2][k → k + p3]

= M18[p3 ↔ p4][k → −k − p3] ,

M12 = M13[p1 ↔ p2; p3 ↔ p4][k → −k]

= M25[p3 ↔ p4][k → k − p3] ,

M15 = M20[p1 ↔ p2][k → −k − p4] ,

M19 = M21[p1 ↔ p2; p3 ↔ p4][k → −k] ,

M23 = M30[p3 ↔ p4][k → k − p3 + p4] .

(6.2)

This leaves us with the following 10 master integrals to compute:

M1 =
1

1

2
2

=

∫

dΦS
3 Box1m,S1(s23, s13,m

2
H) ,

M2 =

1

2
2

1
=

∫

dΦS
3 Tri3m,S(s13, s24,m

2
H) ,

M4 =

11

22

=

∫

dΦS
3 Bub(s34) ,

M6 =

11

22

=

∫

dΦS
3

s13
Box1m,S2(s34, s24, s23 + s24) ,

M10 =
1

1

2
2

=

∫

dΦS
3 Box2me,S(s23 + s24, s13 + s14, s34,m

2
H) ,

M12 =

1

2

2

1

=

∫

dΦS
3

s23
Box2mh,S(s13, s23 + s24, s24,m

2
H) ,
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– 19 –• All integrals can be computed by combining the soft expansion 
for the virtuals with the phase space techniques developed for 
the triple real emission.All the integrations are trivial, and we obtain

M10 = − 4Γ(4 − 4ϵ)Γ(1 − 3ϵ)

ϵ(1 + ϵ)(1− 2ϵ)Γ(3 − 6ϵ)Γ(1− ϵ) 3F2(1, 1, 1 − ϵ; 2− 3ϵ, 2 + ϵ; 1)

= −12ζ2
ϵ

− 8ζ2 − 36ζ3 + (−112ζ2 − 24ζ3 + 33ζ4) ϵ+ (720ζ3ζ2 − 672ζ2

−336ζ3 + 22ζ4 − 450ζ5) ϵ
2 +

(

1512ζ23 + 480ζ2ζ3 − 2016ζ3 − 4032ζ2 + 308ζ4

−300ζ5 +
16881

4
ζ6

)

ϵ3 +O(ϵ4) .

(6.23)

We are finally left with the computation of the master integral M23. The virtual part

of the integral is the same as for M10, and therefore the hierarchical parametrisation seems

appropriate in this case as well (as the argument of the 2F1 coming form the two-mass easy

box is simply 1 − x2). However, unlike M10, the invariants s13 and s14 appear explicitly,

and not only in the combination s13 + s14. As a consequence, the integration over x4 is no

longer trivial, but gives rise to a 2F1 whose argument is a complicated algebraic function

of x2 and x3. In the rest of this section we discuss the computation of M23 in detail, based

on a deformation of the hierarchical parametrisation such that the arguments of both 2F1

functions are simple.

6.1 The master integral M23

We start from the soft hierarchical parametrisation, eq. (6.21) and (6.22) and we perform

the change of variables

x3 → y =

√

x̄2 x3
x̄3 x2

. (6.24)

The invariants and the soft phase space measure then become

s34 = x1x2x̄1 , s23 = − x2y2x̄1
1− x2 (1− y2)

, s24 = − x̄1x̄2
1− x2 (1− y2)

,

s13 = − x1x2x̄2
1− x2 (1− y2)

[

1 + y2 − 2y cos (πx4)
]

,

s14 = − x1
1− x2 (1− y2)

[

1− 2x2 + x22
(

1 + y2
)

+ 2x2yx̄2 cos (πx4)
]

,

dΦS
3 =

4−ϵ

(4π)3−2ϵ Γ(1− 2ϵ)
[x1 x2 x̄1 x̄2 y]

1−2ϵ [1− x2
(

1− y2
)]−2+2ϵ

× sin−2ϵ (πx4) dyΘ(y)
4
∏

i=1
i ̸=3

dxi Θ(xi)Θ(x̄i) .

(6.25)

Note that integration over y ranges over [0,∞].

Inserting this parametrisation, and integrating over x1 and x4, we obtain

M23 =
1

(4π)3−2ϵ

8(1 + 6ϵ)Γ(1 − 3ϵ)2Γ(1− ϵ) Γ(1 + ϵ)2

3ϵ2(1 + ϵ)(1 + 3ϵ) Γ(1− 6ϵ)Γ(1− 2ϵ)2Γ(1 + 2ϵ)
I(ϵ) , (6.26)
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This leaves us with the following 10 master integrals to compute:

M1 =
1

1

2
2

=

∫

dΦS
3 Box1m,S1(s23, s13,m

2
H) ,

M2 =

1

2
2

1
=

∫

dΦS
3 Tri3m,S(s13, s24,m

2
H) ,

M4 =

11

22

=

∫

dΦS
3 Bub(s34) ,

M6 =

11

22

=

∫

dΦS
3

s13
Box1m,S2(s34, s24, s23 + s24) ,

M10 =
1

1

2
2

=

∫

dΦS
3 Box2me,S(s23 + s24, s13 + s14, s34,m

2
H) ,

M12 =

1

2

2

1

=

∫

dΦS
3

s23
Box2mh,S(s13, s23 + s24, s24,m

2
H) ,

– 19 –• Results recently confirmed by independent computation using 
Wilson lines.

[Anastasiou, CD, Dulat, Furlan, Herzog, Mistlberger

[Li, von Manteuffel, Schabinger, Zhu
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N3LO status: soft-virtual

Triple virtual

Double real 
virtual

Real-virtual 
squared

Double virtual 
real

Triple real

✓ +

✓a ✓a ✓a

✓a ✓a
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• The 

• The soft-virtual term receives contributions from a ‘pole’ 
at           :z ⇠ 1

• Plus-distribution terms already known.

The soft-virtual approximation

(1� z)�1+n✏
=

�(1� z)

n ✏
+


1

1� z

�

+

+ n✏


log(1� z)

1� z

�

+

+O(✏2)

�̂(z) = ��1 + �0 + (1� z)�1 +O(1� z)2

[Moch, Vogt

• Complete three-loop corrections are contained the delta 
function term.
➡ The soft-virtual term contains the complete three-loop 

corrections plus the correction from the emission of up to 
three soft gluons.
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• At NLO and NNLO, the soft-virtual term reads (                      )

The soft-virtual approximation

2

an effective theory where the top quark has been inte-
grated out, and the Higgs boson couples directly to the
gluons via the effective operator

Leff = −
1

4v
C(µ2)H Ga

µν G
µν
a , (2)

where v ≃ 246 GeV is the vacuum expectation value of
the Higgs field and C(µ2) is the Wilson coefficient, given
as a perturbative expansion in the MS-renormalized
strong coupling constant αs ≡ αs(µ2) evaluated at the
scale µ2. Up to three loops, we have [11]

C(µ2) = −
αs

3 π

{

1 +
11

4

αs

π
(3)

+
(αs

π

)2
[

19

16
Lt +

2777

288
+NF

(

1

3
Lt −

67

96

)

]

+
(αs

π

)3
[

897943

9216
ζ3 +

209

64
L2
t +

1733

288
Lt −

2892659

41472

+NF

(

−
110779

13824
ζ3 +

23

32
L2
t +

55

54
Lt +

40291

20736

)

+N2
F

(

−
1

18
L2
t +

77

1728
Lt −

6865

31104

)

]

+O(α4
s)

}

,

with Lt = log(µ2/m2
t ) and NF the number of active

flavours.
The partonic cross-section itself admits the perturba-

tive expansion

σ̂ij(m
2
H , ŝ) =

πC(µ2)2

v2 V 2

∞
∑

k=0

(αs

π

)k

η(k)ij (z) , (4)

with z ≡ m2
H/ŝ and V = N2 − 1, where N denotes the

number of colours. The coefficients η(k)ij (z) are known
explicitly through NNLO in perturbative QCD [13].
If all the partons emitted in the final state are soft,

we can approximate the partonic cross-sections by their
threshold expansion,

η(k)ij (z) = δig δjg η̂
(k)(z) +O(1 − z)0 . (5)

Note that the first term in the threshold expansion, the
so-called soft-virtual term, only receives contributions
from the gluon initial state. Soft-virtual terms are linear

combinations of a δ function and plus-distributions,

∫ 1

0
dz

[

g(z)

1− z

]

+

f(z) ≡

∫ 1

0
dz

g(z)

1− z
[f(z)− f(1)] . (6)

Through NNLO, we have [13, 14]

η̂(0)(z) = δ(1 − z) , (7)

η̂(1)(z) = 2CA ζ2 δ(1 − z) + 4CA

[

log(1− z)

1− z

]

+

, (8)

η̂(2)(z) = δ(1 − z)

{

C2
A

(

67

18
ζ2 −

55

12
ζ3 −

1

8
ζ4 +

93

16

)

+NF

[

CF

(

ζ3 −
67

48

)

− CA

(

5

9
ζ2 +

1

6
ζ3 +

5

3

)]

}

+

[

1

1− z

]

+

[

C2
A

(

11

3
ζ2 +

39

2
ζ3 −

101

27

)

(9)

+NF CA

(

14

27
−

2

3
ζ2

)

]

+

[

log(1− z)

1− z

]

+

[

C2
A

(

67

9
− 10 ζ2

)

−
10

9
CA NF

]

+

[

log2(1− z)

1− z

]

+

(

2

3
CA NF −

11

3
C2

A

)

+

[

log3(1− z)

1− z

]

+

8C2
A .

In this expression ζn denotes Riemann’s zeta function,
and CA = N and CF = N2

−1
2N are the Casimirs of the

adjoint and fundamental representations of SU(N). For
simplicity we have set the renormalization and factorisa-
tion scales equal to the Higgs mass, µR = µF = mH .

The main result of this Letter is the next term in the
perturbative expansion, N3LO, of the cross-section for
the threshold production of a Higgs boson. Indeed, all the
ingredients necessary to compute η̂(3)(z) have recently
become available. Individually, each of these contribu-
tions is divergent. Adding up all the contributions, and
including the counterterms necessary to remove the ul-
traviolet and infrared divergences, all the poles in the
dimensional regulator ϵ cancel. The finite term in the
Laurent expansion, however, does not cancel, and for
µR = µF = mH the finite remainder is given by,

η̂(3)(z) = δ(1− z)

{
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• All the integrals can be computed analytically!

The soft-virtual approximation

➡ 22 three-loop.	



➡ 3 double-virtual-real.	



➡ 7 real-virtual-squared.	



➡ 10 virtual-double-real.	



➡ 8 triple real.

• In addition, one needs:

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; 
Gehrmann, Glover, Huber, Ikizlerli, Studerus]

[Anastasiou, CD, Dulat, Herzog, 
Mistlberger; Kilgore

[CD, Gehrmann; Li, Zhu]

[Anastasiou, CD, Dulat, Furlan, Herzog, 
Mistlberger; Li, von Manteuffel, Schabinger, Zhu

[Anastasiou, CD, Dulat, Mistlberger

➡ three-loop splitting functions.	



➡ three-loop beta function.	



➡ three-loop Wilson coefficient.

[Moch, Vogt, Vermaseren

[Tarasov, Vladimirov, Zharkov; 
Larin, Vermaseren

[Chetyrkin, Kniehl, Steinhauser; Schroder, 
Steinhauser; Chetyrkin, Kuhn, Sturm
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Higgs soft-virtual @ N3LO

[Anastasiou, CD, Dulat, Furlan, 
Gehrmann, Herzog, Mistlberger
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Conclusion & Outlook
• We have completed the first computation of the Higgs boson 

cross section at N3LO in the soft-virtual approximation.

• ‘Amplitude-technology’ played a crucial role in the 
computation of the integrals

• More terms in the expansion/full computation in progress.

➡ Extension to Drell-Yan @ N3LO in the soft limit.

[Bonvini, Marzani; Catani, Cieri, de Florian, Ferrara, Grazzini

• Soft term already allows to extract interesting results:

➡ Extension to rapidity distribution @ N3LO in soft limit.

➡ Soft-gluon resummation at N3LL.

[Ahmed, Mahakhud, Mathews, Rana, Ravindran

[Ahmed, Mandal, Rana, Ravindran
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! Back up
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➡ Plus-distribution terms agree with Moch & Vogt.

➡ All master integrals were computed analytically and cross 
checked numerically.	



➡ Independent computations of matrix elements and integrals.

Higgs soft-virtual @ N3LO
• How can we be sure that we got it right?

!

‣ All but the triple-real contribution have been confirmed by other 
groups.
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!

➡ Plus-distribution terms agree with Moch & Vogt.

➡ All master integrals were computed analytically and cross 
checked numerically.	



➡ Independent computations of matrix elements and integrals.

Higgs soft-virtual @ N3LO
• How can we be sure that we got it right?

!

‣ All but the triple-real contribution have been confirmed by other 
groups.

• Caveat emptor! 
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Equation (10) is the main result of this Letter. While the
terms proportional to plus-distributions were previously
known [4], we complete the computation of η̂(3)(z) by the
term proportional to δ(1−z), which includes in particular
all the three-loop virtual corrections.
Before discussing some of the numerical implications

of Eq. (10), we have to make a comment about the va-
lidity of the threshold approximation. As we will see
shortly, the plus-distribution terms show a complicated
pattern of strong cancelations at LHC energies; the for-
mally most singular terms cancel against sums of less sin-
gular ones. Therefore, exploiting the formal singularity
hierarchy of the terms in the partonic cross-section does
not guarantee to furnish a fast converging expansion for
the hadronic cross-section. Furthermore, the definition of
threshold corrections in the integral of Eq. (1) is also am-
biguous, because the limit of the partonic cross-section
at threshold is not affected if we multiply the integrand
by a function g such that limz→1 g(z) = 1, i.e., we are
formally allowed to modify the integrand of Eq. (1) by
multiplying the parton luminosity,

∫

dx1 dx2 [fi(x1) fj(x2)g(z)] σ̂ij(s, z)|threshold . (11)

It is obvious that eq. (11) has the same formal accuracy in
the threshold expansion, provided that limz→1 g(z) = 1.
As we will see in the following, this ambiguity has a sub-
stantial numerical implication, and thus presents an ob-
stacle for obtaining precise predictions. We note however

that by including in the future further corrections in the
threshold expansion, the ambiguity will be reduced.
Bearing this warning in mind, we present some of the

numerical implications of our result. For N = 3 and
NF = 5, the coefficients of the distributions in eq. (10)
take the numerical values

η̂(3)(z) ≃ δ(1− z) 1124.308887 . . . (→ 5.1%)

+
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1
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+

1466.478272 . . . (→ −5.85%)
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+

[

log5(1− z)

1− z

]

+

216 . (→ 93.72%)

In parentheses we indicate the corrections that each term
induces to the hadronic cross-section normalized to the
leading order cross-section at a center of mass energy of
14 TeV. The ratio is evaluated with the same parton den-
sities [15] and αs at scales µR = µF = mH in the numer-
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Equation (10) is the main result of this Letter. While the
terms proportional to plus-distributions were previously
known [4], we complete the computation of η̂(3)(z) by the
term proportional to δ(1−z), which includes in particular
all the three-loop virtual corrections.
Before discussing some of the numerical implications of

Eq. (10), we have to make a comment about the validity
of the threshold approximation. As we will see shortly,
the plus-distribution terms show a complicated pattern
of strong cancelations at LHC energies; the formally most
singular terms cancel against sums of less singular ones.
Therefore, exploiting the formal singularity hierarchy of
the terms in the partonic cross-section does not guaran-
tee a fastly converging expansion for the hadronic cross-
section. Furthermore, the definition of threshold correc-
tions in the integral of Eq. (1) is also ambiguous, because
the limit of the partonic cross-section at threshold is not
affected if we multiply the integrand by a function g such
that limz→1 g(z) = 1, i.e., we are formally allowed to
modify the integrand of Eq. (1) by modifying the parton
luminosity,

∫

dx1 dx2 [fi(x1) fj(x2)zg(z)]

[

σ̂ij(s, z)

zg(z)

]

threshold

.

(11)
It is obvious that eq. (11) has the same formal accuracy in
the threshold expansion, provided that limz→1 g(z) = 1.
As we will see in the following, this ambiguity has a sub-
stantial numerical implication, and thus presents an ob-

stacle for obtaining precise predictions. We note however
that by including in the future further corrections in the
threshold expansion, this ambiguity will be reduced.
Bearing this warning in mind, we present some of the

numerical implications of our result. For N = 3 and
NF = 5, the coefficients of the distributions in eq. (10)
take the numerical values

η̂(3)(z) ≃ δ(1− z) 1124.308887 . . . (→ 5.1%)

+

[

1

1− z

]

+

1466.478272 . . . (→ −5.85%)

−
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]

+

6062.086738 . . . (→ −22.88%)

+
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+

7116.015302 . . . (→ −52.45%)

−
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]
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1824.362531 . . . (→ −39.90%)

−

[
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]

+

230 (→ 20.01%)

+

[

log5(1− z)

1− z

]

+

216 . (→ 93.72%)

In parentheses we indicate the corrections that each term
induces to the hadronic cross-section normalized to the
leading order cross-section at a center of mass energy of
14 TeV. The ratio is evaluated with the same parton den-

➡ Formally all these choices are equivalent!
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