University

The gluon-fusion cross section at N3LO in the soft limit

Claude Duhr in collaboration with C. Anastasiou, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, B. Mistlberger

Amplitudes 2014
Saclay, 11/06/201

The gluon fusion cross section

- The dominant Higgs production mechanism at the LHC is gluon fusion.
\Rightarrow Loop-induced process.

- For a light Higgs boson, the dimension five operator describing a tree-level coupling of the gluons to the Higgs boson

$$
\mathcal{L}=\mathcal{L}_{Q C D, 5}-\frac{1}{4 v} C_{1} H G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

- Top-mass corrections known at NNLO.
[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]
- In the rest of the talk, I will only concentrate on the effective theory.

The gluon fusion cross section

- The gluon fusion cross section is given in perturbation theory by

$$
\sigma(p p \rightarrow H+X)=\tau \sum_{i j} \int_{\tau}^{1} d z \mathcal{L}_{i j}(z) \hat{\sigma}_{i j}(\tau / z)
$$

- The (partonic) cross section depends up to an overall scale only on the ratio

$$
\tau=\frac{m^{2}}{s}
$$

$$
z=\frac{m^{2}}{\hat{s}}
$$

- The partonic cross section known at NLO and NNLO.
[Dawson; Djouadi, Spira, Zerwas; Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

	$\sigma[8 \mathrm{TeV}]$	$\delta \sigma[\%]$
LO	9.6 pb	$\sim 25 \%$
NLO	16.7 pb	$\sim 20 \%$
NNLO	19.6 pb	$\sim 7-9 \%$
N3LO	$? ? ?$	$\sim 4-8 \%$

[Fixed order only

The gluon fusion cross section

- So far no complete computation is available.
\Rightarrow Scale variation at N3LO.
\Rightarrow Approximate N3LO results exist.
[Moch, Vogt; Ball, Bonvini, Forte, Marzani, Ridolfi; Bühler, Lazopulos

The gluon fusion cross section

- So far no complete computation is available.
\Rightarrow Scale variation at N3LO.
- Approximate N3LO results exist.
[Moch, Vogt; Ball, Bonvini, Forte, Marzani, Ridolfi; Bühler, Lazopulos
- Can we push the state of the art one order higher?
- Challenge: performed so far...
\Rightarrow Uncharted territory!
\Rightarrow New conceptual challenges.

Outline

- The inclusive gluon-fusion cross section.
- Ingredients entering the cross section at threshold:
\Rightarrow Soft triple-real emission.
\Rightarrow Soft double-virtual-real emission.
\Rightarrow Soft virtual-double-real emission.
- The gluon-fusion cross section in the soft limit.
- Conclusion \& outlook.

The inclusive gluonfusion cross section

The gluon fusion cross section

- A cross section computation requires two ingredients:

$$
\hat{\sigma}=\int d \Phi|\mathcal{M}|^{2}
$$

The gluon fusion cross section

- A cross section computation requires two ingredients:

$$
\hat{\sigma}=\left.\int d \Phi \nmid \mathcal{M}\right|^{2}
$$

Matrix element

The gluon fusion cross section

- A cross section computation requires two ingredients:

Phase space integration

Matrix
element

The gluon fusion cross section

- A cross section computation requires two ingredients:

Phase space integration

Matrix
element

- Example:

The gluon fusion cross section

- A cross section computation requires two ingredients:

Phase space
integration

- Example:

$$
\int d \Phi_{1} \mathcal{M}^{(0)} \mathcal{M}^{(0) *}
$$

The gluon fusion cross section

- At
[Dawson; Djouadi, Spira, Zerwas]

Virtual corrections ('loops')

Real emission

The gluon fusion cross section

- At
[Dawson; Djouadi, Spira, Zerwas]

Virtual corrections ('loops') Real emission

- Both contributions are individually divergent:
\Rightarrow UV divergences are handled by renormalization.
\Rightarrow IR divergences cancelled by PDF counterterms.

The gluon fusion cross section

- At
[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

Double virtual
Real-virtual

Double real

The gluon fusion cross section

- At

Triple virtual

Real-virtual squared

Double virtual real

Double real virtual

Triple real

Triple virtual corrections

- The triple virtual corrections are directly related to the QCD form factor

- The QCD form factor is known
\Rightarrow at one loop.
\Rightarrow at two loops.
[Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maître]
\Rightarrow at three loops.
[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]
- It is not the loops that are the problem!

Unitarity

- Optical theorem:

\Rightarrow Discontinuities of loop amplitudes are phase space integrals.
- Discontinuities of loop integrals are given by rule

$$
\frac{1}{p^{2}-m^{2}+i \varepsilon} \rightarrow \delta_{+}\left(p^{2}-m^{2}\right)=\delta\left(p^{2}-m^{2}\right) \theta\left(p^{0}\right)
$$

\Rightarrow See Ruth Britto's talk.

Reverse-unitarity

- Optical theorem:

- We can read the optical theorem 'backwards' and write inclusive phase space integrals as unitarity cuts of loop integrals. [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
\Rightarrow Rather than computing phase-space integrals, we can compute loop integrals with cuts!
\Rightarrow Makes inclusive phase space integrals accessible to all the technology developed for multi-loop computations!
- Integration-by-parts \& differential equations.

Reverse-unitarity @ N3LO

Growth in complexity for real emission

LO		1 diagram	1 integral
NLO			
NNLO			
N3LO	ค.		

Reverse-unitarity @ N3LO

Growth in complexity for real emission

LO		1 diagram	1 integral
NLO	なぁ	10 diagrams	1 integral
NNLO			
N3LO	ค.		

Reverse-unitarity @ N3LO

Growth in complexity for real emission

LO		1 diagram	1 integral
NLO		10 diagrams	1 integral
NNLO		381 diagrams	18 integrals
N3LO			

Reverse-unitarity @ N3LO

Growth in complexity for real emission

LO	なぁ	1 diagram	1 integral
NLO		10 diagrams	1 integral
NNLO		381 diagrams	18 integrals
N3LO		26565 diagrams	~ 500 integrals

The threshold expansion

- ~500 master integrals only for triple real double real NNLO).
\Rightarrow Tough nut to crack!
- Concentrate on some approximation first!

The threshold expansion

- ~ 500 master integrals only for triple real double real NNLO).
- Tough nut to crack!
- Concentrate on some approximation first!

- The gluon fusion cross section depends on one single parameter:

$$
z=\frac{m^{2}}{s} \quad \bar{z}=1-z
$$

- Close to threshold ($z \sim 1$), we can approximate the triple real cross section by a power series:

$$
\hat{\sigma}(z)=\sigma_{-1}+\sigma_{0}+(1-z) \sigma_{1}+\mathcal{O}(1-z)^{2}
$$

- Goal:

The threshold expansion

- Formally, this expansion corresponds to 'expansion by regions'.

[Beneke, Smirnov

\Rightarrow In the limit: momenta are, e.g., 'hard', 'soft' or 'collinear'.
\Rightarrow Extend this to inclusive phase space.
\Rightarrow Advantage: themselves.

- Higgs production at threshold (soft-virtual):
\Rightarrow Every real gluon is soft.
\Rightarrow Every virtual gluon is either hard or soft.
- N.B.:
virtual and/or real gluon!
\Rightarrow Universality of soft emissions!

Soft t emissions

Triple real emission

- ~500 master integrals.
- Subprocesses:

$g g \rightarrow H g g g$	$g q \rightarrow H g g q$	$q \bar{q} \rightarrow H g g g$	$q q \rightarrow H g q q$
$g g \rightarrow H g q \bar{q}$	$g q \rightarrow H q \bar{q} q$	$q \bar{q} \rightarrow H g q \bar{q}$	$q \bar{Q} \rightarrow H g q \bar{Q}$
	$g q \rightarrow H Q \bar{Q} q$	$q \bar{q} \rightarrow H g Q \bar{Q}$	$q Q \rightarrow H g q Q$

Soft-virtual

Next-to-soft-virtual

- If we concentrate on the first two terms in the expansion, all ~ 500 master integrals can be reduced to only 10 integrals!

NNLO example

- NNLO integral:

$$
\begin{aligned}
\int d \Phi_{3} & =\bar{z}^{3-4 \epsilon} \Phi_{3}^{S}(\epsilon) \sum_{n=0}^{\infty} \frac{(1-\epsilon)_{n}(2-2 \epsilon)_{n}}{(4-4 \epsilon)_{n}} \bar{z}^{n} \\
& =\bar{z}^{3-4 \epsilon} \Phi_{3}^{S}(\epsilon)\left[1+\frac{1-\epsilon}{2} \bar{z}+\frac{(1-\epsilon)(2-\epsilon)(3-2 \epsilon)}{4(5-4 \epsilon)} \bar{z}^{2}+\mathcal{O}\left(\bar{z}^{3}\right)\right] \\
\Phi_{3}^{S}(\epsilon) & =\frac{1}{2(4 \pi)^{3-2 \epsilon}} \frac{\Gamma(1-\epsilon)^{2}}{\Gamma(4-4 \epsilon)}
\end{aligned}
$$

- Diagrammatic expansion:
$\int d \Phi_{3}=\bar{z}^{3-4 \epsilon}[$ 年
\Rightarrow The coefficients themselves have a loop interpretation.

NNLO example

$$
\left.\int d \Phi_{3}=z^{3-4}[0 k-\bar{z}) k+z^{2} \neq+\mathcal{O}\left(z^{3}\right)\right]
$$

NNLO example

$$
\int d \Phi_{3}=\frac{z}{2}-4 \epsilon[
$$

- Using IBP identities:

$$
\begin{aligned}
& 0 k=-\frac{1-\epsilon}{2}=\frac{k}{2 k}=\frac{(1-\epsilon)(2-\epsilon)(3-2 \epsilon)}{4(5-4 \epsilon)} \\
& 0,
\end{aligned}
$$

NNLO example

$$
\int d \Phi_{3}=\frac{z}{2}-4 \epsilon[
$$

- Using IBP identities:

$$
\text { (2k }=\frac{1-\epsilon}{2}
$$

- To be compared with exact result:

$$
\bar{z}^{3-4 \epsilon} \Phi_{3}^{S}(\epsilon)\left[1+\frac{1-\epsilon}{2} \bar{z}+\frac{(1-\epsilon)(2-\epsilon)(3-2 \epsilon)}{4(5-4 \epsilon)} \bar{z}^{2}+\mathcal{O}\left(\bar{z}^{3}\right)\right]
$$

NNLO example

- Using IBP identities:

$$
\text { (2k }=\frac{1-\epsilon}{2}
$$

- To be compared with exact result:

$$
\left.\bar{z}^{3-4 \epsilon} \Phi_{3}^{S}(\epsilon)\left[1+\frac{1-\epsilon}{2}\right] \bar{z}+\frac{(1-\epsilon)(2-\epsilon)(3-2 \epsilon)}{4(5-4 \epsilon)} \bar{z}^{2}+\mathcal{O}\left(\bar{z}^{3}\right)\right]
$$

Soft triple real emissions

[Anastasiou, Dulat, CD, Mistlberger]

Soft triple real emissions

- We were able to compute all the master integrals analytically.
- General strategy:
\Rightarrow There is a canonical way to turn each of these integrals into a Mellin-Barnes integral.

$$
\begin{aligned}
\mathcal{F}_{6}(\epsilon)= & \frac{\Gamma(6-6 \epsilon)}{\epsilon \Gamma(1-6 \epsilon) \Gamma(1-\epsilon)^{2}} \int_{-i \infty}^{+i \infty} \frac{d z_{1} d z_{2}}{(2 \pi i)^{2}} \Gamma\left(-z_{1}\right) \Gamma\left(z_{1}+1\right) \Gamma\left(-z_{2}\right) \Gamma\left(z_{2}+1\right) \\
& \times \frac{\Gamma\left(-\epsilon+z_{1}-z_{2}\right) \Gamma\left(z_{2}-\epsilon\right) \Gamma\left(-2 \epsilon-z_{1}+z_{2}\right) \Gamma\left(-\epsilon-z_{1}+z_{2}\right)}{\Gamma\left(-\epsilon+z_{2}+1\right) \Gamma\left(-2 \epsilon-z_{1}+z_{2}+1\right)} .
\end{aligned}
$$

\Rightarrow All of the integrals can be computed as a Laurent series in dimensional regularization.
\Rightarrow One of the integrals required use of symbols and coproducts

Soft triple real emissions

$$
\begin{aligned}
\mathcal{F}_{6}(\epsilon) & =\frac{10}{\epsilon^{5}}-\frac{137}{\epsilon^{4}}+\frac{1}{\epsilon^{3}}\left(40 \zeta_{2}+675\right)+\frac{1}{\epsilon^{2}}\left(320 \zeta_{3}-548 \zeta_{2}-1530\right) \\
& +\frac{1}{\epsilon}\left(1500 \zeta_{4}-4384 \zeta_{3}+2700 \zeta_{2}+1620\right)+5160 \zeta_{5}+320 \zeta_{2} \zeta_{3}-20550 \zeta_{4} \\
& +21600 \zeta_{3}-6120 \zeta_{2}-648+\epsilon\left(18340 \zeta_{6}+1280 \zeta_{3}^{2}-70692 \zeta_{5}-4384 \zeta_{2} \zeta_{3}\right. \\
& \left.+101250 \zeta_{4}-48960 \zeta_{3}+6480 \zeta_{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

- Intriguing observation:
\Rightarrow All all
- How can we be sure that we have obtained the correct results..?

Soft triple real emissions

- We can compute the Mellin-Barnes integrals numerically and compare to our analytic results.

Soft triple real emissions

- We can compute the Mellin-Barnes integrals numerically and compare to our analytic results.
- The integrals in four dimensions are related to the integrals in six dimensions:

$$
\begin{aligned}
\mathcal{F}_{6}(D+2) \mathcal{R}= & \frac{\left(4256-6684 D+4224 D^{2}-1345 D^{3}+216 D^{4}-14 D^{5}\right)}{3(D-4)^{2}(D-3)(D-2)^{2}} \\
& +\frac{(D-4)(3 D-10)}{9(D-2)^{2}(3 D-7)} \mathcal{F}_{2}(D) \\
& -\frac{(D-4)^{3}}{24(D-2)(3 D-11)(3 D-7)} \mathcal{F}_{6}(D),
\end{aligned}
$$

\Rightarrow Similar to dimensional shift identities for loops.

- The integrals are finite in six dimensions.
\Rightarrow Strong constraint!

Soft triple real cross sections

- The integrals immediately allow us to write down the first two terms in the soft expansion of the cross section, e.g.,

$$
\begin{aligned}
\sigma_{g g \rightarrow H+g q \bar{q}}^{S(0)} & =\frac{2^{5}}{3^{7}} \frac{1}{8\left(N_{c}^{2}-1\right)^{2}}\left(4 \pi \alpha_{S}\right)^{3} \Phi_{4}^{S}(\epsilon) C_{A} C_{F} c_{H}^{2} N_{f} \\
\times\{ & \frac{153090}{\epsilon^{4}}-\frac{1604043}{\epsilon^{3}}+\frac{1}{\epsilon^{2}}\left(-29160 \zeta_{2}+4903902\right) \\
& +\frac{1}{\epsilon}\left(-204120 \zeta_{3}+321732 \zeta_{2}-4833675\right)-874800 \zeta_{4}+2252124 \zeta_{3}-911088 \zeta_{2} \\
& +203535+\epsilon\left(-2711880 \zeta_{5}-233280 \zeta_{2} \zeta_{3}+9651960 \zeta_{4}-6290136 \zeta_{3}-492210 \zeta_{2}\right. \\
& +1667109)+\epsilon^{2}\left(-9360360 \zeta_{6}-816480 \zeta_{3}^{2}+29921076 \zeta_{5}+2573856 \zeta_{2} \zeta_{3}\right. \\
& \left.-26589060 \zeta_{4}-4323186 \zeta_{3}+4693212 \zeta_{2}+1294731\right) \\
& +2 C_{A} C_{F}\left[\frac{167670}{\epsilon^{4}}-\frac{1743039}{\epsilon^{3}}+\frac{1}{\epsilon^{2}}\left(-29160 \zeta_{2}+5267592\right)+\frac{1}{\epsilon}\left(-204120 \zeta_{3}\right.\right. \\
& \left.+321732 \zeta_{2}-5183163\right)-874800 \zeta_{4}+2252124 \zeta_{3}-911088 \zeta_{2}+337959 \\
& +\epsilon\left(-2711880 \zeta_{5}-233280 \zeta_{2} \zeta_{3}+9651960 \zeta_{4}-6290136 \zeta_{3}-492210 \zeta_{2}+1651749\right) \\
& +\epsilon^{2}\left(-9360360 \zeta_{6}-816480 \zeta_{3}^{2}+29921076 \zeta_{5}+2573856 \zeta_{2} \zeta_{3}-26589060 \zeta_{4}\right. \\
& \left.\left.\left.-4323186 \zeta_{3}+4693212 \zeta_{2}+1284491\right)\right]+\mathcal{O}\left(\epsilon^{3}\right)\right\} .
\end{aligned}
$$

Soft double-virtual-real emissions

Double-virtual-real emission

- Subprocesses:

$g q \rightarrow H q$
$q \bar{q} \rightarrow H g$

Next-to-soft-virtual

- The phase space is trivial (2-body phase space).

$$
\left|\mathcal{M}^{(L)}(g g \rightarrow H g)\right\rangle=\sum_{k=0}^{L} \varepsilon^{\mu} J_{\mu}^{a(k)}\left|\mathcal{M}^{(L-k)}(g g \rightarrow H)\right\rangle
$$

Double-virtual-real emission

- Subprocesses:

$g q \rightarrow H q$
$q \bar{q} \rightarrow H g$

Next-to-soft-virtual

- The phase space is trivial (2-body phase space).
- If the final-state gluon is soft into the soft current:

$$
\left|\mathcal{M}^{(L)}(g g \rightarrow H g)\right\rangle=\sum_{k=0}^{L} \varepsilon^{\mu} J_{\mu}^{a(k)}\left|\mathcal{M}^{(L-k)}(g g \rightarrow H)\right\rangle
$$

Double-virtual-real emission

- Subprocesses:

$q \bar{q} \rightarrow H g$
- The phase space is trivial (2-body phase space).
- If the final-state gluon is soft into the soft current:

$$
\left|\mathcal{M}^{(L)}(g g \rightarrow H g)\right\rangle=\sum_{k=0}^{L} \varepsilon^{\mu} J_{\mu}^{a(k)}\left|\mathcal{M}^{(L-k)}(g g \rightarrow H)\right\rangle
$$

- The soft current had previously been computed
\Rightarrow at one loop.
[Catani, Grazzini
\Rightarrow at two loops, up to finite terms.
- At N3LO, we need higher-order terms at two loops.

The two-loop soft current

- Two parallel computations of these higher-order terms (for the interference with the Born soft current):
\Rightarrow Two-loop Wilson line computation up to weight 6. [Li, Zhu
- Extraction from the two-loop matrix element for $\gamma^{*} \rightarrow q \bar{q} g$ to all orders in epsilon.
[CD, Gehrmann

The two-loop soft current

- Two parallel computations of these higher-order terms (for the interference with the Born soft current):
\Rightarrow Two-loop Wilson line computation up to weight 6. [Li, Zhu
\Rightarrow Extraction from the two-loop matrix element for $\gamma^{*} \rightarrow q \bar{q} g$ to all orders in epsilon.
[CD, Gehrmann
- Method:
integrals as an expansion in the soft limit while keeping the coefficients exact in epsilon:

$$
\begin{aligned}
& F_{i}(y, z ; \epsilon)=\sum_{m, n=0}^{2} y^{-m \epsilon} z^{-n \epsilon} f_{i, m n}(y, z ; \epsilon) \\
& f_{i, m n}(y, z ; \epsilon)=\sum_{k=r_{y}}^{\infty} \sum_{l=r_{z}}^{\infty} c_{i, m n}^{k l}(\epsilon) y^{k} z^{l}
\end{aligned}
$$

The two-loop soft current

- The two-loop soft current to all orders in dimensional regularization

$$
\begin{aligned}
& r_{\text {soft }}^{(2)}=N N_{f} R_{1}(\epsilon)+N^{2} R_{2}(\epsilon) \\
& R_{1}(\epsilon)=\frac{2 \Gamma(-2 \epsilon)}{(1+\epsilon) \Gamma(4-2 \epsilon)} \frac{\Gamma(1-2 \epsilon)^{2} \Gamma(1+2 \epsilon)^{2}}{\Gamma(1-\epsilon)^{2} \Gamma(1+\epsilon)^{2}}\left[3 \frac{\Gamma(1-\epsilon) \Gamma(1-2 \epsilon)}{\Gamma(1-3 \epsilon)}-\frac{\left(1+\epsilon^{3}\right)}{\epsilon^{2}(1+\epsilon)} \frac{\Gamma(1-2 \epsilon)^{2}}{\Gamma(1-4 \epsilon)}\right] \\
& R_{2}(\epsilon)=\frac{\Gamma(1-2 \epsilon)^{3} \Gamma(1+2 \epsilon)^{2}}{6 \epsilon^{4} \Gamma(1-\epsilon) \Gamma(1+\epsilon)^{2} \Gamma(1-3 \epsilon)}\left\{(1+4 \epsilon)_{4} F_{3}(1,1,1-\epsilon,-4 \epsilon ; 2,1-3 \epsilon, 1-2 \epsilon ; 1)\right. \\
&\left.-6 \epsilon[\psi(1-3 \epsilon)+\psi(1-2 \epsilon)-\psi(1-\epsilon)-\psi(1+\epsilon)]+\frac{\left(14 \epsilon^{3}+4 \epsilon^{2}+5 \epsilon-3\right)}{2(1+\epsilon)(3-2 \epsilon)(1-2 \epsilon)}\right\} \\
&+\frac{(1+4 \epsilon)}{3 \epsilon^{4}(1+2 \epsilon)} \frac{\Gamma(1-2 \epsilon)^{4} \Gamma(1+2 \epsilon)^{2}}{\Gamma(1-\epsilon)^{2} \Gamma(1+\epsilon)^{2} \Gamma(1-4 \epsilon)}\left\{2{ }_{3} F_{2}(1,-2 \epsilon, 2 \epsilon+1 ; 1-\epsilon, 2 \epsilon+2 ; 1)\right. \\
&\left.-\frac{\Gamma(1+\epsilon) \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}{ }_{3} F_{2}(-2 \epsilon, \epsilon+1,2 \epsilon+1 ; 1-\epsilon, 2 \epsilon+2 ; 1)+\frac{(1+2 \epsilon)\left(6 \epsilon^{4}+13 \epsilon^{3}-16 \epsilon^{2}-38 \epsilon+3\right)}{4(1+4 \epsilon)(1+\epsilon)(3-2 \epsilon)(1-2 \epsilon)}\right\}
\end{aligned}
$$

- The soft-virtual RVV contribution to Higgs@N3LO is easily obtained from this by multiplying by the phase space.

Real-virtual squared

- Contribution from one-loop-squared can easily be computed exactly.
- We did the computation in four different ways:
\Rightarrow Threshold expansion by expanding hypergeometric functions.
\Rightarrow Threshold expansion from expansion by regions.
\Rightarrow Reverse-unitarity and differential equations.
\Rightarrow Direct integration of the matrix element over phase space.
[Anastasiou, CD, Dulat, Herzog, Mistlberger]
- Confirmed by independent computation. [Kilgore]
- Full two-loop matrix element is also known. [Glover, Gehrmann, \Rightarrow Can be done in the same way, but need two-loop collinear counterterms.

Soft virtual-double-real emissions

Virtual-double-real emission

- Subprocesses:

$$
\begin{array}{lll}
g g \rightarrow H g g & g q \rightarrow H g q & q \bar{q} \rightarrow H g g \\
g g \rightarrow H q \bar{q} & & q q \rightarrow H q q \\
& & q \bar{q} \rightarrow H q \bar{q} \\
& q \bar{q} \rightarrow H Q \bar{Q} & q Q \rightarrow H q Q \\
& q \bar{Q} \rightarrow H q \bar{Q}
\end{array}
$$

Virtual-double-real emission

- Subprocesses:
$g g \rightarrow H g g$
$g q \rightarrow H g q$

$$
\begin{array}{ll}
q \bar{q} \rightarrow H g g & q q \rightarrow H q q \\
q \bar{q} \rightarrow H q \bar{q} & q Q \rightarrow H q Q \\
q \bar{q} \rightarrow H Q \bar{Q} & q \bar{Q} \rightarrow H q \bar{Q}
\end{array}
$$

- The soft-virtual term receives contributions from two regions:
\Rightarrow The virtual gluon is hard.
\Rightarrow The virtual gluon is soft.
- The hard region is trivial (tree-level emission of two soft gluons).
- The soft region can be dealt with in a way similar to the soft triple real emission.
\Rightarrow IBP reduction in soft limit and soft master integrals.

VRR soft master integrals

- All integrals can be computed by combining the soft expansion for the virtuals with the phase space techniques developed for the triple real emission. [Anastasiou, CD, Dulat, Furlan, Herzog, Mistlberger

$$
\begin{aligned}
& =-\frac{4 \Gamma(4-4 \epsilon) \Gamma(1-3 \epsilon)}{\epsilon(1+\epsilon)(1-2 \epsilon) \Gamma(3-6 \epsilon) \Gamma(1-\epsilon)}{ }_{3} F_{2}(1,1,1-\epsilon ; 2-3 \epsilon, 2+\epsilon ; 1) \\
& =-\frac{12 \zeta_{2}}{\epsilon}-8 \zeta_{2}-36 \zeta_{3}+\left(-112 \zeta_{2}-24 \zeta_{3}+33 \zeta_{4}\right) \epsilon+\left(720 \zeta_{3} \zeta_{2}-672 \zeta_{2}\right. \\
& \left.-336 \zeta_{3}+22 \zeta_{4}-450 \zeta_{5}\right) \epsilon^{2}+\left(1512 \zeta_{3}^{2}+480 \zeta_{2} \zeta_{3}-2016 \zeta_{3}-4032 \zeta_{2}+308 \zeta_{4}\right. \\
& \left.-300 \zeta_{5}+\frac{16881}{4} \zeta_{6}\right) \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) .
\end{aligned}
$$

- Results recently confirmed by independent computation using Wilson lines. [Li, von Manteuffel, Schabinger, Zhu

The gluon-fusion cross section in the soft limit

N3LO status: soft-virtual

\boldsymbol{V} Triple virtual $\quad \sqrt{\text { Real-virtual }}$ squared $\quad \checkmark \begin{gathered}\text { Double virtual } \\ \text { real }\end{gathered}$

Double real virtual

$\sqrt{ }$ Triple real

The soft-virtual approximation

- The

$$
\hat{\sigma}(z)=\sigma_{-1}+\sigma_{0}+(1-z) \sigma_{1}+\mathcal{O}(1-z)^{2}
$$

- The soft-virtual term receives contributions from a 'pole' at $z \sim 1$:

$$
(1-z)^{-1+n \epsilon}=\frac{\delta(1-z)}{n \epsilon}+\left[\frac{1}{1-z}\right]_{+}+n \epsilon\left[\frac{\log (1-z)}{1-z}\right]_{+}+\mathcal{O}\left(\epsilon^{2}\right)
$$

- Plus-distribution terms already known. [Moch, Vogt
- Complete three-loop corrections are contained the delta function term.
\Rightarrow The soft-virtual term contains the complete three-loop corrections plus the correction from the emission of up to three soft gluons.

The soft-virtual approximation

- At NLO and NNLO, the soft-virtual term reads $\left(\mu_{R}=\mu_{F}=m_{H}\right)$

$$
\hat{\sigma}_{g g}^{S V}(z)=\frac{\pi C\left(\mu^{2}\right)^{2}}{v^{2}\left(N^{2}-1\right)^{2}} \sum_{k=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{k} \hat{\eta}^{(k)}(z)
$$

$$
\hat{\eta}^{(0)}(z)=\delta(1-z)
$$

$$
\hat{\eta}^{(1)}(z)=2 C_{A} \zeta_{2} \delta(1-z)+4 C_{A}\left[\frac{\log (1-z)}{1-z}\right]_{+}
$$

$\hat{\eta}^{(2)}(z)=\delta(1-z)\left\{C_{A}^{2}\left(\frac{67}{18} \zeta_{2}-\frac{55}{12} \zeta_{3}-\frac{1}{8} \zeta_{4}+\frac{93}{16}\right)+N_{F}\left[C_{F}\left(\zeta_{3}-\frac{67}{48}\right)-C_{A}\left(\frac{5}{9} \zeta_{2}+\frac{1}{6} \zeta_{3}+\frac{5}{3}\right)\right]\right\}$
$+\left[\frac{1}{1-z}\right]_{+}\left[C_{A}^{2}\left(\frac{11}{3} \zeta_{2}+\frac{39}{2} \zeta_{3}-\frac{101}{27}\right)+N_{F} C_{A}\left(\frac{14}{27}-\frac{2}{3} \zeta_{2}\right)\right]$
$+\left[\frac{\log (1-z)}{1-z}\right]_{+}\left[C_{A}^{2}\left(\frac{67}{9}-10 \zeta_{2}\right)-\frac{10}{9} C_{A} N_{F}\right]$
$+\left[\frac{\log ^{2}(1-z)}{1-z}\right]_{+}\left(\frac{2}{3} C_{A} N_{F}-\frac{11}{3} C_{A}^{2}\right)+\left[\frac{\log ^{3}(1-z)}{1-z}\right]_{+} 8 C_{A}^{2}$.

The soft-virtual approximation

- All the integrals can be computed analytically!
$\Rightarrow 22$ three-loop.
- 3 double-virtual-real.
- 7 real-virtual-squared.
- 10 virtual-double-real.
- 8 triple real.
[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]
[CD, Gehrmann; Li, Zhu]
[Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore
[Anastasiou, CD, Dulat, Furlan, Herzog, Mistlberger; Li, von Manteuffel, Schabinger, Zhu [Anastasiou, CD, Dulat, Mistlberger
- In addition, one needs:
\Rightarrow three-loop splitting functions.
- three-loop beta function.
[Moch, Vogt, Vermaseren
[Tarasov, Vladimirov, Zharkov; Larin, Vermaseren
\Rightarrow three-loop Wilson coefficient. [Chetyrkin, Kniehl, Steinhauser; Schroder, Steinhauser; Chetyrkin, Kuhn, Sturm

Higgs soft-virtual @ N3LO

$$
\left.\begin{array}{l}
\hat{\eta}^{(3)}(z)=\delta(1-z)\left\{C_{A}^{3}\left(-\frac{2003}{48} \zeta_{6}+\frac{413}{6} \zeta_{3}^{2}-\frac{7579}{144} \zeta_{5}+\frac{979}{24} \zeta_{2} \zeta_{3}-\frac{15257}{864} \zeta_{4}-\frac{819}{16} \zeta_{3}+\frac{16151}{1296} \zeta_{2}+\frac{215131}{5184}\right)\right. \\
+N_{F}\left[C_{A}^{2}\left(\frac{869}{72} \zeta_{5}-\frac{125}{12} \zeta_{3} \zeta_{2}+\frac{2629}{432} \zeta_{4}+\frac{1231}{216} \zeta_{3}-\frac{70}{81} \zeta_{2}-\frac{98059}{5184}\right)\right. \\
\left.\quad+C_{A} C_{F}\left(\frac{5}{2} \zeta_{5}+3 \zeta_{3} \zeta_{2}+\frac{11}{72} \zeta_{4}+\frac{13}{2} \zeta_{3}-\frac{71}{36} \zeta_{2}-\frac{63991}{5184}\right)+C_{F}^{2}\left(-5 \zeta_{5}+\frac{37}{12} \zeta_{3}+\frac{19}{18}\right)\right] \\
\left.+N_{F}^{2}\left[C_{A}\left(-\frac{19}{36} \zeta_{4}+\frac{43}{108} \zeta_{3}-\frac{133}{324} \zeta_{2}+\frac{2515}{1728}\right)+C_{F}\left(-\frac{1}{36} \zeta_{4}-\frac{7}{6} \zeta_{3}-\frac{23}{72} \zeta_{2}+\frac{4481}{2592}\right)\right]\right\} \\
+ \\
\left.+\frac{1}{1-z}\right]_{+}\left\{C_{A}^{3}\left(186 \zeta_{5}-\frac{725}{6} \zeta_{3} \zeta_{2}+\frac{253}{24} \zeta_{4}+\frac{8941}{108} \zeta_{3}+\frac{8563}{324} \zeta_{2}-\frac{297029}{23328}\right)+N_{F}^{2} C_{A}\left(\frac{5}{27} \zeta_{3}+\frac{10}{27} \zeta_{2}-\frac{58}{729}\right)\right. \\
\left.+N_{F}\left[C_{A}^{2}\left(-\frac{17}{12} \zeta_{4}-\frac{475}{36} \zeta_{3}-\frac{2173}{324} \zeta_{2}+\frac{31313}{11664}\right)+C_{A} C_{F}\left(-\frac{1}{2} \zeta_{4}-\frac{19}{18} \zeta_{3}-\frac{1}{2} \zeta_{2}+\frac{1711}{864}\right)\right]\right\} \\
+ \\
\left.+\frac{\log ^{(1-z)}}{1-z}\right]_{+}\left\{C_{A}^{3}\left(-77 \zeta_{4}-\frac{352}{3} \zeta_{3}-\frac{152}{3} \zeta_{2}+\frac{30569}{648}\right)+N_{F}^{2} C_{A}\left(-\frac{4}{9} \zeta_{2}+\frac{25}{81}\right)\right. \\
+ \\
\left.+N_{F}\left[C_{A}^{2}\left(\frac{46}{3} \zeta_{3}+\frac{94}{9} \zeta_{2}-\frac{4211}{324}\right)+C_{A} C_{F}\left(6 \zeta_{3}-\frac{63}{8}\right)\right]\right\} \\
+
\end{array}\left[\frac{\log ^{2}(1-z)}{1-z}\right]_{+}\left\{C_{A}^{3}\left(181 \zeta_{3}+\frac{187}{3} \zeta_{2}-\frac{1051}{27}\right)+N_{F}\left[C_{A}^{2}\left(-\frac{34}{3} \zeta_{2}+\frac{457}{54}\right)+\frac{1}{2} C_{A} C_{F}\right]-\frac{10}{27} N_{F}^{2} C_{A}\right\}\right)
$$

$$
+\left[\frac{\log ^{4}(1-z)}{1-z}\right]_{+}\left(\frac{20}{9} N_{F} C_{A}^{2}-\frac{110}{9} C_{A}^{3}\right)+\left[\frac{\log ^{5}(1-z)}{1-z}\right]_{+} 8 C_{A}^{3}
$$

Conclusion \& Outlook

- We have completed the first computation of the Higgs boson cross section at N3LO in the soft-virtual approximation.
- 'Amplitude-technology' played a crucial role in the computation of the integrals
- More terms in the expansion/full computation in progress.
- Soft term already allows to extract interesting results:
\Rightarrow Extension to Drell-Yan @ N3LO in the soft limit. [Ahmed, Mahakhud, Mathews, Rana, Ravindran
\Rightarrow Extension to rapidity distribution @ N3LO in soft limit.
[Ahmed, Mandal, Rana, Ravindran
\Rightarrow Soft-gluon resummation at N3LL.
[Bonvini, Marzani; Catani, Cieri, de Florian, Ferrara, Grazzini

International Conference

Amplitudes 2015

15 - 19 June 2015

ETH/Uni Zürich - Zurjch, Switzerland

Conference "Amplitudes 2015"

Dates \& Venue

15-19 June 2015
ETH/Uni Zürich
Zurich, Switzerland

Organisers

- Babis Anastasiou (ETH Zürich)
- Niklas Beisert (ETH Zürich)
- Johannes Brödel (ETH Zürich)
- Thomas Gehrmann (Universität Zürich)
- Claude Duhr (Durham University)

Financial Support

- Swiss National Science Foundation
- ETH Zürich
- Pauli Center for Theoretical Studies

PAULICENTER EMzürich FNsNF
 for Theoretical Studies

Back up

Higgs soft-virtual @ N3LO

- How can we be sure that we got it right?
\Rightarrow Plus-distribution terms agree with Moch \& Vogt.
\Rightarrow All master integrals were computed analytically and cross checked numerically.
\Rightarrow Independent computations of matrix elements and integrals.
- All but the triple-real contribution have been confirmed by other groups.

Higgs soft-virtual @ N3LO

- How can we be sure that we got it right?
\Rightarrow Plus-distribution terms agree with Moch \& Vogt.
\Rightarrow All master integrals were computed analytically and cross checked numerically.
\Rightarrow Independent computations of matrix elements and integrals.
- All but the triple-real contribution have been confirmed by other groups.
- Caveat emptor

$$
\int d x_{1} d x_{2}\left[f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) z g(z)\right]\left[\frac{\hat{\sigma}_{i j}(s, z)}{z g(z)}\right]_{\text {threshold }} \quad \lim _{z \rightarrow 1} g(z)=1
$$

\Rightarrow Formally all these choices are equivalent!

Higgs soft-virtual @ N3LO

NNLO Soft Expansion $g(z)=1 / \mathrm{z}$

Soft Expansion NNLO g(z)=1

NNLO g(z)=z^2

Higgs soft-virtual @ N3LO

Higgs soft-virtual @ N3LO

```
--- 7 TeV - 8 TeV --- 13 TeV - 14 TeV --- 100 TeV
```


