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Motivation

• One is generally interested in two types of theories:
-Theories which precisely describe Nature
-Approximate models which we can exactly solve

• In four dimensions, there appears to be a unique 
nontrivial quantum field theory in which we can 
calculate scattering amplitudes exactly

`N=4 SYM: the harmonic oscillator of the 21st century?’



Motivation
`N=4 SYM: the harmonic oscillator of the 21st century!’

Hydrogen atom

• One is generally interested in two types of theories:
-Theories which precisely describe Nature
-Approximate models which we can exactly solve

• In four dimensions, there appears to be a unique 
nontrivial quantum field theory in which we can 
calculate scattering amplitudes exactly

• I will try to shed a new light on the symmetry which 
make it possible, by relating it to a more familiar one.  I 
will also present some recent developments which 
incorporate massive particles.



Plan
1. Symmetries: the hydrogen atom and N=4 SYM

2. A perverse way to compute the spectrum

3. Our original story...
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The Kepler problem, 1.
• Consider the classical two-body problem with a 

1/r potential

• We can go to a center-of-mass frame;
four conserved quantities are apparent:
angular momentum    and energy

• These basically fix the dynamics, for example 
the motion takes place in a plane, ...
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The Kepler problem, 2.
• Something special happens when the 

potential is 1/r: the orbits do not precess
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• For V∝-1/r the system possess an additional, 

non-obvious conserved vector:

• It points in the direction of the eccentricity, 
preventing it from precessing
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The Kepler problem, 3.

(« Laplace-Runge-Lenz » vector)
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• Quantum mechanically, the Laplace-Runge-Lenz 
vector is still conserved

• It explains the well-known degeneracy of the 
excited states of the Hydrogen atom
(this was quickly pointed out by Pauli in the early days 
of the subject)

• In the real world, its conservation is broken by 
relativistic effects (spin-orbit, …)
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Is there a fully consistent, relativistic quantum 
field theory, in which the Runge-Lenz vector is 
conserved?
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• In the early days of relativistic QFT, 
Wick and Cutkowski considered the following 
model:

• This is the ladder approximation to ep → ep,
 ignoring the spin of the photon.

• In the nonrelativistic limit, for massless exchange, 
this reduces to the H Hamiltonian
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• This model possesses an exact O(4) symmetry, 
even away from the NR limit

• Consider just one rung

• The symmetry is non-obvious in this form, but 
there is a conformal symmetry in momentum 
space
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• The symmetry can be made evident by using 
Dirac’s embedding formalism

• Rewrite each vector as a 6-vector, with L2=0:

and similarly for the external regions:

• The 6D vector product gives: 
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• The L’s and Y’s ‘live’ in regions of the planar graph

• The integration measure is also important, but let 
me skip it for now. 
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• Since everything (incl. measure) depends only on 6-
dimensional dot products, there is a natural SO(6) 
(really SO(4,2)) symmetry

• The point is that the two vectors Y1, Y3 reduce the 
symmetry, but obviously preserve an SO(4). 

• This SO(4) contains the usual SO(3)     subgroup.

• What are the remaining three generators? The 
Runge-Lenz vector!
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• Since everything (incl. measure) depends only on 6-
dimensional dot products, there is a natural SO(6) 
(really SO(4,2)) symmetry

• The point is that the two vectors Y1, Y3 reduce the 
symmetry, but obviously preserve an SO(4). 

• This SO(4) contains the usual SO(3)     subgroup.

• What are the remaining three generators? The 
Runge-Lenz vector!
(In NR regime, loop integral localizes on pole, and 
can be rotated to an S4) 
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• One can also consider the unequal-mass case

• It is equivalent to previous case: the 
spectrum depends only on the cross-ratio
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• Unfortunately, the ladder approximation is not 
consistent relativistically.

• (It lacks multi-particle channels and so has deep 
problems with unitarity)

• For this reason this symmetry appears to have 
been mostly forgotten, like a curiousity

• Wick and Cutkowski’s investigations
nonetheless left us the ``Wick rotation’’
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• The simplest way to imagine a consistent QFT with 
this symmetry is to take a planar limit:

• The Feynman rules would then ‘only’ need to respect 
the SO(6) symmetry, which acts in momentum space

• Can such a thing exist?
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By unitarity, such a theory will contain massless particles. 
Their self-interactions will then have to respect the dual 
conformal symmetry.



Fast forward to the 2000’s

• Bern-Dixon-Smirnov-(Kosower-Anastasiou), and
Drummond-Henn-Smirnov-Sokatchev observed:
-All integrals that contribute are dual-conformal 
invariant
-The integrated results exponentiates up to 
three (four) loops 20

M(3�loop)

4

Mtree

4

=

A more complete discussion of the µ terms, especially for theories with less supersymmetries, will

be presented in the future.

Figure 6: Examples of diagrams with no two-particle cuts. The external lines are gluons, but the internal
lines are summed over all states in the supermultiplet.

7 Structure of higher loop amplitudes

Following the same cut construction procedure used for the two-loop amplitudes, we have found a

pattern for the n-loop N =4 four-gluon leading color partial amplitudes.

The three-loop leading color partial amplitude is given in fig. 7. Note that there are one-loop

pentagon sub-diagrams. This complicates the analysis of the three-particle cuts since one-loop

pentagons can be reduced to sums over box integrals [28]. In some cuts it is the box integrals that

appear and in some it is the pentagon; this must be disentangled in order to identify the form

appearing in fig. 7.

Figure 7: A pictorial representation of the three-loop four-point N = 4 leading color amplitude. Note the
prefactors that involve ℓ (where ℓ is the internal loop momentum indicated by the arrow in each term) are
part of the integrand.

Observing the results for the leading color one-, two- and three-loop N = 4 amplitudes one can

recognize a pattern which can be used to construct the (n + 1)-loop amplitude from the n-loop

result. The pattern is that one takes each n-loop graph in the n-loop amplitude and generates all

the possible (n + 1)-loop graphs by inserting a new leg between each possible pair of internal legs.

Diagrams where triangle or bubble subgraphs are created should not be included. The new loop

momentum including an additional factor of i(ℓ1 + ℓ2)2 in the numerator is integrated over, where

ℓ1 and ℓ2 are the momenta flowing through each of the legs to which the new line is joined. (This

is depicted in fig. 8). Momentum conservation ensures that it does not matter on which side of the

new line the momentum pair ℓ1 and ℓ2 are taken. Note that no four-point vertices are created by

this procedure. Each distinct (n + 1)-loop graph should be counted once, even though they can be

generated in multiple ways. The (n + 1)-loop amplitude is then the sum of all distinct (n + 1)-loop

graphs.
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• Dual conformal symmetry in massless case
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• The SO(2,4) dual conformal symmetry in the 
massless sector is at the heart of the Wilson loop/
amplitude duality, of the integrability of the N=4 
theory, and of other recent developments.

• I have just argued that it is a natural QFT extension 
of the Hydrogen atom’s O(4), itself inherited from the 
classical Kepler problem
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• The SO(2,4) dual conformal symmetry in the 
massless sector is at the heart of the Wilson loop/
amplitude duality, of the integrability of the N=4 
theory, and of other recent developments.

• I have just argued that it is a natural QFT extension 
of the Hydrogen atom’s O(4), itself inherited from the 
classical Kepler problem

• Open question: is N=4 the unique example?

• Let us return to our massive particles!
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• The N=4 theory comes with a moduli space of 
vacua, parametrized by 6 adjoint scalar fields

• We can give them the vev’s we want. For example 
by breaking: SU(Nc)→U(1)xSU(Nc-1) we will get 
U(1) ``photons’’ coupled to massive W bosons.

• For 2→2 scattering it is more interesting to break 
SU(Nc)→SU(4)xU(Nc-4) :
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• The four-point color-ordered amplitude of 
massless U(4)’s has the following structure:

• Exactly what we were looking for!
Analogous to light-by-light scattering in QED

• Bound states automatically carry the O(4) 
‘Runge-Lenz’ symmetry at all couplings
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...

massless
massive

[Alday,Henn,Plefka&Schuster ,
Dennen& Huang: 6D, 

O’Connell&SCH: 10D]



Part II

A perverse calculation of the spectrum
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(Donnachie, Dosch,Landshoff&Nachtmann)

t<0 obtained from                  data, (@3.6,5.85&13.3GeV/c)⇡�p ! ⇡0n

connecting t<0 and t>0 in QCD:
ex.: the rho meson trajectory

A / s↵(t)



• The logic behind this connection is simple:

• The spectrum of a theory can be read off from 
fall-off of correlators at large distances 

• The same fall-off can be equally well measured by 
fast particles at large impact parameter:
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• The gluon Regge trajectory for t<0 (equal to -          )      

• For positive t this diverges near threshold:
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• The gluon Regge trajectory for t<0 (equal to -          )      

• For positive t this diverges near threshold:

• The condition spin=integer gives the bound states:

• This is the correct answer!        (                    )! 
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Figure 6. (a) Regge trajectory of our Hydrogen-like system of two W bosons at weak coupling,
with crosses marking the physical states. The thick blue line shows the leading trajectory and the
dashed lines are its integer-spaced “daughter trajectories"; these form a single O(4) multiplet. The
red line with j ⇡ �2 shows the first nontrivial subleading trajectory. To magnify the features we
have used the untrustworthily large coupling � = 25. (b) Actual shape of the leading trajectory
for � = 1000, 100, 15, 5 (top to bottom), using the strong coupling (first two) and weak coupling
formulas (last two).

governed by an integrable model [49, 50]; the high-energy limit with s/t fixed, where the
massless amplitude and BDS Ansatz is recovered; and finally the high-energy limit of the
cross section (6.31), which is controlled by the so-called Bremstahlung function computed
via localization.

That all these limits appear in the same amplitude implies interesting interconnections.
For example, the Regge and nonrelativistic limits can be linked by drawing an old-fashioned
Chew-Frautschi plot, which shows the spin of bound states as a function of their energies
as in fig. 6a. To explain this link, we start from the left side of the figure, where according
to Regge theory the trajectories j(s) govern the behavior of the light-by-light amplitude in
the limit t ! 1 with fixed s < 0. Using this the dominant trajectory was given in eq. (6.6)
as

j
0

(s) + 1 =

�

8⇡2�u
log

�u � 1

�u + 1

+ O(�2

) . (7.1)

While defined naturally for s < 0, this can be analytically continued to other values. The
result turns out to shoot up at positive s near the threshold for pair production:
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j
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�

8⇡
q

4m2

s � 1

. (7.2)

Whenever a Regge trajectory takes on an integer value, one expects to find a corresponding
physical state in the Hilbert space of the theory. Equating j(s) with an integer 0, 1, 2, . . .,
we can find the energies of these states:

p
s � 2m = � �2m

64⇡2n2

, n = 1, 2, . . . (7.3)

– 33 –

Regge trajectories at weak 
coupling

All bound states combine into a single O(4) Regge 
trajectory:  the next-to-maximal-spin states are Runge-
Lenz descendents of the leading-spin states

r0

r1

SO(3)



A strange duality, 1
• Cutkowski’s finding about the unequal-mass 

case generalizes to the four-mass case:
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[Alday,Henn,Plefka&Schuster]

Amplitude depends on only two cross-ratios!



A strange duality, II

• Keeping v fixed, there are two ways to make 
u small:

1. Regge limit: s→∞:
2. Small mass limit: m3→0:
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A strange duality, III
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Dynamical quarks
in flat space Static quarks in S3xR

� = ⇡�✓

En = 2m sin
✓n
2

, where � j � 1 = �cusp(✓n) = �n,

(n = 1, 2, . . .)‘anomalous dimension = minus integer’



• Checks: NLO calculation of

[Pineda]
[Correa,Henn,Maldacena&Sever]
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In the regime dual to bound states,         , a 
nontrivial but understood resummation is 
necessary (‘ultrasoft scalars’)
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• Checks: NLO calculation of
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In the regime dual to bound states,         , a 
nontrivial but understood resummation is 
necessary (‘ultrasoft scalars’)
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The error is uniformly small, of order �3, for all � ⇠ �, as required for the description of
bound states. As a simple check of this formula, by setting � ⌧ � we reproduce the static
quark potential lim

�!0 �(�) = � �

4⇡� (1 +

�

2⇡2

⇥
log

�

2⇡ + �E � 1

⇤
+ O(�2)) [? ]. The bare

potential in the flat space, eq (2.10), is the sum of �(2) plus (the flat space limit) of the
(�1) subtraction term in �

(2)
us .

Finally, equating j + 1 = �� to an integer and solving for �, which translates to a
binding energy according to eq. (2.19), we extract the NLO spectrum:
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(2.23)
This is exactly as above!

2.4 Strong coupling regime

3 Discussion

In this paper we have studied the phenomenon of light-by-light scattering in N = 4 SYM,
up to three-loop order at weak coupling. To do this, . . .

We find very pleasing that the Kepler problem, which played such an important role
in the foundation of both classical and quantum mechanics, figures centrally in our study.
Indeed, hydrogen-like bound states appear as poles in the amplitudes. However, our setup
embeds it within a fully consistent quantum-field theoretic framework, with a host of rel-
ativistic and multi-particle effects included. Thus, for example, we have shown that the
bound states fall on the Regge trajectory j(s), which, when continued to the “unphysical”
region of negative (spacelike) s, governs the t ! 1 asymptotics of the cross-section in
agreement with Regge theory. As the coupling is increased, the ground state of this ‘atom’
remains stable but becomes more and more relativistic and tightly bound, being eventually
represented by an ultrarelativisitc spinning string in AdS space, which falls on a linear
Regge trajectory.

The connection between the hydrogen-like bound states and Regge behavior is the
following. In this model, the hydrogen-like bound states appear at the center-of-mass
energy

E
j

= 2m� �2m

64⇡2(j + 1)

2
+O(

m�3

(j + 1)

4
), j = 0, 1, 2, . . . (3.1)

On the other hand, in the Regge limit the amplitude is proportional to tj0(s)+1 where the
leading Regge trajectory is given by
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→ Perturbative series under uniform control for all n!



• Compare against standard ‘Coulomb resummation’

37

where j + 1 =

�
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p

�E/m

as above; F (t/m2
) is some (real) function of t, containing in

particular the details about the UV cutoff for the logarithmic divergences. As a simple
check, setting E ! E + i0, the (unambiguous) imaginary part of the above result gives
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64⇡2n2
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Upon expanding the step function term for m�2 ⌧ E ⌧ m, we see that it indeed reproduces
precisely the first line of the expansion of our fixed-order three-loop result.

2.2 Next-to-leading-order Coulomb resummation

The (p)NRQCD framework allows for a systematic treatment of higher-order corrections to
the bound state properties. These are described in terms of higher-dimensional operators
in the effective Hamiltonian, such as p4/m3 terms or corrections to the potential etc; the
importance of a given term can be estimated using the power counting rules p/m ⇠ �,
E/m ⇠ �2 and mx ⇠ 1/�. In addition to higher-dimensional operators, pNRQCD contains
additional light degrees of freedom, so-called ultrasoft gauge bosons, scalars (and fermions),
whose energies and momenta of order m�2.

Fortunately, to carry out the expansion through next-to-leading order, only relatively
few terms must be retained. For example, higher-derivative terms for spinless particles
involve integer powers of p2 ⇠ �2, hence only appear at NNLO. Interactions with ultrasoft
gluons are derivative suppressed (proportional to ~x· ~E), and can affect the spectrum only
at order m�5 (NNNLO) [explain the power-counting here]. Ultrasoft scalars, however, can
have non-derivative interactions and therefore must be retained already at NLO. In addition,
the terms already present in the LO Hamiltonian (2.1) can receive O(�) corrections. The
mass is protected by supersymmetry, but the potential is not.

The complete Hamiltonian which incorporates all NLO effects thus takes the form

H (s)
=


p2

m
� �

4⇡r
+ �V (2)

(r)

�
 (s)

+ � (o) ,

H (o)
=

p2

m
 (o)

+ � (s)
(with �V (2)

=

�

2⇡2✏
+

�2

8⇡3r
log

✏

2r
) . (2.10)

Here  (s,o) distinguish the color singlet and octet components of the heavy particle’s
wavefunction. The couplings to ultrasoft scalars arise simply from tree-level graphs (see
ref.[Pineda]), and the ultrasoft scalar propagator depends only on time difference and is
given by

h�(t)�(t0)i = �

2⇡2(t� t0)2
✓(|t� t0|�✏) . (2.11)

Here we find useful to work in Euclidean space, and in this formula t is Euclidean time (for
real Lorentzian time, the propagator would differ by an overall sign). We have introduced
the cutoff ✏ (on the Euclidean time), anticipating ultraviolet divergences. The bare con-
tribution to the potential, �V (2), was obtained in this scheme by matching with the fixed

– 7 –

NLO

NLO

[Pineda, ’08]
ultrasoft scalars ! ⇠ m�2

[pNRQCD; see Beneke,Kiyo&Schuller 1312.4791]



• Compare against standard ‘Coulomb resummation’
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particular the details about the UV cutoff for the logarithmic divergences. As a simple
check, setting E ! E + i0, the (unambiguous) imaginary part of the above result gives

�m2
ImM(s, t)(LO)

g2t
=

✓(E)�/4

1� e��/(4
p

E/m)
+

⇡

2

1X

n=1

✓
�

4⇡n

◆3

�

✓
E

m
+

�2

64⇡2n2

◆
. (2.9)

Upon expanding the step function term for m�2 ⌧ E ⌧ m, we see that it indeed reproduces
precisely the first line of the expansion of our fixed-order three-loop result.

2.2 Next-to-leading-order Coulomb resummation

The (p)NRQCD framework allows for a systematic treatment of higher-order corrections to
the bound state properties. These are described in terms of higher-dimensional operators
in the effective Hamiltonian, such as p4/m3 terms or corrections to the potential etc; the
importance of a given term can be estimated using the power counting rules p/m ⇠ �,
E/m ⇠ �2 and mx ⇠ 1/�. In addition to higher-dimensional operators, pNRQCD contains
additional light degrees of freedom, so-called ultrasoft gauge bosons, scalars (and fermions),
whose energies and momenta of order m�2.

Fortunately, to carry out the expansion through next-to-leading order, only relatively
few terms must be retained. For example, higher-derivative terms for spinless particles
involve integer powers of p2 ⇠ �2, hence only appear at NNLO. Interactions with ultrasoft
gluons are derivative suppressed (proportional to ~x· ~E), and can affect the spectrum only
at order m�5 (NNNLO) [explain the power-counting here]. Ultrasoft scalars, however, can
have non-derivative interactions and therefore must be retained already at NLO. In addition,
the terms already present in the LO Hamiltonian (2.1) can receive O(�) corrections. The
mass is protected by supersymmetry, but the potential is not.

The complete Hamiltonian which incorporates all NLO effects thus takes the form

H (s)
=


p2

m
� �

4⇡r
+ �V (2)

(r)

�
 (s)

+ � (o) ,

H (o)
=

p2

m
 (o)

+ � (s)
(with �V (2)

=

�

2⇡2✏
+

�2

8⇡3r
log

✏

2r
) . (2.10)

Here  (s,o) distinguish the color singlet and octet components of the heavy particle’s
wavefunction. The couplings to ultrasoft scalars arise simply from tree-level graphs (see
ref.[Pineda]), and the ultrasoft scalar propagator depends only on time difference and is
given by

h�(t)�(t0)i = �

2⇡2(t� t0)2
✓(|t� t0|�✏) . (2.11)

Here we find useful to work in Euclidean space, and in this formula t is Euclidean time (for
real Lorentzian time, the propagator would differ by an overall sign). We have introduced
the cutoff ✏ (on the Euclidean time), anticipating ultraviolet divergences. The bare con-
tribution to the potential, �V (2), was obtained in this scheme by matching with the fixed
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NLO

NLO

[Pineda, ’08]
ultrasoft scalars ! ⇠ m�2

order calculation of the static potential [Pineda], as described in next subsection. Finally,
at this order the observable of interest is

�m2M(s, t)(NLO)

g2t
= (1 + g2c1)

4⇡

m2

Z
d3p

(2⇡)3
d3p0

(2⇡)3
G(LO)

(p,p0, E)

+

4⇡

m2

Z
d3p

(2⇡)3
d3p0

(2⇡)3
G(NLO)

(p,p0, E) + non-singular (2.12)

where the coefficient c1 (which may include ultraviolet-divergent counter-terms) is to be
determined by matching against the fixed-order calculation. The non-singular terms con-
tributions to the amplitude are functions of t only. [Should we care? Maybe we should this
contribution a name and give it explicitly.]

We begin with the contribution to G(NLO) arising from the ultrasoft scalar. It may be
written formally as

G(NLO)
us (p,p0, E) =

�

2⇡2

Z
d3q

(2⇡)3
G(LO)

(p,q, E)Pus(q, E)G(LO)
(q,p0, E) , (2.13)

where Pus is the propagator for the composite state including heavy quarks and scalar:

Pus(q, E) ⌘
Z 1

✏

dt

t2
et(E�q2

m )
=

1

✏
+

q2 �mE

m

✓
log

(q2 �mE)✏

m
+ �E � 1

◆
.

We expect the dependence on ✏ to cancel against the contribution arising from �V (2). To
see this, we compute its the Fourier transform and write its contribution as

��V (2)
(q� q0

) ⌘ �(2⇡)3�3(q� q0
)

✏
� �

(q� q0
)

2
( log

✏|q� q0|
2

+ �E) ,

G(NLO)
uv (p,p0, E) =

�

2⇡2

Z
d3q

(2⇡)3
d3q0

(2⇡)3
G(LO)

(p,q, E)

h
��V (2)

(q� q0
)

i
G(LO)

(q0,p0, E) .

(2.14)

As expected, the cancelation between (2.13) and (2.14) becomes apparent for the 1/✏ terms.
For the logarithmic divergence we use the equation of motion

p2 �mE

m
G(LO)

(p,p0, E) = �

Z
d3p00

(2⇡)3
1

(p� p00
)

2
G(LO)

(p00,p0, E)+(2⇡)3�3(p�p0
) , (2.15)

to rewrite (2.13) in terms of a further integral, making the cancelation manifest. Combining
the two contributions we obtain the following expression for the propagator at NLO:

G(NLO)
(p,p0, E) =

�2

2⇡2

Z
d3q

(2⇡)3
d3q0

(2⇡)3
G(LO)

(p,q, E)

log

2(q2�mE)
m|q�q0| � 1

(q� q0
)

2
G(LO)

(q0,p0, E)

+

�

2⇡2
G(LO)

(p,p0, E)

✓
log

(q2 �mE)✏

m
+ �E � 1

◆
. (2.16)

The only divergence is now on the second line and can be interpreted as wavefunction
renormalization, to be absorbed into the coefficient c1.
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[Schwinger]

2.1 Leading-order Coulomb resummation

Let us first review some features of the leading order Hamiltonian. A particularly useful
expression for the (momentum-space) propagator of the Coulomb Hamiltonian (2.1) has
been obtained by Schwinger;

G(p,p0, E) =� (2⇡)3�3(p� p0
)

E � p2

m

+

1

E � p2

m

�

(p� p0
)

2

1

E � p02

m

+

1

E � p2

m

Z 1

0
dt

�(j + 1)t�j�1

(p� p0
)

2t� m

4E (E � p2

m

)(E � p02

m

)(1� t)2
1

E � p02

m

, (2.4)

where j+1 =

�

8⇡
p

�E/m

. For real E this should be supplemented with the usual prescription
E 7! E + i0. Actually, the most useful expression for us will be

Z
d3p0

(2⇡)3
G(p,p0, E) = �4Em2

Z 1

0

dtt�j�1
(1� t2)

(p2
(1� t)2 �mE(1 + t)2)2

. (2.5)

Now the singular part of the amplitude is expressed in terms of local operators in the
effective theory. At the lowest order the coupling is proportional to the amplitude at r = 0,
which gives simply

�m2M(s, t)(LO)

g2t
=

4⇡

m2

Z
d3p

(2⇡)3
d3p0

(2⇡)3
G(p,p0, E) . (2.6)

We have adjusted the normalization . . . Using eq. (2.5) the p and p0 integrations can be
performed exactly, yielding formally

�m2M(s, t)(LO)

g2t
= 2

r
�E

m

Z 1

0

dt t�j�1

(1� t)2
. (2.7)

This integral is divergent but the divergences can be separated simply by writing this as

�m2M(s, t)(LO)

g2t
= 2

r
�E

m

"Z
t

max

0

dt
�
1 + (j + 1) log

1
t

�

(1� t)2
+

Z 1

0
dt
t�j�1 � 1� (j + 1) log

1
t

(1� t)2

#
.

Since (j+1) / �, we see that the power divergence affects the one-loop result, the logarith-
mic divergence affects the two-loop result, and all other orders are unambiguous. The loga-
rithmically divergent term can be integrated unambiguously in this form up to a “constant
under the logarithm”, the natural cutoff |p|max⇠ m implying the cutoff tmax ⇠ 1 �

q
�E

m

.
The power divergent integral, however, cannot be integrated unambiguously in t space be-
cause a given well-defined regulator in p-space will not correspond to a simple cut-off in
t-space. Thus for the one-loop term one must to the original definition (2.6), substitute
the free propagator for G and perform the p-space integral directly with some regulator;
see for example ref. [], where dimensional regularization is used. This way one obtains (see
eq. (4.53) of ref.[]):

�m2M(s, t)(LO)

g2t
= �

r
�E

m
� �

4⇡

"
 (�j) + �E + log

r
�E

m
+ F (t/m2

)

#
, (2.8)
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(LO)

Solve perturbatively:

[pNRQCD; see Beneke,Kiyo&Schuller 1312.4791]
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=
�

4⇡

1

� n� �n

• The integrals turn out to be doable, and we get:

• From the NLO propagator computed within 
pNRQCD, we deduce the NLO spectrum:

✓
 =

�

8⇡
p
�Em

◆

�(�) = � �

4⇡�

✓
1� �

⇡
+

�

2⇡2


 (1 +

�

4⇡�
) + log(2�) + �E � 1

�
+O(�2)

◆
(2.22)

The error is uniformly small, of order �3, for all � ⇠ �, as required for the description of
bound states. As a simple check of this formula, by setting � ⌧ � we reproduce the static
quark potential lim

�!0 �(�) = � �

4⇡� (1 +

�

2⇡2

⇥
log

�

2⇡ + �E � 1

⇤
+ O(�2)) [? ]. The bare

potential in the flat space, eq (2.10), is the sum of �(2) plus (the flat space limit) of the
(�1) subtraction term in �

(2)
us .

Finally, equating j + 1 = �� to an integer and solving for �, which translates to a
binding energy according to eq. (2.19), we extract the NLO spectrum:

� E
n

=

m�2

64⇡2n2

✓
1 +

�

⇡2


S1(n) + log

�

2⇡n
� 1� 1

2n

�
+O(�2)

◆
, n = 1, 2, 3, . . .

(2.23)
This is exactly as above!

2.4 Strong coupling regime

3 Discussion

In this paper we have studied the phenomenon of light-by-light scattering in N = 4 SYM,
up to three-loop order at weak coupling. To do this, . . .

We find very pleasing that the Kepler problem, which played such an important role
in the foundation of both classical and quantum mechanics, figures centrally in our study.
Indeed, hydrogen-like bound states appear as poles in the amplitudes. However, our setup
embeds it within a fully consistent quantum-field theoretic framework, with a host of rel-
ativistic and multi-particle effects included. Thus, for example, we have shown that the
bound states fall on the Regge trajectory j(s), which, when continued to the “unphysical”
region of negative (spacelike) s, governs the t ! 1 asymptotics of the cross-section in
agreement with Regge theory. As the coupling is increased, the ground state of this ‘atom’
remains stable but becomes more and more relativistic and tightly bound, being eventually
represented by an ultrarelativisitc spinning string in AdS space, which falls on a linear
Regge trajectory.

The connection between the hydrogen-like bound states and Regge behavior is the
following. In this model, the hydrogen-like bound states appear at the center-of-mass
energy

E
j

= 2m� �2m

64⇡2(j + 1)

2
+O(

m�3

(j + 1)

4
), j = 0, 1, 2, . . . (3.1)

On the other hand, in the Regge limit the amplitude is proportional to tj0(s)+1 where the
leading Regge trajectory is given by

j0(s) + 1 =

�

8⇡2
p
1� 4m2/s

log

p
1� 4m2/s� 1p
1� 4m2/s+ 1

⇡
s!4m2

�

8⇡
p
4m2/s� 1

+O(

�2

4m2 � s
,�(4m2 � s)0) .

(3.2)
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MNLO / �

4⇡

1

� n
+

�2

8⇡3

nS1(n) + log 4

q
�E
m � n� 1

2

(� n)2
+ . . .

Exactly as predicted by the duality.
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• Other check: strong coupling

• Cusp anomalous dimension             was 
computed in 2002 

• Spectrum (of ‘mesons’) was computed at 
strong coupling in 2003

• The two curves agree perfectly, once one 
uses the correct dictionary!

(Kruczensky,Mateos,Myers&Winters `03)

�cusp(✓)

(Kruczensky `02)

En = 2m sin
✓n
2
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Figure 6. (a) Regge trajectory of our Hydrogen-like system of two W bosons at weak coupling,
with crosses marking the physical states. The thick blue line shows the leading trajectory and the
dashed lines are its integer-spaced “daughter trajectories"; these form a single O(4) multiplet. The
red line with j ⇡ �2 shows the first nontrivial subleading trajectory. To magnify the features we
have used the untrustworthily large coupling � = 25. (b) Actual shape of the leading trajectory
for � = 1000, 100, 15, 5 (top to bottom), using the strong coupling (first two) and weak coupling
formulas (last two).

governed by an integrable model [49, 50]; the high-energy limit with s/t fixed, where the
massless amplitude and BDS Ansatz is recovered; and finally the high-energy limit of the
cross section (6.31), which is controlled by the so-called Bremstahlung function computed
via localization.

That all these limits appear in the same amplitude implies interesting interconnections.
For example, the Regge and nonrelativistic limits can be linked by drawing an old-fashioned
Chew-Frautschi plot, which shows the spin of bound states as a function of their energies
as in fig. 6a. To explain this link, we start from the left side of the figure, where according
to Regge theory the trajectories j(s) govern the behavior of the light-by-light amplitude in
the limit t ! 1 with fixed s < 0. Using this the dominant trajectory was given in eq. (6.6)
as

j
0

(s) + 1 =

�

8⇡2�u
log

�u � 1

�u + 1

+ O(�2

) . (7.1)

While defined naturally for s < 0, this can be analytically continued to other values. The
result turns out to shoot up at positive s near the threshold for pair production:

lim

s!(4m2
)

�
j
0

(s) + 1 =

�

8⇡
q

4m2

s � 1

. (7.2)

Whenever a Regge trajectory takes on an integer value, one expects to find a corresponding
physical state in the Hilbert space of the theory. Equating j(s) with an integer 0, 1, 2, . . .,
we can find the energies of these states:

p
s � 2m = � �2m

64⇡2n2

, n = 1, 2, . . . (7.3)
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The trajectories at weak coupling (λ=5,15) and strong 
coupling (λ=100,1000). 
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Figure 6. (a) Regge trajectory of our Hydrogen-like system of two W bosons at weak coupling,
with crosses marking the physical states. The thick blue line shows the leading trajectory and the
dashed lines are its integer-spaced “daughter trajectories"; these form a single O(4) multiplet. The
red line with j ⇡ �2 shows the first nontrivial subleading trajectory. To magnify the features we
have used the untrustworthily large coupling � = 25. (b) Actual shape of the leading trajectory
for � = 1000, 100, 15, 5 (top to bottom), using the strong coupling (first two) and weak coupling
formulas (last two).

governed by an integrable model [49, 50]; the high-energy limit with s/t fixed, where the
massless amplitude and BDS Ansatz is recovered; and finally the high-energy limit of the
cross section (6.31), which is controlled by the so-called Bremstahlung function computed
via localization.

That all these limits appear in the same amplitude implies interesting interconnections.
For example, the Regge and nonrelativistic limits can be linked by drawing an old-fashioned
Chew-Frautschi plot, which shows the spin of bound states as a function of their energies
as in fig. 6a. To explain this link, we start from the left side of the figure, where according
to Regge theory the trajectories j(s) govern the behavior of the light-by-light amplitude in
the limit t ! 1 with fixed s < 0. Using this the dominant trajectory was given in eq. (6.6)
as

j
0

(s) + 1 =

�

8⇡2�u
log

�u � 1

�u + 1

+ O(�2

) . (7.1)

While defined naturally for s < 0, this can be analytically continued to other values. The
result turns out to shoot up at positive s near the threshold for pair production:

lim

s!(4m2
)

�
j
0

(s) + 1 =

�

8⇡
q

4m2

s � 1

. (7.2)

Whenever a Regge trajectory takes on an integer value, one expects to find a corresponding
physical state in the Hilbert space of the theory. Equating j(s) with an integer 0, 1, 2, . . .,
we can find the energies of these states:

p
s � 2m = � �2m

64⇡2n2

, n = 1, 2, . . . (7.3)
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The trajectories at weak coupling (λ=5,15) and strong 
coupling (λ=100,1000). 

Should be computable exactly using TBA for
[Drukker; Correa,Maldacena&Sever]

�cusp



Part III

Our original story...
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• Our original goal was to compute the 
simplest amplitude involving massive 
particles in N=4, (2→2), to see if the 
‘simplicity’ of N=4 survived finite masses. 

• Previously the mass had been used as a 
regulator

• Long after ‘guessing’ the 2-loop result, we 
found a simple way to derive it, using IBPs 
and differential equations, restricted to 
(convergent) DCI integrals defined in D=4.
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[Henn & SCH]
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1

0

g6

g2 g3

g1

�v � 1

�v + 1

�uv � �v

�uv + �v

�uv � �u

�uv + �u

�u � 1

�u + 1

�u � 1

�u + 1

�v � 1

�v + 1

transcendental

weight

g̃4 g̃5

Figure 3. Hierarchy of one-loop functions. The integrals are classified according to their (tran-
scendental) weight, shown in the leftmost column. Each arrow corresponds to one non-zero element
of the derivative matrix A, cf. eq. (3.8). The fact that arrows only link integrals in adjacent rows
is the statement that the matrix is block triangular. Solid and dashed lines denote massive and
massless propagators, respectively.

Let us now discuss the general solution in D = 4 � 2✏ dimensions, and then come back
to the simplifications as ✏ ! 0. With the differential equations in the form (3.6) we can
immediately write down the analytic answer in terms of Chen iterated integrals [8]. We
have

~f(s, t, m2
; ✏) = Pe✏

R
� d Ã~h(✏) . (3.12)

Here the integration contour � is a path in the space of kinematical variables, which begins
at a base point, in our case m ! 1, where we have the simple boundary condition (3.9).

Let us be more specific about the notation, following closely the recent lecture notes
[28, 29] on iterated integrals. We denote by M the space of kinematical variables, here
(u, v) 2 R2, and let !i be some differential one-forms (corresponding to entries of d ˜A or
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Ex. One-loop:

In D=4, the non-DCI triangles decouple from the box.



• Simple differential equation for box, bubbles 
and tadpole:

• Boundary condition is extremely simple for 
this problem:

46

To fully define the answer we need to specify a boundary condition. For the integrals
under consideration a particularly natural boundary point is m = 1, where

~h(✏) ⌘ lim

m!1
~f(s, t, m2

; ✏) = �i,1 . (3.9)

Before commenting on the solution to the differential equations, let us first discuss a sim-
plification for finite integrals.

We will be particularly interested in the ✏ ! 0 limit. Since all the above integrals are
both ultraviolet and infrared convergent (thanks to the internal masses, and thanks to the
choice of representatives we made), it is natural to remove the powers of ✏ in eq. (3.2) in
the limit. We thus let

(g1, g2, g3, g̃4, g̃5, g6) = lim

✏!0
(f1,

1

✏
f2,

1

✏
f3,

1

✏2
f4,

1

✏2
f5,

1

✏2
f6). (3.10)

The powers of ✏ reflect the transcendental weights of the functions gi. We have placed ‘tilde’
on g̃4 and g̃5 to distinguish them from two-loop integrals g4 and g5 which will be introduced
in the next section. The integrals g1, g2, g3 and g6 will carry the same meaning throughout
this paper.

The differential equation for the gi takes the similar canonical form (1.3), with the
A-matrix obtained from ˜A in eq. (3.8) by retaining only the boxed elements.

Two observations will be important for us.

• The integrals gi have uniform transcendental weights (0, 1, 1, 2, 2, 2), respectively. This
follows immediately from the block-triangular structure of the A-matrix: the deriva-
tives of g6 are expressed in terms of g2, g3 only, while the derivatives of the latter are
expressed in terms of g1 only. Another way of seeing this is to note that the functions
fi have uniform weight zero, and the rescaling by powers of ✏, which can be assigned
weight �1, leads to the weight of the gi given above.

• The box g6 and triangles g̃4, g̃5 are fully decoupled in D = 4.

The block triangular structure of the matrix and its implication for the weight of the
functions is visualized in a different way in Fig. 3. There one can also see the decoupling
of the box and triangle integrals. The decoupling of the triangles implies that, if we are
interested only in evaluating the box integral in D = 4, we could consistently work with
the truncated basis g1, g2, g3 and g6. Specifically, the system of differential equations in this
case reduces to, cf. eq. (3.8),

d

0

B

B

B

@

g1
g2
g3
g6

1

C

C

C

A

=d

0

B

B

B

B

B

@

0 0 0 0

log

⇣

�u�1
�u+1

⌘

0 0 0

log

⇣

�v�1
�v+1

⌘

0 0 0

0 log

⇣

�uv��u
�uv+�u

⌘

log

⇣

�uv��v
�uv+�v

⌘

0

1

C

C

C

C

C

A

0

B

B

B

@

g1
g2
g3
g6

1

C

C

C

A

, (3.11)

in agreement with the general form of eq. (1.3). Such truncations will be exploited exten-
sively in the next section.
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lim
s,t!0

gi(s, t) = �i,1

u =
4m2

�s
v =

4m2

�t
�u =

p
1 + u , �v =

p
1 + v , �uv =

p
1 + u+ v

(where: )
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Figure 4. Hierarchy of master integrals up to two loops. The integrals are classified according
to their (transcendental) weight, shown in the leftmost column. Each arrow corresponds to one
non-zero element of the derivative matrix A, cf. eq. (4.11). The fact that arrows only link integrals
in adjacent rows is the statement that the matrix is block triangular. The result for an integral
can immediately be written down by summing over all paths leading up from the tadpole integral
g1 = 1. Each path gives a contribution to an iterated integral, with the integration kernels being
specified by the ‘letters’ written next to the corresponding arrows. Solid and dashed lines denote
massive and massless propagators, respectively. Note that the pictures are intended to give an idea
of how the integrals look like, but omit details such as e.g. numerator factors.
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Two-loops
also very nice:
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non-zero element of the derivative matrix A, cf. eq. (4.11). The fact that arrows only link integrals
in adjacent rows is the statement that the matrix is block triangular. The result for an integral
can immediately be written down by summing over all paths leading up from the tadpole integral
g1 = 1. Each path gives a contribution to an iterated integral, with the integration kernels being
specified by the ‘letters’ written next to the corresponding arrows. Solid and dashed lines denote
massive and massless propagators, respectively. Note that the pictures are intended to give an idea
of how the integrals look like, but omit details such as e.g. numerator factors.
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Note mixing of
loop orders!

contact terms, allowing different loop orders to be seamlessly merged. Once some basis of
dual conformal master integrals has been found, our next step was to find a change of basis
that puts the differential equation into the canonical block triangular form. It turns out
that in D = 4 this problem is much simpler compared to the ✏ 6= 0 case, and can be solved
systematically. We detail the procedure in subsection 4.2. We conclude this section with
the main result for the two- and three-loop integrals.

4.1 Integration by part identities among dual conformal integrals

It is natural to expect that among all integration-by-parts identities, there exists a non-

empty subset of identities, which hold exactly in D = 4, and which relate only dual confor-
mal integrals to one another. Identifying this subset starting from a list of D-dimensional
reduction identities among non-conformal integrals might seem like a daunting task. It
turns out that this admits a rather elegant solution in terms of the embedding formalism.

The embedding formalism is ideally suited to this problem, because writing a non-
conformal expression in this formalism requires a deliberate effort. The main idea is to write
propagators as linear functions of a (D+2)-vector Yi ' (kµ

i , �k2
i , 1), where the Yi’s obey

certain equivalence relations. The formalism is described in appendix B. As an example,
the one-loop integral of eq. (2.2) is rewritten in the form

Ga1,...,a4 =

Z

Y1

(Y1I)

P
i ai�D

(Y1X1)
a1

(Y1X2)
a2

(Y1X3)
a3

(Y1X4)
a4

.

The numerator is necessary to ensure that the integrand has uniform homogeneity degree
D under rescaling of Y1. The important feature here is that dual conformal integrals are
precisely those for which the “point at infinity” I is absent. By simply never introducing
this point, one automatically stays within the class of conformal integrals.

Since the (D+2)-vectors Yi are a trivial change of variable away from the original loop
momenta ki, it is straightforward to carry through all the usual operations (generation of
integration by parts identities, derivatives with respect to external variables, etc.) in terms
of these variables. The upshot is that we automatically generate identities which involve
only dual conformal integrals.

In order not to distract from the main course of this paper, these technical matters are
discussed extensively in appendix B. Here we record only the most salient features in which
D = 4 differs from D 6= 4:

• Integration-by-part identities in D = 4 sometimes contain contact terms, which ap-
pear through the identity (B.13)

@

@kµ
1

(k1 � k2)
µ

(k1 � k2)4
= 2⇡2i�4(k1 � k2) .

This identity effectively relates integrals with different loop orders, since the �-function
removes one integration variable.

• When working without a regulator it is important to restrict attention to convergent

integrals, which converge in all integration regions. To this aim we imposed a simple

– 13 –



• The two-loop calculation, correctly 
formulated, turned out to be fully 
automated and to require little CPU time 
(~min).

• This prompted us to do three-loops.

• The result is recorded in [1404.2922]; I want 
to discuss one feature of it.
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• The subleading 1/s term in the Regge limit, at 
leading-log, turns out to be a sum of two 
exponentials:

• Note that testing this hypothesis required 3-loops

• Furthermore there seemed to be very nice 
structure in c1

• Trying to explain this ‘fine detail’ in terms of the 
symmetries of the t-channeI led us to 
Itzykson&Zuber’s treatment of the ladders, and to 
Bander&Itzykson’s review of O(4) symmetry, ...
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M(s, t) ⇠ sg
2j(1)0 (t)

✓
1 +

c1(t)

s

◆
+

c2(t)

s
sg

2c3(t) +O(1/s2)



• The result is that using O(4) instead of O(3) partial 
waves completely decouples the two powers:

• We thus obtain the subleading trajectory to 3-loops,

• This should be dual to a dimension-one ‘decoration’ 
of the cusped Wilson line. 
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It is possible to extract much more information by exploiting the symmetries of the
problem. Physically, the Regge limit s ! 1 represents long propagation in the t-channel,
which is delineated by the two propagators D

2

and D
4

. These break the SO(4,2) dual
conformal symmetry down to an SO(3,1) subgroup. It is thus natural to expand the am-
plitude in terms of states which have definite SO(3,1) spin j exchanged in the t-channel.
Geometrically, the propagators D

1

and D
3

define two points on the hyperboloid which is
acted upon by SO(3,1), and the invariant s defines the boost angle ⇢ between these two
points. The explicit expression is worked out in appendix [(??)]:

e�⇢
=

�uv � �u

�uv + �u
, cosh ⇢ = 1 +

2t

s
� t

2m2

. (6.8)

To project onto definite spin in the t-channel we expand the amplitude in terms of SO(1,3)
Legendre polynomials. When making this partial wave expansion it is important to consider
a physical amplitude, rather than M itself which is divided by the tree amplitude. To avoid
complications related to spin we scatter scalar particles (there is no loss of generality since
all particles are in the same multiplet), with R-charge such that only two scalars can be
exchanged in the t-channel. This amplitude is simply A =

t
sM . To write down the SO(3,1)

partial wave expansion we warm up with the O(4) case, which would be physically relevant
for example in the region 0 < t < 4m2, �t < s < 0. In this region we can write simply

t

s
M(

4m2

�s
,
4m2

�t
) =

1
X

j=0

P (4)

j (cosh ⇢)Cj(
4m2

�t
). (6.9)

This is similar to the conventional partial wave expansion, we have just enlarged O(3) to
O(4) to exploit the additional symmetries of our problem. To analytically continue to the
other regimes where O(4) becomes SO(3,1), which includes the Regge limit, we use the
standard Watson-Sommerfeld trick to convert the sum to an integral (see, for example, [?
]). Using the simple expression for the O(4) Legendre polynomials P (4)

j (cosh ⇢) =

sinh(j+1)⇢
(j+1) sinh ⇢

and absorbing unnecessary factors, we obtain the representation

1 + e�⇢

1 � e�⇢
M(

4m2

�s
,
4m2

�t
) =

Z i1

�i1

dj

2⇡i sin ⇡j
e(j+1)⇢Cj(

4m2

�t
) . (6.10)

[Relative prefactors?] Apart from the prefactor on the left this is just inverse Laplace
transform with respect to the hyperbolic angle ⇢. The contour must be to the left of j = 0

but to the right of the rightmost singularity of Cj ; for t < 0 we expect this region to be
nonempty.

Let us see the implications of this expansion. In the Regge limit s ⇠ e⇢ ! 1, the
amplitude will be dominated by the rightmost singularities of Cj in the spin plane. Since
we are in the large Nc limit it seems most natural to expect these singularities to be discrete
poles, e.g. a discrete set of Regge trajectories. This is consistent to what we found above.
Let us now assume that in the SO(3,1) variables the daughter trajectories are completely
removed. For the two leading powers we then find:

lim

s!1

1 + e�⇢

1 � e�⇢
M(

4m2

�s
,
4m2

�t
) = r

0

(t)e(j0(t)+1)⇢
+ r

1

(t)e(j1(t)+1)⇢
+ O(e�2⇢

), (6.11)
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( )cosh ⇢ = 1 +

2s

t
� s

2m2

where j
0

+ 1 ⇡ 0 is the leading trajectory described above and j
1

+ 1 ⇡ �1 is a single
subleading one. We find that our amplitude matches precisely this form! Since we now
have only a single exponential for the subleading term we can read off from our results its
trajectory to three loops. Defining as in ref. [12]

�v � 1

�v + 1

= e�', ⇠ =

1

�v
,

we find

j
1

= � 2 � 4g2 + g4
✓

16 � 4

3⇠
'3

+ 8(' � 2⇠)(' � 1

⇠
⇣
2

)

◆

+ g6


24

⇠
Li

4

(e�2'
) +

✓

64 +

16'

⇠

◆

Li

3

(e�2'
) + 64(' + ⇠)Li

2

(e�2'
) � 128'⇠ log(1 � e�2'

)

+

8

5⇠
'5 � 8

3

'4

✓

5 +

1

⇠

◆

+

16

3

'3

✓

4 + 7⇠ +

1 + 4⇣
2

⇠

◆

� 16'2

✓

3 + 6⇣
2

+ 4⇠ + 2⇠2 +

⇣
2

⇠

◆

+16'

✓

4⇣
2

+ 6⇠(2 + ⇣
2

) +

11⇣
4

� ⇣
3

+ 2⇣
2

⇠

◆

� 24⇣
4

✓

10 +

1

⇠

◆

+ 32⇣
3

� 64⇣
2

(1 + ⇠) � 128

�

.

(6.12)

The residue is r
1

= 2 + 8g2
⇣

2 log

1+e��

1�e�� � 1

⌘

+ O(g4). We note that only classical polylog-
arithms appear at this order, which is simpler than the corresponding result for j

0

[12].
Power corrections to the Regge limit have been relatively little studied. The simple

structure we find (6.11) strongly suggests the existence of a systematic expansion with a
nice structure. We hope that the rather distinctive function j

1

(t) that we have obtained
will help identify it.

For the next power-suppressed term e�2⇢ ⇠ 1/s2, we find that the amplitude is in-
consistent with a single power law, which implies only that at least two Regge trajectories
must contribute. Unfortunately, it is impossible to test from the three-loop result whether
only two trajectories contribute, because this hypothesis leads to a four-parameter ansatz
and has no predictive power before four loops. For this reason we do not present results for
sub-sub-leading Regge trajectories.

6.4 Threshold expansion

The amplitude is non-analytic close to the threshold s = 4m2 for producing a pair of W

bosons. It is convenient to distinguish between the analytic and non-analytic terms. Due
to the dispersion relations, to give the non-analytic terms it suffices to give the imaginary
part of the amplitude near the threshold. Expanding around �u = 0 with fixed t (taken in
the physical region �s < t < 0), we find for the first three orders

lim

�u!0

+

�m2

ImM(u, �4m2

t )

g2t
= �u

 

1 +

✓

g2

�u

◆

2⇡2

+

✓

g2

�u

◆

2

4⇡4

3

+ O
✓

g6

�3

u

◆

!

+ �2

u

 

0 +

✓

g2

�u

◆

r
2,2 +

✓

g2

�u

◆

2

r
2,3 + O

✓

g6

�3

u

◆

!
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Q: Identify and reproduce it from TBA?
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The leading O(4) trajectory (blue), for λ=1000,100,15,5 
(extrapolating weak/strong coupling); first subleading 
trajectory(red)
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Conclusions
• The planar N=4 SYM model is part of a natural 

series of integrable systems:

        classical Kepler problem  →  H atom
           → planar N=4 SYM → … ?

• Although conformal, the model incorporates 
massive particles in a natural way

• Leading Regge trajectory, aka        here, gives 
bound state; how to interpret subleading ones?

• Analytic computations with three different mass 
scales possible!  Apply to other processes?

�cusp


