The Hexagon Function Bootstrap in planar $\mathrm{N}=4 \mathrm{SYM}$

Granularity vs. Fluidity

The Analytic S-Matrix

1960's: Before even Itzykson \& Zuber.
No QCD, no Lagrangian or Feynman rules for strong interactions
Bootstrap program: Reconstruct scattering amplitudes directly from analytic properties: "on-shell" information

Poles

Landau; Cutkosky;
Chew, Mandelstam;
Eden, Landshoff,
Olive, Polkinghorne;
Veneziano;
Virasoro, Shapiro;
... (1960s)

Branch cuts

Usually too hard

- Nonperturbative implementation leads to nonlinear integral equations
- Often not enough data to fix ambiguities
- Perturbative implementation is linear, recursive in loops and legs
- Most successful $\mathrm{D}=4$ applications so far: construction of loop integrands (unitarity method, BCFW recursion, ...) but see talk by Britto; Abreu, Britto, Duhr, Gardi, 1401.3546

Tree-level fluidity

Amplitudes fall apart into simpler ones in special limits

- pole information

Picture leads directly to BCFW
(on-shell) recursion relations
Britto, Cachazo, Feng, Witten, hep-th/0501052

Trees recycled into trees

Fluidity of the one-loop integrand

Ordinary unitarity:
put 2 particles on shell

Generalized unitarity:

put 3 or 4 particles on shell

Amplitudes 2014, June 12

Today we will use fluidity, i.e. factorization in kinematical limits, to bootstrap an integrated loop amplitude directly, without ever peeking inside the loops

Similar in spirit to "uplifting" approach for $R^{1,1}$ kinematics Goddard, Heslop, Khoze, 1205.3448; Caron-Huot, He, 1305.2781

Loop amplitudes without loop integrals

1. Consider $\mathrm{N}=4$ super-Yang-Mills theory in the planar (large N_{c}) limit. Amplitudes possess many special properties, making integrated bootstrap feasible.
2. Make ansatz for functional form of scattering amplitudes in terms of iterated integrals - hexagon functions
3. Use "boundary value data" to fix constants in ansatz. Linear constraints, leading to rational numbers.
4. Cross check.

- Works for 6-gluon amplitude, first "nontrivial" amplitude in planar N=4 SYM, through 4 loops for MHV = (--++++), 3 loops for NMHV = (---+++)

Advantage of bootstrapping the integrated amplitude

Bypass all difficulties of doing integrals and all subtleties of infrared regularization by working directly with IR finite quantities:

- MHV: Remainder function
- NMHV: Ratio to MHV
- Just need a good guess for the form of the answer, plus excellent boundary data [Basso, Sever, Vieira]

Three kinematical limits

1. (Near) collinear limit
2. High-energy, multi-Regge limit
3. Multi-particle factorization limit (NMHV only)

Planar N=4 SYM Scattering Amplitudes

- Uniform transcendental weight: " $\ln ^{2 L} x$ " at L loops
- Exact exponentiation for $n=4$ or 5 gluons
- Dual (super)conformal invariance for any n
- Amplitudes equivalent to Wilson loops
- Strong coupling "soap bubbles" (minimal area)
- Integrability + OPE \rightarrow exact, nonperturbative predictions for near-collinear limit
- Factorization of amplitude in high-energy, multiRegge limit
- Finite radius of convergence for pert. theory

Use properties to solve for $n=6$ amplitudes

Exact exponentiation

Bern, LD, Smirnov, hep-th/0505205
BDS Ansatz inspired by IR structure of QCD, Mueller, Collins, Sen, Magnea, Sterman plus evidence collected at 2 and 3 loops for $n=4,5$ using generalized unitarity and collinear limits:

$$
\mathcal{A}_{n}^{\mathrm{BDS}}=\mathcal{A}_{n}^{\mathrm{tree}} \times \exp \left[\sum_{l=1}^{\infty}\left[\frac{\lambda}{8 \pi^{2}}\right]^{l}\left(f^{(l)}(\epsilon) M_{n}^{(1)}\left(l \epsilon ; s_{i j}\right)+C^{(l)}+\mathcal{O}(\epsilon)\right)\right]
$$

constants, indep. of kinematics
all kinematic dependence from 1-loop amplitude

$$
n=4 \Rightarrow \mathcal{M}_{4} \mid \text { finite }=\exp \left[\frac{1}{8} \gamma_{K}(\lambda) \ln ^{2}\left(\frac{s}{t}\right)+\text { const. }\right]
$$

Confirmed at strong coupling using AdS/CFT, for $n=4,5$. Alday, Maldacena Fails for $n=6,7, \ldots$

Dual conformal constraints

Broadhurst (1993); Lipatov (1999); Drummond, Henn, Smirnov, Sokatchev, hep-th/0607160, ...

- Amplitude fixed, up to functions of dual conformally invariant cross ratios:

$$
u_{i j k l} \equiv \frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}
$$

- Because $x_{i-1, i}^{2}=k_{i}^{2}=0 \quad$ there are no such variables for $n=4,5$ (after all loop integrations performed).

For $n=6$, precisely 3 ratios:

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}}
$$

From 9 variables to just 3 :

+ 2 cyclic perm's

```
\(s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{61}, s_{123}, s_{234}, s_{345}\)
```

$\rightarrow u_{1}, u_{2}, u_{3}$

L. Dixon The Hexagon Function Bootstrap

Amplitudes 2014, June 12

Six-point remainder function R_{6}

- $n=6$ first place BDS Ansatz must be modified, due to dual conformal cross ratios

$$
u=u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}} \quad v=u_{2}=\frac{x_{24}^{2} x_{51}^{2}}{x_{25}^{2} x_{41}^{2}} \quad w=u_{3}=\frac{x_{35}^{2} x_{62}^{2}}{x_{36}^{2} x_{52}^{2}}
$$

$$
\mathcal{A}_{6}^{\text {MHV }}\left(\epsilon ; s_{i j}\right)=\mathcal{A}_{6}^{\operatorname{BDS}}\left(\epsilon ; s_{i j}\right) \exp \left[R_{6}\left(u_{1}, u_{2}, u_{3}\right)\right]
$$

Known function, accounts for IR divergences, anomalies in dual conformal symmetry, and tree and 1-loop result
starts at
2 loops

Strong coupling and soap bubbles

Alday, Maldacena, 0705.0303

- Use AdS/CFT to compute scattering amplitude
- High energy scattering in string theory semi-classical: two-dimensional string world-sheet stretches long distance, classical solution minimizes area

Classical action imaginary
\rightarrow exponentially suppressed tunnelling configuration

$$
A_{n} \sim \exp \left[-\sqrt{\lambda} S_{\mathrm{cl}}^{\mathrm{E}}\right]
$$

We'll see amazingly similar behavior for strong and weak coupling coefficients - for some kinematics

L. Dixon The Hexagon Function Bootstrap

Wilson loops at weak coupling

Motivated by strong-coupling correspondence, Alday, Maldacena, 0705.0303 use same "soap bubble" boundary conditions as scattering amplitude:

- One loop, n=4 Drummond, Korchemsky, Sokatchev, 0707.0243
- One loop, any n

Brandhuber, Heslop, Travaglini, 0707.1153

- Two loops, n=4,5,6

- Wilson-loop VEV always matches [MHV] scattering amplitude!
- Justifies dual conformal invariance for amplitude DHKS, 0712.1223

Two loop answer: $\boldsymbol{R}_{6}^{(2)}\left(\boldsymbol{u}_{1}, u_{2}, u_{3}\right)$

- Wilson loop integrals performed by

Del Duca, Duhr, Smirnov, 0911.5332, 1003.1702
17 pages of multiple polylogarithms $G(\ldots)$.

- Simplified to classical polylogarithms using symbology

Goncharov, Spradlin, Vergu, Volovich, 1006.5703

$$
\begin{aligned}
& R_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right) \\
& -\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{1}{24} J^{4}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
\end{aligned}
$$

$$
x_{i}^{ \pm}=u_{i} x^{ \pm}, \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}
$$

L. Dixon The Hexagon Function Bootstrap

Kinematical playground

spurious pole $w=1^{\prime}$
multi-Regge
$(1,0,0)$
и

Wilson loop OPEs

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; GMSV, 1010.5009, 1102.0062

- $R_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)$ can be recovered directly from analytic properties, using "near collinear limit",

$$
v \rightarrow 0, \quad u+w \rightarrow 1
$$

- Limit controlled by operator product expansion (OPE)
- Possible to go to 3 loops, by combining OPE with symbol ansatz LD, Drummond, Henn, 1108.4461

Now symbol \rightarrow function $R_{6}{ }^{(3)}(u, v, w)$
LD, Drummond, von Hippel, Pennington, 1308.2276
and 3 loop NMHV,
and 4 loops, $R_{6}{ }^{(4)}$
LD, Duhr, Drummond, Pennington, 1402.3300

Multi-Regge limit

- Minkowski kinematics, large rapidity separations between the 4 final-state gluons:

- Properties of planar $\mathrm{N}=4 \mathrm{SYM}$ amplitude in this limit studied extensively at weak coupling:
Bartels, Lipatov, Sabio Vera, 0802.2065, 0807.0894; Lipatov, 1008.1015; Lipatov, Prygarin, 1008.1016, 1011.2673; Bartels, Lipatov, Prygarin, 1012.3178, 1104.4709; LD, Drummond, Henn, 1108.4461; Fadin, Lipatov, 1111.0782; LD, Duhr, Pennington, 1207.0186
- Factorization and exponentiation in this limit provides additional source of "boundary data" for bootstrapping!

$2 \rightarrow 4$ Multi-Regge picture

Bartels, Lipatov, Sabio Vera, 0802.2065

$2 \rightarrow 4$ multi-Regge limit

- Euclidean MRK limit vanishes
- To get nonzero result for physical region, first let
different w, sorry! $u_{1} \rightarrow u_{1} e^{-2 \pi i}$, then $u_{1} \rightarrow 1, u_{2}, u_{3} \rightarrow 0$

$$
\frac{u_{3}}{1-u_{1}} \rightarrow \frac{w w^{*}}{(1+w)\left(1+w^{*}\right)}
$$

$$
R_{6}^{(L)} \rightarrow(2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[g_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i h_{r}^{(L)}\left(w, w^{*}\right)\right]
$$

$g_{L-1}^{(L)}$ (LLA) and $g_{L-2}^{(L)}$ (NLLA) well understood
Fadin, Lipatov, 1111.0782;

LD, Duhr, Pennington, 1207.0186;

Pennington, 1209.5357

MRK Master formulae

- MHV:
$\left.e^{R+i \pi \delta}\right|_{\mathrm{MRK}}=\cos \pi \omega_{a b}+i \frac{a}{2} \sum_{n=-\infty}^{\infty}(-1)^{n}\left(\frac{w}{w^{*}}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d \nu}{\nu^{2}+\frac{n^{2}}{4}}|w|^{2 i \nu} \Phi_{\mathrm{Reg}}(\nu, n)$
NLL: Fadin, Lipatov, 1111.0782; Caron-Huot, 1309.6521

- NMHV:

$$
\begin{gathered}
\left.\exp \left(R^{\mathrm{NMHV}}+i \pi \delta\right)\right|_{\mathrm{MRK}}=\mathcal{P} \exp \left(R^{\mathrm{MHV}}+i \pi \delta\right) \\
=\cos \pi \omega_{a b}-i \frac{a}{2} \sum_{n=-\infty}^{\infty}(-1)^{n}\left(\frac{w}{w^{*}}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \sqrt{\left(i \nu+\frac{n}{2}\right)^{2}}|w|^{2 i \nu} \\
\left.\times \sqrt{\mathrm{NMHV}}_{\sqrt{\mathrm{NME}}} \nu, n\right)\left(-\frac{1}{1-u} \frac{|1+w|^{2}}{|w|}\right)^{\omega(\nu, n)}
\end{gathered}
$$

LL: Lipatov, Prygarin, Schnitzer, 1205.0186
L. Dixon The Hexagon Function Bootstrap

Basic bootstrap assumption

- MHV: $\boldsymbol{R}_{6}{ }^{(L)}(u, v, w)$ is a linear combination of weight $2 L$ hexagon functions at any loop order L
- NMHV: Super-amplitude ratio function

$$
\mathcal{P}_{\mathrm{NMHV}} \equiv \frac{\mathcal{A}_{\mathrm{NMHV}}}{\mathcal{A}_{\mathrm{MHV}}}
$$

(also IR finite) has expansion

Drummond, Henn, Korchemsky,
Sokatchev, 0807.1095

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{NMHV}}=\frac{1}{2}[[(1)+(4)] V(u, v, w)+[(2)+(5)] V(v, w, u)+[(3)+(6)] V(w, u, v) \\
& +[(1)-(4)] \tilde{V}(u, v, w)-[(2)-(5)] \tilde{V}(v, w, u)+[(3)-(6)] \tilde{V}(w, u, v)] \\
& \text { dual superconformal } \\
& \text { invariants } \\
& V, \tilde{V}=\text { hexagon functions }
\end{aligned}
$$

Functional interlude

Chen; Goncharov; Brown; talks by Vergu, Henn, Duhr, ...

- Multiple polylogarithms, or n-fold iterated integrals, or weight n pure transcendental functions f.
- Define by derivatives:

$$
d f=\sum_{s_{k} \in \mathcal{S}} f^{s_{k}} d \ln s_{k}
$$

$S=$ finite set of rational expressions, "symbol letters", and

$$
f^{s_{k}} \equiv\{n-1,1\} \text { coproduct component }
$$

Duhr, Gangl, Rhodes,
are also pure functions, weight $n-1$

- Iterate: $d f^{s_{k}} \Rightarrow f^{s_{j} s_{k}} \equiv\{n-2,1,1\}$ component
- Symbol $=\{1,1, \ldots, 1\}$ component (maximally iterated)
L. Dixon The Hexagon Function Bootstrap

Harmonic Polylogarithms of one variable (HPLs \{0,1\})

Remiddi, Vermaseren, hep-ph/9905237

- Subsector of hexagon functions
- Define by iterated integration:

$$
H_{0, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{t} H_{\vec{w}}(t), \quad H_{1, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{1-t} H_{\vec{w}}(t)
$$

- Or by derivatives
$d H_{0, \vec{w}}(u)=H_{\vec{w}}(u) d \ln u \quad d H_{1, \vec{w}}(u)=-H_{\vec{w}}(u) d \ln (1-u)$
- "Symbol letters": $\mathcal{S}=\{u, 1-u\}$

Hexagon function symbol letters

- Momentum twistors $Z_{i}^{A}, i=1,2, \ldots, 6$ transform simply under dual conformal transformations. Hodges, 0905.1473
- Construct 4-brackets $\varepsilon_{A B C D} Z_{i}^{A} Z_{j}^{B} Z_{k}^{C} Z_{l}^{D} \equiv\langle i j k l\rangle$
- 15 projectively invariant combinations of 4 -brackets can be factored into 9 basic ones:

$$
\mathcal{S}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

- y_{i} not independent of u_{i}
$y_{u} \equiv \frac{u-z_{+}}{u-z_{-}}, \ldots$ where

$$
\begin{aligned}
z_{ \pm} & =\frac{1}{2}[-1+u+v+w \pm \sqrt{\Delta}] \\
\Delta & =(1-u-v-w)^{2}-4 u v w
\end{aligned}
$$

y_{i} rationalize symbol:

$$
u=\frac{y_{u}\left(1-y_{v}\right)\left(1-y_{w}\right)}{\left(1-y_{u} y_{v}\right)\left(1-y_{u} y_{w}\right)}
$$

Branch cut condition

- All massless particles \rightarrow all branch cuts start at origin in

$$
s_{i, i+1}, s_{i, i+1, i+2}
$$

\rightarrow Branch cuts all start from 0 or ∞ in

$$
u=\frac{s_{12}^{2} s_{45}^{2}}{s_{123}^{2} s_{345}^{2}} \quad \text { or } v \text { or } w
$$

\rightarrow First symbol entry $\in\{u, v, w\}$
GMSV, 1102.0062; talk by Britto

Hexagon functions are multiple polylogarithms in y_{i}

$G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)$

Region I: $\quad\left\{\begin{array}{l}\Delta>0, \quad 0<u_{i}<1, \quad \text { and } \quad u+v+w<1, \\ 0<y_{i}<1 .\end{array}\right.$

$$
\mathcal{G}=\left\{G\left(\vec{w} ; y_{u}\right) \mid w_{i} \in\{0,1\}\right\} \cup\left\{G\left(\vec{w} ; y_{v}\right) \left\lvert\, w_{i} \in\left\{0,1, \frac{1}{y_{u}}\right\}\right.\right\} \cup\left\{G\left(\vec{w} ; y_{w}\right) \left\lvert\, w_{i} \in\left\{0,1, \frac{1}{y_{u}}, \frac{1}{y_{v}}, \frac{1}{y_{u} y_{v}}\right\}\right.\right\}
$$

- Useful for analytics and for numerics for $\Delta>0$ GINAC implementation: Vollinga, Weinzierl, hep-th/0410259
L. Dixon The Hexagon Function Bootstrap

Amplitudes 2014, June 12

"Coproduct" approach

$\{\mathrm{n}-1,1\}$ coproduct defines coupled linear first-order PDEs

$$
\begin{aligned}
\left.\frac{\partial F}{\partial u}\right|_{v, w}= & \frac{F^{u}}{u}-\frac{F^{1-u}}{1-u}+\frac{1-u-v-w}{u \sqrt{\Delta}} F^{y_{u}}+\frac{1-u-v+w}{(1-u) \sqrt{\Delta}} F^{y_{v}}+\frac{1-u+v-w}{(1-u) \sqrt{\Delta}} F^{y_{w}} \\
\left.\sqrt{\Delta} y_{u} \frac{\partial F}{\partial y_{u}}\right|_{y_{v}, y_{w}}= & (1-u)(1-v-w) F^{u}-u(1-v) F^{v}-u(1-w) F^{w}-u(1-v-w) F^{1-u} \\
& +u v F^{1-v}+u w F^{1-w}+\sqrt{\Delta} F^{y_{u}} .
\end{aligned}
$$

- Integrate numerically.
- Or solve PDEs analytically in special limits, e.g.:

1. Near-collinear limit
2. Multi-regge limit

- Always stay in space of functions with good branch cuts.
- Don't need $\Delta>0$

A menagerie of functions

1. HPLs: One variable, symbol letters $\{u, 1-u\}$. Near-collinear limit, lines $(u, u, 1),(u, 1,1)$
2. Cyclotomic Polylogarithms [Ablinger, Blumlein, Schneider, 1105.6063]: One variable, letters $\left\{y_{u}, 1+y_{u}, 1+y_{u}+y_{u}{ }^{2}\right\}$. For line (u, u, u).
3. SVHPLs [F. Brown, 2004]: Two variables, letters $\{z, 1-z, \bar{z}, 1-\bar{z}\}$. First entry/single-valuedness constraint (real analytic function in z plane). Multi-Regge limit.
4. Full hexagon functions. Three variables, symbol letters $\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}$, branch-cut condition

Back to physics

- enumerate all hexagon functions with weight 2L
- write most general linear combination with unkown rational-number coefficients
- impose a series of physical constraints until all coefficients uniquely determined
- sometimes do in two steps: first fix symbol, later the full function (fix $\zeta(k)$ ambiguities)

Simple constraints on R_{6}

- S_{3} permutation symmetry in $\{u, v, w\}$
- Even under "parity": every term must have an even number of y_{i}

$$
\begin{aligned}
& \hline i \sqrt{\Delta} \leftrightarrow-i \sqrt{\Delta} \\
& z_{+} \leftrightarrow z_{-} \\
& y_{i} \leftrightarrow 1 / y_{i} \\
& \hline
\end{aligned}
$$

- Vanishing in collinear limit

$$
v \rightarrow 0 \quad u+w \rightarrow 1
$$

Constraint on final entry of symbol or $\{n-1,1\}$ coproduct

- From super Wilson-loop approach

Caron-Huot, 1105.5606 , Caron-Huot, He, 1112.1060 for remainder function \boldsymbol{R}_{6} and for odd part of ratio function V, only 6 of 9 possible entries:

$$
\left\{\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, y_{u}, y_{v}, y_{w}\right\}
$$

- For even part V, one more entry allowed:

$$
\left\{\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, \frac{u w}{v}, y_{u}, y_{v}, y_{w}\right\}
$$

OPE Constraints

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; GMSV, 1010.5009; 1102.0062 Basso, Sever, Vieira [BSV], 1303.1396; 1306.2058; 1402.3307

- $\boldsymbol{R}_{6}{ }^{(L)}(u, v, w)$ vanishes in the collinear limit,

$$
v=1 / \cosh ^{2} \tau \rightarrow 0 \quad \tau \rightarrow \infty
$$

Its near-collinear limit is described by an OPE with generic form

$$
R_{6}^{(L)}(u, v, w)=R_{6}^{(L)}(\tau, \sigma, \phi) \sim \int d n C_{n}(g) \exp \left[-E_{n}(g) \tau\right]
$$

$$
\begin{aligned}
u & =\frac{e^{\sigma} \sinh \tau \tanh \tau}{2(\cosh \sigma \cosh \tau+\cos \phi)} \\
v & =\frac{1}{\cosh ^{2} \tau} \\
w & =u e^{-2 \sigma}
\end{aligned}
$$

OPE Constraints (cont.)

- Early OPE constraints fixed "leading discontinuity" terms:

$$
\tau^{L-1} \sim[\ln T]^{L-1} \sim[\ln v]^{L-1} \quad \text { where } \quad T \sim \exp (-\tau)
$$

- New results of BSV use power of integrability, give all powers of $\ln T$ for leading twist, one flux-tube excitation:

$$
T \mathrm{e}^{ \pm i \phi}[\ln T]^{k} f_{k}(\sigma), \quad k=0,1,2, \ldots, L-1
$$

and even subleading twist, two flux-tube excitations

$$
T^{2}\left\{\mathrm{e}^{ \pm 2 i \phi}, 1\right\}[\ln T]^{k} f_{k}(\sigma), \quad k=0,1,2, \ldots, L-1
$$

- At ANY loop order!

Unknown parameters in $\boldsymbol{R}_{6}{ }^{(L)}$ symbol

Constraint	$L=2$ Dim.	$L=3$ Dim.	$L=4$ Dim.
1. Integrability	75	643	5897
2. Total S_{3} symmetry	20	151	1224
3. Parity invariance	18	120	874
4. Collinear vanishing $\left(T^{0}\right)$	4	59	622
5. OPE leading discontinuity	0	26	482
6. Final entry	0	2	113
7. Multi-Regge limit	0	2	80
8. Near-collinear OPE $\left(T^{1}\right)$	0	0	4
9. Near-collinear OPE $\left(T^{2}\right)$	0	0	0
	only need $T^{2} \times \mathrm{e}^{ \pm 2 i \phi}$ terms; $T^{2} \times 1$ is pure cross check		

Unknown parameters in $V^{(L)}, \widetilde{V}^{(L)}$ functions

Constraint	One Loop	Two Loops	Three Loops
Symmetry in u and w	7	52	412
Cyclic vanishing of \tilde{V}	7	52	402
Final-entry condition	4	25	182
Spurious-pole vanishing	3	15	142
Collinear vanishing	1	8	92
$\mathcal{O}\left(T^{1}\right)$ Operator product expansion	0	0	\boldsymbol{p}_{0}^{2}
$\mathcal{O}\left(T^{2}\right)$ OPE or Multi-Regge kinematics	0	0	0

New information in MRK limit: NNLLA BFKL eigenvalue

$$
\begin{aligned}
& E_{\nu, n}= \psi\left(\xi^{+}\right)+\psi\left(\xi^{-}\right)-2 \psi(1)-\frac{1}{2} \operatorname{sgn}(n) N \\
& E_{\nu, n}^{(1)}=-\frac{1}{4}\left[\psi^{(2)}\left(\xi^{+}\right)+\psi^{(2)}\left(\xi^{-}\right)-\operatorname{sgn}(n) N\left(\frac{1}{4} N^{2}+V^{2}\right)\right] \\
&+\frac{1}{2} V\left[\psi^{(1)}\left(\xi^{+}\right)-\psi^{(1)}\left(\xi^{-}\right)\right]-\zeta_{2} E_{\nu, n}-3 \zeta_{3} \\
& E_{\nu, n}^{(2)}= \frac{1}{8}\left\{\frac{1}{6}\left[\psi^{(4)}\left(\xi^{+}\right)+\psi^{(4)}\left(\xi^{-}\right)-60 \operatorname{sgn}(n) N\left(V^{4}+\frac{1}{2} V^{2} N^{2}+\frac{1}{80} N^{4}\right)\right]\right. \\
&-V\left[\psi^{(3)}\left(\xi^{+}\right)-\psi^{(3)}\left(\xi^{-}\right)-3 \operatorname{sgn}(n) V N\left(4 V^{2}+N^{2}\right)\right] \\
&+\left(V^{2}+2 \zeta_{2}\right)\left[\psi^{(2)}\left(\xi^{+}\right)+\psi^{(2)}\left(\xi^{-}\right)-\operatorname{sgn}(n) N\left(3 V^{2}+\frac{1}{4} N^{2}\right)\right] \\
&-V\left(N^{2}+8 \zeta_{2}\right)\left[\psi^{\prime}\left(\xi^{+}\right)-\psi^{\prime}\left(\xi^{-}\right)-\operatorname{sgn}(n) V N\right]+\zeta_{3}\left(4 V^{2}+N^{2}\right) \\
&\left.+44 \zeta_{4} E_{\nu, n}+16 \zeta_{2} \zeta_{3}+80 \zeta_{5}\right\}, \\
& V \equiv \frac{1}{2}\left[\frac{1}{i \nu+\frac{|n|}{2}}-\frac{1}{\left.-i \nu+\frac{|n|}{2}\right]}=\frac{i \nu}{\nu^{2}+\frac{|n|^{2}}{4}} \equiv 1 \pm i \nu+\frac{|n|}{2}\right. \\
& V \equiv \operatorname{sgn}(n)\left[\frac{1}{i \nu+\frac{|n|}{2}}+\frac{1}{-i \nu+\frac{|n|}{2}}\right]=\frac{n}{\nu^{2}+\frac{|n|^{2}}{4}}
\end{aligned}
$$

Closely related to flux-tube anomalous dimensions Basso, 1010.5237
L. Dixon The Hexagon Function Bootstrap

New information in MRK limit: NMHV impact factor

- NLL (from two-loop amplitude):

$$
\Phi_{\operatorname{Reg}}^{\mathrm{NMHV},(1)}(\nu, n)=\Phi_{\mathrm{Reg}}^{\mathrm{MHV},(1)}(\nu, n)+\frac{i n \nu}{2\left(-\frac{n}{2}+i \nu\right)^{2}\left(\frac{n}{2}+i \nu\right)^{2}}
$$

- NNLL (from three-loop amplitude):

$$
\begin{aligned}
\Phi_{\operatorname{Reg}}^{\mathrm{NMHV},(2)}(\nu, n)= & \Phi_{\operatorname{Reg}}^{\mathrm{MHV},(2)}(\nu, n) \\
& +\left(\Phi_{\operatorname{Reg}}^{\mathrm{MHV},(1)}(\nu, n)+\zeta_{2}\right) \frac{i n \nu}{2\left(-\frac{n}{2}+i \nu\right)^{2}\left(\frac{n}{2}+i \nu\right)^{2}} \\
& -\frac{i n \nu\left(n^{2}-i n \nu-2 \nu^{2}\right)}{8\left(-\frac{n}{2}+i \nu\right)^{4}\left(\frac{n}{2}+i \nu\right)^{4}}
\end{aligned}
$$

- Very suggestive (Basso...)

NMHV Multi-Particle Factorization

$$
A_{6}^{\text {NMHV }}\left(k_{i}\right) \xrightarrow{s_{345} \rightarrow 0} A_{4}\left(k_{6}, k_{1}, k_{2}, K\right) \frac{F_{6}\left(K^{2}, s_{i, i+1}\right)}{K^{2}} A_{4}\left(-K, k_{3}, k_{4}, k_{5}\right)
$$

Only interesting for NMHV: MHV tree has no pole $\quad \mathcal{A}_{\mathrm{MHV}}^{(0)}=i \frac{\delta^{4}(p) \delta^{8}(q)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}$

$$
\begin{gathered}
u=\frac{s_{12} s_{45}}{s_{123} s_{345}} \rightarrow \infty \quad w=\frac{s_{61} s_{34}}{s_{345} s_{234}} \rightarrow \infty \\
u / w \text { and } v=\frac{s_{23} s_{56}}{s_{234} s_{123}} \text { fixed }
\end{gathered}
$$

Multi-Particle Factorization (cont.)

$(1)=(4) \rightarrow \infty$, rest finite
\rightarrow look at $V(u, v, w)$

- Actually much better to look at $U(u, v, w)$ defined by

$$
U=\ln V+R_{6}-1 / 8 \gamma_{K}\left[\operatorname{Li}_{2}(1-u)+1 / 2 \ln ^{2} u+\text { cyclic }\right]
$$

- Don't put MHV amplitude over NMHV tree pole.
- Logs always more instructive.
- Last term cancels part of BDS ansatz

Factorization limit of U

$$
\begin{aligned}
U^{(1)}(u, v, w)= & -\frac{1}{4} \ln ^{2}(u w / v)-\zeta_{2} \\
\left.U^{(2)}(u, v, w)\right|_{u, w \rightarrow \infty}= & \frac{3}{4} \zeta_{2} \ln ^{2}(u w / v)-\frac{1}{2} \zeta_{3} \ln (u w / v)+\frac{71}{8} \zeta_{4} \\
\left.U^{(3)}(u, v, w)\right|_{u, w \rightarrow \infty}= & \frac{1}{3} \zeta_{3} \ln ^{3}(u w / v)-\frac{75}{8} \zeta_{4} \ln ^{2}(u w / v)+\left(7 \zeta_{5}+8 \zeta_{2} \zeta_{3}\right) \ln (u w / v) \\
& -\frac{721}{8} \zeta_{6}-3\left(\zeta_{3}\right)^{2} \\
\text { Simple polynomial in } \ln (u w / v)! & \frac{u w}{v}=\frac{s_{12} S_{34}}{s_{56}} \cdot \frac{s_{45} s_{61}}{s_{23}} \cdot \frac{1}{s_{345}^{2}}
\end{aligned}
$$

Full NMHV factorization function in terms of U :

$$
\begin{aligned}
{\left[\ln F_{6}\right]^{(L)}=} & \frac{\gamma_{K}^{(L)}}{8 \epsilon^{2} L^{2}}\left(1+2 \epsilon L \frac{\mathcal{G}_{0}^{(L)}}{\gamma_{K}^{(L)}}\right)\left[\left(\frac{\left(-s_{12}\right)\left(-s_{34}\right)}{\left(-s_{56}\right)}\right)^{-L \epsilon}+\left(\frac{\left(-s_{45}\right)\left(-s_{61}\right)}{\left(-s_{23}\right)}\right)^{-L \epsilon}\right] \\
& -\frac{\gamma_{K}^{(L)}}{8}\left[\frac{1}{2} \ln ^{2}\left(\frac{\left(-s_{12}\right)\left(-s_{34}\right)}{\left(-s_{56}\right)} / \frac{\left(-s_{45}\right)\left(-s_{61}\right)}{\left(-s_{23}\right)}\right)+6 \zeta_{2}\right] \\
& +\left.U^{(L)}(u, v, w)\right|_{u, w \rightarrow \infty}+\frac{f_{2}^{(L)}}{L^{2}}+C^{(L)} .
\end{aligned}
$$

Global simplicity of U

$$
\begin{aligned}
U^{u}+U^{1-u} & =U^{w}+U^{1-w}=-\left(U^{v}+U^{1-v}\right) \\
U^{1-v} & =0 \\
U^{y_{u}} & =U^{y_{w}}
\end{aligned}
$$

- These $\{\mathrm{n}-1,1\}$ coproduct relations hold globally in (u, v, w) through 3 loops
- First relation was imposed ($7^{\text {th }}$ final entry allowed for V)
- Next two are quite surprising
- They imply that U has only 5 final entries: $\left\{\frac{u}{1-u}, \frac{w}{1-w}, y_{u} y_{v}, y_{v}, \frac{u w}{v}\right\}$
- And that one derivative of U is very simple:

$$
\frac{\sqrt{\Delta} \frac{\partial U}{\partial \ln \left(y_{u} / y_{w}\right)}=(1-v)\left(U^{u}-U^{w}\right)}{\text { Amplitudes 2014, June } 12}
$$

Numerical results

- Plot perturbative coefficients on various lines and surfaces
- Instructive to take ratios of successive loop orders $\boldsymbol{R}_{6}{ }^{(L)} / \boldsymbol{R}_{6}{ }^{(L-1)}=\overline{\boldsymbol{R}}_{6}{ }^{(L)}$
- Planar N=4 SYM has no instantons and no renormalons.
- Its perturbative expansion has a finite radius of convergence, 1/8
- For "asymptotically large orders", $\boldsymbol{R}_{6}^{(L)} / \boldsymbol{R}_{6}^{(L-1)}$ should approach -8

Cusp anomalous dimension $\gamma_{K}(\lambda)$

- Known to all orders, Beisert, Eden, Staudacher [hep-th/0610251] closely related to amplitude/Wilson loop, use as benchmark for approach to large orders:

L	$\gamma_{K}^{(L)} / \gamma_{K}^{(L-1)}$	$\bar{R}_{6}^{(L)}(1,1,1)$	$\overline{\ln \mathcal{W}_{\text {hex }}^{(L)}\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right)}$	$\overline{\ln \mathcal{W}_{\text {hex }}^{(L)}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}$
2	-1.6449340	∞	-2.7697175	-2.8015275
3	-3.6188549	-7.0040885	-5.0036164	-5.1380714
4	-4.9211827	-6.5880519	-5.8860842	-6.0359857
5	-5.6547494	-	-	-
6	-6.0801089	-	-	-
7	-6.3589220	-	-	-
8	-6.5608621	-	-	-
\downarrow				
$\quad \mathbf{8}$				

On ($u, u, 1$), everything collapses to HPLs of u
Ratio of $R_{6}^{(L)}(u, u, 1)$ to $R_{6}^{(L-1)}(u, u, 1)$

Ratio of successive loop orders extremely flat on (u, u, w)

Uniform negative value in Region I consistent with conjecture of Arkani-Hamed, Trnka based on positive Grassmannian

Rescaled $R_{6}^{(L)}(u, u, u)$ and strong coupling

$(u, u, u) \rightarrow$ cyclotomic polylogs (weak coupling) $\arccos ^{2}(1 / 4 / u) \quad$ (strong coupling)

Ratio function odd part $\tilde{V}(u, 1,1)$

Recent progress in 7 point MHV too

$R_{7}{ }^{(2)}$ just computed in terms of
$\mathrm{Li}_{2,2}(x, y), \mathrm{Li}_{4}(x), \mathrm{Li}_{4}(x), \mathrm{Li}_{4}(x), \ln (x)$
Golden, Spradlin, 1306.0833, 0406.2055

Conclusions \& Outlook

- Hexagon function ansatz \rightarrow integrated planar $\mathrm{N}=4$ SYM amplitudes over full kinematical phase space, for both MHV and NMHV for 6 gluons
- No need to know any integrands at all
- Important additional inputs from boundary data: near-collinear and/or multi-Regge limits
- Numerical and analytical results intriguing!
- Can one go to all orders?
- Extensions to other theories?

Extra Slides

T^{1} OPE for NMHV: 1111 component

- Evaluate (i) prefactors \rightarrow
$\left.\mathcal{P}^{(1111)}\right|_{T^{1}}=\frac{1}{2}\{V(u, v, w)+V(w, u, v)-\tilde{V}(u, v, w)+\tilde{V}(w, u, v)$
$\left.+F T\left[\frac{1+S^{4}}{S\left(1+S^{2}\right)} V(v, w, u)-\frac{1-S^{2}}{S} V(u, v, w)\right]\right\} \quad \begin{aligned} & T=\mathrm{e}^{-\tau} \\ & S=\mathrm{e}^{\sigma}\end{aligned}$
- BSV:

$$
\begin{aligned}
\mathcal{P}^{(1111)}=1 & +e^{i \phi-\tau} \int \frac{d u}{2 \pi} \mu(u)(h(u)-1) e^{i p(u) \sigma-\gamma(u) \tau} \quad F \\
& +e^{-i \phi-\tau} \int \frac{d u}{2 \pi} \mu(u)(\bar{h}(u)-1) e^{i p(u) \sigma-\gamma(u) \tau}+\ldots
\end{aligned}
$$

$h(u)=\frac{x^{+}(u) x^{-}(u)}{g^{2}}, \quad \bar{h}(u)=\frac{g^{2}}{x^{+}(u) x^{-}(u)} x^{ \pm}(u)=x\left(u \pm \frac{i}{2}\right) \quad x(u)=\frac{1}{2}\left(u+\sqrt{u^{2}-4 g^{2}}\right)$

- Quantities μ, p, γ meromorphic in rapidity u
- Evaluate u integral as (truncated) residue sum See also Papathanasiou, 1310.5735

NMHV MRK limit

Like g, h for R_{6} :
Extract p, q from V, \tilde{V}
\rightarrow linear combinations of SVHPLs [Brown, 2004]
$R_{6}^{(L)} \rightarrow(2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[g_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i h_{r}^{(L)}\left(w, w^{*}\right)\right]$

$$
\begin{aligned}
\mathcal{P}_{\mathrm{MRK}}^{(L)}= & (2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[\frac{1}{1+w^{*}}\left(p_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i q_{r}^{(L)}\left(w, w^{*}\right)\right)\right. \\
& \left.+\left.\frac{w^{*}}{1+w^{*}}\left(p_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i q_{r}^{(L)}\left(w, w^{*}\right)\right)\right|_{\left(w, w^{*}\right) \rightarrow\left(\frac{1}{w^{2}}, \frac{1}{w^{*}}\right.}\right]+\mathcal{O}(1-u)
\end{aligned}
$$

- Then match p, q to master formula for factorization in Fourier-Mellin space

How many hexagon functions?

Irreducible (non-product) ones:

Weight	y^{0}	y^{1}	y^{2}	y^{2}	y^{3}	y^{4}	
1	3 HPLs	-	-	-	-	-	
2	3 HPLs	-	-	-	-	-	
3	6 HPLs	$\tilde{\Phi}_{6}$		-	-	-	
4	9 HPLs	$3 \times F_{1}$	$3 \times$	$\Omega^{(2)}$	-	-	
5	18 HPLs	$G, 3 \times K_{1}$	$5 \times M_{1}, \nsim$,	, ${ }^{\text {, } 6}$	H_{1},	-	
6	27 HPY	4	- 27	27		$R_{\text {ep }}$	$+15$

L. Dixon The Hexagon Function Bootstrap

Amplitudes 2014, June 12

$\boldsymbol{R}_{6}{ }^{(3)}(u, v, w)\{5,1\}$ coproduct

Many related

$$
\begin{aligned}
R_{6}^{(3), 1-u} & =-R_{6}^{(3), u}, \quad R_{6}^{(3), 1-v}=-R_{6}^{(3), v}, \quad R_{6}^{(3), 1-w}=-R_{6}^{(3), w} \\
R_{6}^{(3), v}(u, v, w) & =R_{6}^{(3), u}(v, w, u), \quad R_{6}^{(3), w}(u, v, w)=R_{6}^{(3), u}(w, u, v) \\
R_{6}^{(3), y_{v}}(u, v, w) & =R_{6}^{(3), y_{u}}(v, w, u), \quad R_{6}^{(3), y_{w}}(u, v, w)=R_{6}^{(3), y_{u}}(w, u, v)
\end{aligned}
$$

\rightarrow Only 2 independent components to list, y_{u} and u

$$
\begin{aligned}
R_{6}^{(3), y_{u}}=\frac{1}{32}\{ & -4\left(H_{1}(u, v, w)+H_{1}(u, w, v)\right)-2 H_{1}(v, u, w) \\
& +\frac{3}{2}\left(J_{1}(u, v, w)+J_{1}(v, w, u)+J_{1}(w, u, v)\right) \\
& \left.-4\left[H_{2}^{u}+H_{2}^{v}+H_{2}^{w}+\frac{1}{2}\left(\ln ^{2} u+\ln ^{2} v+\ln ^{2} w\right)-9 \zeta_{2}\right] \tilde{\Phi}_{6}(u, v, w)\right\}
\end{aligned}
$$

$\boldsymbol{R}_{6}{ }^{(3)}(u, v, w)\{5,1\}$ coproduct (cont.)

$$
\begin{aligned}
& R_{6}^{(3), u}=\frac{1}{32}[A(u, v, w)+A(u, w, v)] \\
& A= M_{1}(u, v, w)-M_{1}(w, u, v)+\frac{32}{3}\left(Q_{\mathrm{ep}}(v, w, u)-Q_{\mathrm{ep}}(v, u, w)\right) \\
&+(4 \ln u-\ln v+\ln w) \Omega^{(2)}(u, v, w)+(\ln u+\ln v) \Omega^{(2)}(v, w, u) \\
&+24 H_{5}^{u}-14 H_{4,1}^{u}+\frac{5}{2} H_{3,2}^{u}+42 H_{3,1,1}^{u}+\frac{13}{2} H_{2,2,1}^{u}-36 H_{2,1,1,1}^{u}+H_{2}^{u}\left[-5 H_{3}^{u}+\frac{1}{2} H_{2,1}^{u}+7 \zeta_{3}\right] \\
&+12 \text { more lines of HPLs }
\end{aligned}
$$

Multiple zeta values at $(u, v, w)=(1,1,1)$

$$
\begin{aligned}
& R_{6}^{(2)}(1,1,1)=-\left(\zeta_{2}\right)^{2}=-\frac{5}{2} \zeta_{4} \\
& R_{6}^{(3)}(1,1,1)=\frac{413}{24} \zeta_{6}+\left(\zeta_{3}\right)^{2} \\
& R_{6}^{(4)}(1,1,1)=-\frac{3}{2} \zeta_{2}\left(\zeta_{3}\right)^{2}-\frac{5}{2} \zeta_{3} \zeta_{5}-\frac{471}{4} \zeta_{8}+\frac{3}{2} \zeta_{5,3}
\end{aligned}
$$

First irreducible MZV

On the line $(u, u, 1)$, everything collapses to HPLs of u. In a linear representation, and a very compressed notation,

$$
H_{1}^{u} H_{2,1}^{u}=H_{1}^{u} H_{0,1,1}^{u}=3 H_{0,1,1,1}^{u}+H_{1,0,1,1}^{u} \rightarrow 3 h_{7}^{[4]}+h_{11}^{[4]}
$$

The 2 and 3 loop answers are:

$$
\begin{aligned}
R_{6}^{(2)}(u, u, 1)= & h_{1}^{[4]}-h_{3}^{[4]}+h_{9}^{[4]}-h_{11}^{[4]}-\frac{5}{2} \zeta_{4}, \\
R_{6}^{(3)}(u, u, 1)= & -3 h_{1}^{[6]}+5 h_{3}^{[6]}+\frac{3}{2} h_{5}^{[6]}-\frac{9}{2} h_{7}^{[6]}-\frac{1}{2} h_{9}^{[6]}-\frac{3}{2} h_{11}^{[6]}-h_{13}^{[6]}-\frac{3}{2} h_{17}^{[6]} \\
& +\frac{3}{2} h_{19}^{[6]}-\frac{1}{2} h_{21}^{[6]}-\frac{3}{2} h_{23}^{[6]}-3 h_{33}^{[6]}+5 h_{35}^{[6]}+\frac{3}{2} h_{37}^{[6]}-\frac{9}{2} h_{39}^{[6]} \\
& -\frac{1}{2} h_{41}^{[6]}-\frac{3}{2} h_{43}^{[6]}-h_{45}^{[6]}-\frac{3}{2} h_{49}^{[6]}+\frac{3}{2} h_{51}^{[6]}-\frac{1}{2} h_{53}^{[6]}-\frac{3}{2} h_{55}^{[6]} \\
& +\zeta_{2}\left[-h_{1}^{[4]}+3 h_{3}^{[4]}+2 h_{5}^{[4]}-h_{9}^{[4]}+3 h_{11}^{[4]}+2 h_{13}^{[4]}\right] \\
& +\zeta_{4}\left[-2 h_{1}^{[2]}-2 h_{3}^{[2]}\right]+\zeta_{3}^{2}+\frac{413}{24} \zeta_{6},
\end{aligned}
$$

And the 4 loop answer is:
L. Dixon

The Hexagon Function Bootstrap
$R_{6}^{(4)}(u, u, 1)=15 h_{1}^{[8]}-41 h_{3}^{[8]}-\frac{31}{2} h_{5}^{[8]}+\frac{105}{2} h_{7}^{[8]}-\frac{7}{2} h_{9}^{[8]}+\frac{53}{2} h_{11}^{[8]}+12 h_{13}^{[8]}-42 h_{15}^{[8]}$

$$
+\frac{5}{2} h_{17}^{[8]}+\frac{11}{2} h_{19}^{[8]}+\frac{9}{2} h_{21}^{[8]}-\frac{41}{2} h_{23}^{[8]}+h_{25}^{[8]}-13 h_{27}^{[8]}-7 h_{29}^{[8]}-5 h_{31}^{[8]}
$$

$$
+6 h_{33}^{[8]}-11 h_{35}^{[8]}-3 h_{37}^{[8]}+3 h_{39}^{[8]}-4 h_{43}^{[8]}-4 h_{45}^{[8]}-11 h_{47}^{[8]}+\frac{3}{2} h_{49}^{[8]}-\frac{3}{2} h_{51}^{[8]}
$$

$$
-3 h_{53}^{[8]}-5 h_{55}^{[8]}+\frac{3}{2} h_{57}^{[8]}-\frac{3}{2} h_{59}^{[8]}+9 h_{65}^{[8]}-25 h_{67}^{[8]}-9 h_{69}^{[8]}+27 h_{71}^{[8]}-2 h_{73}^{[8]}
$$

$$
+9 h_{75}^{[8]}+2 h_{77}^{[8]}-23 h_{79}^{[8]}+2 h_{81}^{[8]}-h_{85}^{[8]}-8 h_{87}^{[8]}+2 h_{89}^{[8]}-3 h_{91}^{[8]}+\frac{5}{2} h_{97}^{[8]}
$$

$$
-\frac{7}{2} h_{99}^{[8]}-\frac{1}{2} h_{101}^{[8]}+\frac{5}{2} h_{103}^{[8]}+\frac{1}{2} h_{105}^{[8]}+\frac{1}{2} h_{107}^{[8]}+\frac{1}{2} h_{109}^{[8]}-\frac{5}{2} h_{111}^{[8]}+15 h_{129}^{[8]}
$$

$$
-41 h_{131}^{[8]}-\frac{31}{2} h_{133}^{[8]}+\frac{105}{2} h_{135}^{[8]}-\frac{7}{2} h_{137}^{[8]}+\frac{53}{2} h_{139}^{[8]}+12 h_{141}^{[8]}-42 h_{143}^{[8]}
$$

$$
+\frac{5}{2} h_{145}^{[8]}+\frac{11}{2} h_{147}^{[8]}+\frac{9}{2} h_{149}^{[8]}-\frac{41}{2} h_{151}^{[8]}+h_{153}^{[8]}-13 h_{155}^{[8]}-7 h_{157}^{[8]}
$$

$$
-5 h_{159}^{[8]}+6 h_{161}^{[8]}-11 h_{163}^{[8]}-3 h_{165}^{[8]}+3 h_{167}^{[8]}-4 h_{171}^{[8]}-4 h_{173}^{[8]}
$$

$$
-11 h_{175}^{[8]}+\frac{3}{2} h_{177}^{[8]}-\frac{3}{2} h_{179}^{[8]}-3 h_{181}^{[8]}-5 h_{183}^{[8]}+\frac{3}{2} h_{185}^{[8]}-\frac{3}{2} h_{187}^{[8]}
$$

$$
+9 h_{193}^{[8]}-25 h_{195}^{[8]}-9 h_{197}^{[8]}+27 h_{199}^{[8]}-2 h_{201}^{[8]}+9 h_{203}^{[8]}+2 h_{205}^{[8]}-23 h_{207}^{[8]}
$$

$$
+2 h_{209}^{[8]}-h_{213}^{[8]}-8 h_{215}^{[8]}+2 h_{217}^{[8]}-3 h_{219}^{[8]}+\frac{5}{2} h_{225}^{[8]}-\frac{7}{2} h_{227}^{[8]}-\frac{1}{2} h_{229}^{[8]}
$$

$$
+\frac{5}{2} h_{231}^{[8]}+\frac{1}{2} h_{233}^{[8]}+\frac{1}{2} h_{235}^{[8]}+\frac{1}{2} h_{237}^{[8]}-\frac{5}{2} h_{239}^{[8]}
$$

$$
+\zeta_{2}\left[2 h_{1}^{[6]}-14 h_{3}^{[6]}-\frac{15}{2} h_{5}^{[6]}+\frac{37}{2} h_{7}^{[6]}-\frac{5}{2} h_{9}^{[6]}+\frac{25}{2} h_{11}^{[6]}+7 h_{13}^{[6]}-\frac{1}{2} h_{17}^{[6]}\right.
$$

$$
+\frac{5}{2} h_{19}^{[6]}+\frac{7}{2} h_{21}^{[6]}+\frac{9}{2} h_{23}^{[6]}-3 h_{25}^{[6]}+3 h_{27}^{[6]}+2 h_{33}^{[6]}-14 h_{35}^{[6]}-\frac{15}{2} h_{37}^{[6]}
$$

$$
+\frac{37}{2} h_{39}^{[6]}-\frac{5}{2} h_{41}^{[6]}+\frac{25}{2} h_{43}^{[6]}+7 h_{45}^{[6]}-\frac{1}{2} h_{49}^{[6]}+\frac{5}{2} h_{51}^{[6]}+\frac{7}{2} h_{53}^{[6]}
$$

$$
\left.+\frac{9}{2} h_{55}^{[6]}-3 h_{57}^{[6]}+3 h_{59}^{[6]}\right]
$$

$$
+\zeta_{4}\left[\frac{15}{2} h_{1}^{[4]}-\frac{55}{2} h_{3}^{[4]}-\frac{41}{2} h_{5}^{[4]}+\frac{15}{2} h_{9}^{[4]}-\frac{55}{2} h_{11}^{[4]}-\frac{41}{2} h_{13}^{[4]}\right]
$$

$$
+\left(\zeta_{2} \zeta_{3}-\frac{5}{2} \zeta_{5}\right)\left[h_{3}^{[3]}+h_{7}^{[3]}\right]-\left(\zeta_{3}^{2}-\frac{73}{4} \zeta_{6}\right)\left[h_{1}^{[2]}+h_{3}^{[2]}\right]
$$

$$
-\frac{3}{2} \zeta_{2} \zeta_{3}^{2}-\frac{5}{2} \zeta_{3} \zeta_{5}-\frac{471}{4} \zeta_{8}+\frac{3}{2} \zeta_{5,3} .
$$

Amplitudes 2014, June 12

"beyond-the-symbol" parameters for $\boldsymbol{R}_{6}{ }^{(4)}$

k	MZVs of weight k	Functions of weight $8-k$	Total parameters
2	ζ_{2}	38	38
3	ζ_{3}	14	14
4	ζ_{4}	6	6
5	$\zeta_{2} \zeta_{3}, \zeta_{5}$	2	4
6	ζ_{3}^{2}, ζ_{6}	1	2
7	$\zeta_{2} \zeta_{5} \zeta_{3} \zeta_{4}, \zeta_{7}$	0	0
8	$\zeta_{2} \zeta_{3}^{2}, \zeta_{3} \zeta_{5}, \zeta_{8}, \zeta_{5,3}$	1	4

- Collinear limit fixes all but 10
- Near-collinear limit at order T fixes all but 1
- Near-collinear limit at order T^{2} fixes the last 1

$\boldsymbol{R}_{6}{ }^{(3)}$ sign stable within $\Delta>0$ regions

relation to positive Grassmannian? Arkani-Hamed, Trnka conjecture
L. Dixon The Hexagon Function Bootstrap

Integration contours in (u, v, w)

$$
F(u, v, w)=-\sqrt{\Delta} \int_{1}^{u} \frac{d u_{t}}{v_{t}\left[u(1-w)+(w-u) u_{t}\right]} \frac{\partial F}{\partial \ln y_{v}}\left(u_{t}, v_{t}, w_{t}\right)
$$

base point $(u, v, w)=(1,1,1)$

$$
y_{u} y_{v} y_{w}=1
$$

$$
F(u, v, w)=F(1,0,0)+\sqrt{\Delta} \int_{1}^{u} \overline{(1-}^{w}{ }^{0.5}
$$

base point $(u, v, w)=(1,0,0)$

$$
y_{u}=1
$$

L. Dixon The Hexagon Function Bootstrap

Amplitudes 2014, June 12
$\begin{array}{ll}= & y_{u} \\ = & y_{v} \\ = & y_{w} \\ = & y_{w} / y_{v} \\ = & y_{u} / y_{w} \\ = & y_{v} / y_{u}\end{array}$

