Toying with bound states

Simon Caron-Huot

(Niels Bohr International Academy, Copenhagen
\& Princeton IAS)
(based work with Johannes Henn: I404.2922 and work to appear)
[Amplitudes 2014, Saclay, I2 juin 2014]

Motivation

`N=4 SYM: the harmonic oscillator of the 21 st century?'

- One is generally interested in two types of theories:
-Theories which precisely describe Nature
-Approximate models which we can exactly solve
- In four dimensions, there appears to be a unique nontrivial quantum field theory in which we can calculate scattering amplitudes exactly

Motivation

Hydrogen atom

`N=4 SYM: the harmonic oscillator of the 21 st century!'

- One is generally interested in two types of theories: -Theories which precisely describe Nature -Approximate models which we can exactly solve
- In four dimensions, there appears to be a unique nontrivial quantum field theory in which we can calculate scattering amplitudes exactly
- I will try to shed a new light on the symmetry which make it possible, by relating it to a more familiar one. I will also present some recent developments which incorporate massive particles.

Plan

I. Symmetries: the hydrogen atom and $N=4$ SYM
2. A perverse way to compute the spectrum
3. Our original story...

The Kepler problem, I.

- Consider the classical two-body problem with a I/r potential
- We can go to a center-of-mass frame; four conserved quantities are apparent: angular momentum \vec{J} and energy
- These basically fix the dynamics, for example the motion takes place in a plane, ...

The Kepler problem, 2.

- Something special happens when the potential is I / r : the orbits do not precess

Example: $V=1 / r^{9 / 10}$

The Kepler problem, 3.

- For $\mathrm{V} \propto-\mathrm{I} / \mathrm{r}$ the system possess an additional, non-obvious conserved vector:

$$
\vec{M}=\frac{\vec{p} \times \vec{J}}{m}-\frac{\vec{x}}{|x|}
$$

(« Laplace-Runge-Lenz » vector)

- It points in the direction of the eccentricity, preventing it from precessing
- Quantum mechanically, the Laplace-Runge-Lenz vector is still conserved
- It explains the well-known degeneracy of the excited states of the Hydrogen atom (this was quickly pointed out by Pauli in the early days of the subject)
- In the real world, its conservation is broken by relativistic effects (spin-orbit, ...)

Is there a fully consistent, relativistic quantum field theory, in which the Runge-Lenz vector is conserved?

- In the early days of relativistic QFT, Wick and Cutkowski considered the following model:

- This is the ladder approximation to ep $\rightarrow \mathrm{ep}$, ignoring the spin of the photon.
- In the nonrelativistic limit, for massless exchange, this reduces to the H Hamiltonian
- This model possesses an exact $O(4)$ symmetry, even away from the NR limit
- Consider just one rung

$$
\cdots \int \frac{d^{4} \ell_{2}}{\left(\ell_{2}-\ell_{1}\right)^{2}\left[\left(\ell_{2}-p_{1}\right)^{2}+m^{2}\right]\left[\left(\ell_{2}+p_{2}\right)^{2}+m^{2}\right]\left(\ell_{2}-\ell_{3}\right)^{2}} \cdots
$$

- The symmetry is non-obvious in this form, but there is a conformal symmetry in momentum space

The symmetry can be made evident by using Dirac's embedding formalism

- Rewrite each vector as a 6-vector, with $L^{2}=0$:

$$
L_{i}^{a} \equiv\left(\begin{array}{c}
\ell_{i}^{\mu} \\
L_{i}^{+} \\
L_{i}^{-}
\end{array}\right)=\left(\begin{array}{c}
\ell_{i}^{\mu} \\
\ell_{i}^{2} \\
1
\end{array}\right)
$$

and similarly for the external regions:

$$
Y_{1}^{a}=\left(\begin{array}{c}
p_{1}^{\mu} \\
p_{1}^{2}+m^{2} \\
1
\end{array}\right), \quad Y_{3}^{a}=\left(\begin{array}{c}
-p_{2}^{\mu} \\
p_{2}^{2}+m^{2} \\
1
\end{array}\right)
$$

- The 6D vector product gives:

$$
L_{i} \cdot L_{j}=\left(\ell_{i}-\ell_{j}\right)^{2} \quad \begin{aligned}
& L_{i} \cdot Y_{1}=\left(\ell_{i}-p_{1}\right)^{2}+m^{2} \\
& L_{i} \cdot Y_{3}=\left(\ell_{i}+p_{2}\right)^{2}+m^{2}
\end{aligned}
$$

- The L's and Y's 'live' in regions of the planar graph

- The integration measure is also important, but let me skip it for now.

$$
\cdots \int " d^{4} L_{2} " \frac{1}{\left(L_{1} \cdot L_{2}\right)\left(L_{2} \cdot Y_{1}\right)\left(L_{2} \cdot Y_{3}\right)\left(L_{2} \cdot L_{3}\right)} \cdots
$$

- Since everything (incl. measure) depends only on 6dimensional dot products, there is a natural $\mathrm{SO}(6)$ (really SO(4,2)) symmetry
- The point is that the two vectors Y_{1}, Y_{3} reduce the symmetry, but obviously preserve an $\mathrm{SO}(4)$.
- This $\mathrm{SO}(4)$ contains the usual $\mathrm{SO}(3) \vec{J}$ subgroup.
- What are the remaining three generators? The Runge-Lenz vector!

$$
\cdots \int " d^{4} L_{2} " \frac{1}{\left(L_{1} \cdot L_{2}\right)\left(L_{2} \cdot Y_{1}\right)\left(L_{2} \cdot Y_{3}\right)\left(L_{2} \cdot L_{3}\right)} \cdots
$$

- Since everything (incl. measure) depends only on 6dimensional dot products, there is a natural $\mathrm{SO}(6)$ (really SO(4,2)) symmetry
- The point is that the two vectors Y_{1}, Y_{3} reduce the symmetry, but obviously preserve an $\mathrm{SO}(4)$.
- This $\mathrm{SO}(4)$ contains the usual $\mathrm{SO}(3) \vec{J}$ subgroup.
- What are the remaining three generators? The Runge-Lenz vector!
(In NR regime, loop integral localizes on pole, and can be rotated to an $\left.\mathrm{S}^{4}\right)_{15} L^{a} \simeq\left(0,0, \frac{2 p_{0} \vec{p}}{\vec{p}^{2}+p_{0}^{2}}, \frac{p_{0}^{2}-\vec{p}^{2}}{\vec{p}^{2}+p_{0}^{2}}\right)$
- One can also consider the unequal-mass case

$$
Y_{1}^{a}=\left(\begin{array}{c}
p_{1}^{\mu} \\
p_{1}^{2}+m_{1}^{2} \\
1
\end{array}\right), \quad Y_{3}^{a}=\left(\begin{array}{c}
-p_{2}^{\mu} \\
p_{2}^{2}+m_{3}^{2} \\
1
\end{array}\right)
$$

- It is equivalent to previous case: the spectrum depends only on the cross-ratio

generalizes 'reduced mass'
- Unfortunately, the ladder approximation is not consistent relativistically.
- (It lacks multi-particle channels and so has deep problems with unitarity)
- For this reason this symmetry appears to have been mostly forgotten, like a curiousity
- Wick and Cutkowski's investigations nonetheless left us the ' ${ }^{\text {Wick rotation" }}$
- The simplest way to imagine a consistent QFT with this symmetry is to take a planar limit:

- The Feynman rules would then 'only' need to respect the $\mathrm{SO}(6)$ symmetry, which acts in momentum space
- Can such a thing exist?

By unitarity, such a theory will contain massless particles. Their self-interactions will then have to respect the dual conformal symmetry.

Fast forward to the 2000's

$$
\frac{\mathcal{M}_{4}^{(3-\text { loop })}}{\mathcal{M}_{4}^{\text {tree }}}=
$$

$$
+t^{2} \underbrace{\square} \square+t\left(\ell+k_{1}\right)^{2} \overbrace{\square}^{\square}+t\left(\ell+k_{3}\right)^{2} \underset{\sim}{\square}\}
$$

- Bern-Dixon-Smirnov-(Kosower-Anastasiou), and Drummond-Henn-Smirnov-Sokatchev observed: -All integrals that contribute are dual-conformal invariant
-The integrated results exponentiates up to three (four) loops
- Dual conformal symmetry in massless case
(Drummond, Henn, Smirnov\& Sokatchev, Bern, Dixon\& Smirnov, Alday\&Maldacena, Berkovitz\&Maldacena Beisert,Ricci, Tseytlin\&Wolf,

$$
\begin{aligned}
& =\int d^{4} \ell \frac{s t}{\ell^{2}\left(\ell-p_{1}\right)^{2}\left(\ell-p_{1}-p_{2}^{2}\right)\left(\ell+p_{4}\right)^{2}} \\
& =\int d^{4} y \frac{\left(y_{1}-y_{3}\right)^{2}\left(y_{2}-y_{4}\right)^{2}}{\left(y-y_{1}\right)^{2}\left(y-y_{2}\right)^{2}\left(y-y_{3}\right)^{2}\left(y-y_{4}\right)}
\end{aligned}
$$

Symmetry seen as invariance under inversion: $y_{i}^{\mu} \rightarrow \frac{y_{i}^{\mu}}{y_{i}^{2}}$
All integrals in previous slide have this property!

- The $\mathrm{SO}(2,4)$ dual conformal symmetry in the massless sector is at the heart of the Wilson loop/ amplitude duality, of the integrability of the $N=4$ theory, and of other recent developments.
- I have just argued that it is a natural QFT extension of the Hydrogen atom's O(4), itself inherited from the classical Kepler problem
- The $\mathrm{SO}(2,4)$ dual conformal symmetry in the massless sector is at the heart of the Wilson loop/ amplitude duality, of the integrability of the $N=4$ theory, and of other recent developments.
- I have just argued that it is a natural QFT extension of the Hydrogen atom's $O(4)$, itself inherited from the classical Kepler problem
- Open question: is $N=4$ the unique example?
- Let us return to our massive particles!
- The $N=4$ theory comes with a moduli space of vacua, parametrized by 6 adjoint scalar fields
- We can give them the vev's we want. For example by breaking: $\mathrm{SU}\left(\mathrm{N}_{\mathrm{c}}\right) \rightarrow \mathrm{U}(\mathrm{I}) \times S U\left(\mathrm{~N}_{\mathrm{c}}-\mathrm{I}\right)$ we will get $\mathrm{U}(\mathrm{I})$ " photons" coupled to massive W bosons.
- For $2 \rightarrow 2$ scattering it is more interesting to break $\mathrm{SU}\left(\mathrm{N}_{\mathrm{c}}\right) \rightarrow \mathrm{SU}(4) \times \mathrm{U}\left(\mathrm{N}_{\mathrm{c}}-4\right):$

(Alday,Henn,Plefka\&Schuster)

$$
\left\langle\phi_{1}^{a}\right\rangle=\left(\begin{array}{cccccc}
m & 0 & 0 & 0 & 0 & \cdots \\
0 & m & 0 & 0 & & \\
0 & 0 & m & 0 & & \\
0 & 0 & 0 & m & & \\
0 & \cdots & & & 0 & \cdots
\end{array}\right)
$$

$$
\left\langle\phi_{2}^{a}\right\rangle, \ldots=0
$$

- The four-point color-ordered amplitude of massless $U(4)$'s has the following structure:

- Exactly what we were looking for! O'Connell\&SCH: IOD] Analogous to light-by-light scattering in QED
- Bound states automatically carry the $\mathrm{O}(4)$ 'Runge-Lenz' symmetry at all couplings

Part II

A perverse calculation of the spectrum

connecting $\mathrm{t}<0$ and $\mathrm{t}>0$ in QCD :

 ex.: the rho meson trajectory
$\mathrm{t}<0$ obtained from $\pi^{-} p \rightarrow \pi^{0}{ }_{n}^{t} \stackrel{\mathrm{GeV}}{ }$ data, $(@ 3.6,5.85 \& 13.3 \mathrm{GeV} / \mathrm{c})$
(Donnachie, Dosch,Landshoff\&Nachtmann)

- The logic behind this connection is simple:
[Regge; Mandelstam,Gribov, t<1960]
- The spectrum of a theory can be read off from fall-off of correlators at large distances

$$
\langle 0| O(0) O(x)|0\rangle \sim \sum_{n} c_{n} e^{-m_{n}|x|}
$$

- The same fall-off can be equally well measured by fast particles at large impact parameter:

$$
\lim _{\substack{s \rightarrow \infty \\ b \rightarrow \infty}} A(s, b) \sim \sum_{n} c_{n} s^{j_{n}} e^{-m_{n} b}
$$

[at appropriate rate]

$$
\lim _{s \rightarrow \infty} A(s, t) \propto s^{j_{0}(t)+1}
$$

- The gluon Regge trajectory for $\mathrm{t}<0$ (equal to $-\Gamma_{\text {cusp }}(\theta)$)

$$
j_{0}(t)+1=\frac{\lambda}{8 \pi^{2} \sqrt{1-4 m^{2} / t}} \log \frac{\sqrt{1-4 m^{2} / t}-1}{\sqrt{1-4 m^{2} / t}+1}+O\left(\lambda^{2}\right)
$$

- For positive t this diverges near threshold:

$$
j_{0}(t)+1 \approx \frac{\lambda}{8 \pi \sqrt{4 m^{2} / t-1}}
$$

$\lim _{s \rightarrow \infty} A(s, t) \propto s^{j_{0}(t)+1}$

- The gluon Regge trajectory for $\mathrm{t}<0$ (equal to $-\Gamma_{\text {cusp }}(\theta)$)

$$
j_{0}(t)+1=\frac{\lambda}{8 \pi^{2} \sqrt{1-4 m^{2} / t}} \log \frac{\sqrt{1-4 m^{2} / t}-1}{\sqrt{1-4 m^{2} / t}+1}+O\left(\lambda^{2}\right)
$$

- For positive t this diverges near threshold:

$$
j_{0}(t)+1 \approx \frac{\lambda}{8 \pi \sqrt{4 m^{2} / t-1}}
$$

- The condition spin=integer gives the bound states:

$$
\epsilon_{n}=\sqrt{t_{n}}-2 m=-\frac{m \lambda^{2}}{64 \pi^{2} n^{2}}, n=1,2, \ldots
$$

- This is the correct answer!

$$
\left(H=\frac{p^{2}}{m}-\frac{\lambda}{4 \pi r}\right)!
$$

All bound states combine into a single O(4) Regge trajectory: the next-to-maximal-spin states are RungeLenz descendents of the leading-spin states

A strange duality, I

- Cutkowski's finding about the unequal-mass case generalizes to the four-mass case:

Amplitude depends on only two cross-ratios!

$$
\begin{gathered}
A_{4}\left(s, t, m_{1}, \ldots, m_{4}\right)=A_{4}^{\text {tree }} \times M(u, v) \\
\text { where } u=\frac{4 m_{1} m_{3}}{-s+\left(m_{1}-m_{3}\right)^{2}} v=\frac{4 m_{2} m_{4}}{-t+\left(m_{2}-m_{4}\right)^{2}} \\
\text { [Alday,Henn,Plefka\&Schuster] }
\end{gathered}
$$

$$
\begin{aligned}
& \text { A strange duality, || } \\
& u=\frac{4 m_{1} m_{3}}{-s+\left(m_{1}-m_{3}\right)^{2}}, \quad v=\frac{4 m^{2}}{-t}
\end{aligned}
$$

- Keeping v fixed, there are two ways to make u small:
I. Regge limit: $s \rightarrow \infty: \quad M \propto s^{j(t)+1}$

2. Small mass limit: $\mathrm{m}_{3} \rightarrow 0: M \propto m_{3}^{\Gamma_{\text {cusp }}(v)}$

Conclusion: $\quad j(t)+1=-\Gamma_{\text {cusp }}(\theta)$
where $t=4 m^{2} \sin ^{2} \frac{\theta}{2}$

A strange duality, III

Dynamical quarks in flat space

Static quarks in $S^{3} \times R$

$E_{n}=2 m \sin \frac{\theta_{n}}{2}, \quad$ where $\quad-j-1=\Gamma_{\text {cusp }}\left(\theta_{n}\right)=-n$,
'anomalous dimension $=$ minus integer' $\quad(n=1,2, \ldots)$

- Checks: NLO calculation of $\Gamma_{\text {cusp }}$

In the regime dual to bound states, $\delta \sim \lambda$, a nontrivial but understood resummation is necessary ('ultrasoft scalars')
$\Gamma(\delta)=-\frac{\lambda}{4 \pi \delta}(1+\delta \lambda)-\frac{\lambda}{2 \pi^{2}} \int_{\epsilon_{\mathrm{UV}}}^{\infty} \frac{d t}{2(\cosh t-1)}\left(e^{-t \frac{\lambda}{4 \pi \delta}}-1\right)+\mathcal{O}\left(\lambda^{3}\right)$
[Pineda]
[Correa,Henn,Maldacena\&Sever]

- Checks: NLO calculation of $\Gamma_{\text {cusp }}$

In the regime dual to bound states, $\delta \sim \lambda$, a nontrivial but understood resummation is necessary ('ultrasoft scalars')
$\Gamma(\delta)=-\frac{\lambda}{4 \pi \delta}(1+\delta \lambda)-\frac{\lambda}{2 \pi^{2}} \int_{\epsilon_{\mathrm{UV}}}^{\infty} \frac{d t}{2(\cosh t-1)}\left(e^{-t \frac{\lambda}{4 \pi \delta}}-1\right)+\mathcal{O}\left(\lambda^{3}\right)$
[Pineda]
[Correa,Henn,Maldacena\&Sever]
Equate: $\Gamma(\delta)=-n$
$-E_{n}=\frac{m \lambda^{2}}{64 \pi^{2} n^{2}}\left(1+\frac{\lambda}{\pi^{2}}\left[S_{1}(n)+\log \frac{\lambda}{2 \pi n}-1-\frac{1}{2 n}\right]+\mathcal{O}\left(\lambda^{2}\right)\right)$
\rightarrow Perturbative series under uniform control for all $\mathrm{n}!$

- Compare against standard 'Coulomb resummation’
[pNRQCD; see Beneke,Kiyo\&Schuller I312.479I]

$$
\begin{aligned}
& \stackrel{\mathrm{NLO}}{H} \psi^{(s)}=\left[\frac{p^{2}}{m}-\frac{\lambda}{4 \pi r}+\delta V^{(2)}(r)\right] \psi^{(s)}+\phi \psi^{(o)}, \\
& \stackrel{\mathrm{NLO}}{H} \psi^{(o)}=\frac{p^{2}}{m} \psi^{(o)}+\phi \psi \psi^{(s)} \quad\left(\text { with } \delta V^{(2)}=\frac{\lambda}{2 \pi^{2} \epsilon}+\frac{\lambda^{2}}{8 \pi^{3} r} \log \frac{\epsilon}{2 r}\right) . \\
& \text { [Pineda,'08] }
\end{aligned}
$$

Ultrasoft scalars $\omega \sim m \lambda^{2}$

- Compare against standard 'Coulomb resummation’
[pNRQCD; see Beneke,Kiyo\&Schuller I312.479I]

$$
\begin{aligned}
& \stackrel{\mathrm{NLO}}{H} \psi^{(s)}=\left[\frac{p^{2}}{m}-\frac{\lambda}{4 \pi r}+\delta V^{(2)}(r)\right] \psi^{(s)}+\phi \psi^{(o)}, \\
& \stackrel{\mathrm{NLO}}{H} \psi^{(o)}=\frac{p^{2}}{m} \psi^{(o)}+\underset{\sigma}{ } \psi^{(s)} \quad\left(\text { with } \delta V^{(2)}=\frac{\lambda}{2 \pi^{2} \epsilon}+\frac{\lambda^{2}}{8 \pi^{3} r} \log \frac{\epsilon}{2 r}\right) . \\
& \text { [Pineda, '08] }
\end{aligned}
$$

Ultrasoft scalars $\omega \sim m \lambda^{2}$

Solve perturbatively:

$$
\begin{aligned}
& G_{\mathrm{us}}^{(\mathrm{NLO})}\left(\mathbf{p}, \mathbf{p}^{\prime}, E\right)=\frac{\lambda}{2 \pi^{2}} \int \frac{d^{3} q}{(2 \pi)^{3}} G^{(\mathrm{LO})}(\mathbf{p}, \mathbf{q}, E) P_{\mathrm{uS}}(\mathbf{q}, E) G^{(\mathrm{LO})}\left(\mathbf{q}, \mathbf{p}^{\prime}, E\right) \\
& G\left(\mathbf{p}, \mathbf{p}^{\prime}, E\right)=-\frac{(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)}{E-\frac{\mathbf{p}^{2}}{m}}+\frac{1}{E-\frac{\mathbf{p}^{2}}{m}} \frac{\lambda}{\left(\mathbf{p - \mathbf { p } ^ { \prime }) ^ { 2 }} \frac{1}{E-\frac{\mathbf{p}^{\prime 2}}{m}}\right.} \\
&+\frac{1}{E-\frac{\mathbf{p}^{2}}{m}} \int_{0}^{1} d t \frac{\lambda(j+1) t^{-j-1}}{\left(\mathbf{p}-\mathbf{p}^{\prime}\right)^{2} t-\frac{m}{4 E}\left(E-\frac{\mathbf{p}^{2}}{m}\right)\left(E-\frac{\mathbf{p}^{\prime 2}}{m}\right)(1-t)^{2}} \frac{1}{E-\frac{\mathbf{p}^{\prime 2}}{m}} \\
& \text { [Schwinger] }
\end{aligned}
$$

- The integrals turn out to be doable, and we get:

$$
\begin{aligned}
M^{\mathrm{NLO}} & \propto \frac{\lambda}{4 \pi} \frac{1}{\kappa-n}+\frac{\lambda^{2}}{8 \pi^{3}} \frac{n S_{1}(n)+\log 4 \sqrt{\frac{-E}{m}}-n-\frac{1}{2}}{(\kappa-n)^{2}}+\ldots \\
& =\frac{\lambda}{4 \pi} \frac{1}{\kappa-n-\delta n} \quad\left(\kappa=\frac{\lambda}{8 \pi \sqrt{-E} m}\right)
\end{aligned}
$$

- From the NLO propagator computed within pNRQCD, we deduce the NLO spectrum:
$-E_{n}=\frac{m \lambda^{2}}{64 \pi^{2} n^{2}}\left(1+\frac{\lambda}{\pi^{2}}\left[S_{1}(n)+\log \frac{\lambda}{2 \pi n}-1-\frac{1}{2 n}\right]+\mathcal{O}\left(\lambda^{2}\right)\right)$
Exactly as predicted by the duality.
- Other check: strong coupling
- Cusp anomalous dimension $\Gamma_{\text {cusp }}(\theta)$ was computed in 2002
(Kruczensky `02)
- Spectrum (of 'mesons') was computed at strong coupling in 2003 (Kruczensky,Mateos,Myers\&Winters '03
- The two curves agree perfectly, once one uses the correct dictionary! $E_{n}=2 m \sin \frac{\theta_{n}}{2}$

The trajectories at weak coupling $(\lambda=5,15)$ and strong coupling ($\lambda=100,1000$).

The trajectories at weak coupling $(\lambda=5,15)$ and strong coupling ($\lambda=100,1000$).

Should be computable exactly using TBA for $\Gamma_{\text {cusp }}$
[Drukker; Correa,Maldacena\&Sever]

Part III

Our original story...

- Our original goal was to compute the simplest amplitude involving massive particles in $\mathrm{N}=4,(2 \rightarrow 2)$, to see if the 'simplicity' of $N=4$ survived finite masses.
- Previously the mass had been used as a regulator
- Long after 'guessing' the 2-loop result, we found a simple way to derive it, using IBPs and differential equations, restricted to (convergent) DCl integrals defined in $\mathrm{D}=4$.

Ex. One-loop:
2
D
g_{6}

$\frac{\beta_{u}-1}{\beta_{u}+1} \nless \frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}>\frac{\beta_{u v}-\beta_{v}}{\beta_{u v}+\beta_{v}} / \frac{\beta_{v}-1}{\beta_{v}+1}$
1

0

In $\mathrm{D}=4$, the non- DCI triangles decouple from the box.

- Simple differential equation for box, bubbles and tadpole:

(where: $\quad u=\frac{4 m^{2}}{-s} \quad v=\frac{4 m^{2}}{-t}, \quad \beta_{u v}=\sqrt{1+u+v}$)
- Boundary condition is extremely simple for this problem:

$$
\lim _{s, t \rightarrow 0} g_{i}(s, t)=\delta_{i, 1}
$$

Two-loops also very nice:
 4

3

2

4 \square

3

2

\triangleleft

Note mixing of loop orders!

1

$\frac{\partial}{\partial k_{1}^{\mu}} \frac{\left(k_{1}-k_{2}\right)^{\mu}}{\left(k_{1}-k_{2}\right)^{4}}=2 \pi^{2} i \delta^{4}\left(k_{1}-k_{2}\right)$

- The two-loop calculation, correctly formulated, turned out to be fully automated and to require little CPU time ($\sim \min$).
- This prompted us to do three-loops.
- The result is recorded in [1404.2922]; I want to discuss one feature of it.
- The subleading I/s term in the Regge limit, at leading-log, turns out to be a sum of two exponentials:

$$
M(s, t) \sim s^{g^{2} j_{0}^{(1)}}(t)\left(1+\frac{c_{1}(t)}{s}\right)+\frac{c_{2}(t)}{s} s^{g^{2} c_{3}(t)}+O\left(1 / s^{2}\right)
$$

- Note that testing this hypothesis required 3-loops
- Furthermore there seemed to be very nice structure in C
- Trying to explain this 'fine detail' in terms of the symmetries of the t-channel led us to Itzykson\&Zuber's treatment of the ladders, and to Bander\<zykson's review of $O(4)$ symmetry, ...
- The result is that using $O(4)$ instead of $O(3)$ partial waves completely decouples the two powers:

$$
\lim _{s \rightarrow \infty} \frac{1+e^{-\rho}}{1-e^{-\rho}} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=r_{r_{0}(t) e^{\left(j_{0}(t)+1\right) \rho}+r_{1}(t) e^{\left(j_{1}(t)+1\right) \rho}} \quad\left(\cosh \rho=1+\frac{\left(e^{-2 \rho}\right), 2 s}{t}-\frac{s}{2 m^{2}}\right)
$$

- We thus obtain the subleading trajectory to 3-loops,

$$
\begin{aligned}
& j_{1}=-2-4 g^{2}+g^{4}\left(16-\frac{4}{3 \varphi^{3}}+8(\varphi-2 \xi)\left(\varphi-\frac{1}{\xi} \zeta_{2}\right)\right) \\
& +g^{6}\left[\frac{24}{\xi} \mathrm{Li}_{4}\left(e^{-2 \varphi}\right)+\left(64+\frac{16 \varphi}{\xi}\right) \mathrm{Li}_{3}\left(e^{-2 \varphi}\right)+64(\varphi+\xi) \mathrm{Li}_{2}\left(e^{-2 \varphi}\right)-128 \varphi \xi \log \left(1-e^{-2 \varphi}\right)\right. \\
& +\frac{8}{5 \varphi^{5}}-\frac{8}{3} \varphi^{4}\left(5+\frac{1}{\xi}\right)+\frac{16}{3} \varphi^{3}\left(4+7 \xi+\frac{1+4 \zeta_{2}}{\xi}\right)-16 \varphi^{2}\left(3+6 \zeta_{2}+4 \xi+2 \xi^{2}+\frac{\zeta_{2}}{\xi}\right) \\
& +16 \varphi\left(4 \zeta_{2}+6 \xi\left(2+\zeta_{2}\right)+\frac{11 \zeta_{4}-\zeta_{3}+2 \zeta_{2}}{\xi}\right)-24 \zeta_{4}\left(10+\frac{1}{\xi}\right)+32 \zeta_{3}-6 \zeta_{5}(1+\xi)-128
\end{aligned}
$$

- This should be dual to a dimensiôn-one 'decoration’ of the cusped Wilson line.

Q: Identify and reproduce it from TBA?

The leading $O(4)$ trajectory (blue), for $\lambda=1000,100,15,5$ (extrapolating weak/strong coupling); first subleading trajectory(red)

Conclusions

- The planar $\mathrm{N}=4$ SYM model is part of a natural series of integrable systems:

$$
\begin{gathered}
\text { classical Kepler problem } \rightarrow \mathrm{H} \text { atom } \\
\rightarrow \text { planar } \mathrm{N}=4 \mathrm{SYM} \rightarrow \ldots ?
\end{gathered}
$$

- Although conformal, the model incorporates massive particles in a natural way
- Leading Regge trajectory, aka $\Gamma_{\text {cusp }}$ here, gives bound state; how to interpret subleading ones?
- Analytic computations with three different mass scales possible! Apply to other processes?

