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Scattering amplitudes: fundamental interactions

Image: The Feynman Lectures on Physics Image: CERN

From double-slit experiments to Higgs discovery at the LHC, and beyond...
scattering amplitudes lie at the heart of quantum theory.

Probability = |A(p1, p2, . . .)|2

Also interesting in formal investigations: structure of gauge theory, integrability, gravity and
supergravity, various dualities, ...
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Motivation: loops and cuts

Loop integrals are necessary

...for high precision at high energy

Loop integrals are hard

Amplitudes are simple

compared to individual Feynman diagrams.
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Amplitude simplicity & the on-shell framework

Why are amplitudes so simple?

How can we use the simplicity to calculate?

Key ideas:

On-shell framework: recycle amplitudes

Use singularities to construct integrals

The on-shell framework: replace Feynman rules by constructions from
singularities, i.e. complex poles and discontinuities across branch cuts.
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On-shell approach at one loop

Unitarity cuts & generalized cuts for 1-loop amplitudes
[Bern, Dixon, Dunbar, Kosower; Anastasiou, RB, Buchbinder, Cachazo, Feng, Kunszt, Mastrolia; ...]

A “cut” takes virtual particles to be physical (“on shell”),
giving the discontinuity across a branch cut of the amplitude.
[Cutkosky; Veltman]

= = Disc A1−loop.

Ingredients are complete tree-level amplitudes. Exploit their simplicity.
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On-shell approach at one loop

Unitarity cuts & generalized cuts for 1-loop amplitudes
[Bern, Dixon, Dunbar, Kosower; Anastasiou, RB, Buchbinder, Cachazo, Feng, Kunszt, Mastrolia; ...]

A “cut” takes virtual particles to be physical (“on shell”),
giving the discontinuity across a branch cut of the amplitude.
[Cutkosky; Veltman]

= = Disc A1−loop.

Example: bubble integral

p
=
∫
d4−2ε` 1

`2
1

(`+p)2 = 1
ε − log(−p2) + · · ·

p =
∫
d4−2ε` δ(`2)δ((` + p)2) = 2πi + · · ·
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The cut method for one-loop amplitudes

There is a canonical, known set of “master integrals” (with log and Li2):

++c + c + c
1 2 3

c + c + c
2 3A 1

1−loop

Match cuts of amplitudes with cuts of known master integrals → solve for the coefficients.

3
+c + c + c

1 2

Classic alternative: dispersion relation.

Beyond one loop:

No standard master integrals

Many more master integrals

Few integrals known analytically
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Generalized Cuts

Generalized cuts are the most powerful. The quadruple-cut is extremely effective at 1 loop.

c
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Generalized Cuts

Generalized cuts are the most powerful. The quadruple-cut is extremely effective at 1 loop.

c

But the deep mathematics has been obscure, making it difficult to extend to more loops.

c
?
= “Disc”

Hopf algebra structure may be the key!
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Cuts are discontinuities

Cutkosky: Cuts are discontinuities across branch cuts

?
= “Disc”

Our claim:
For massless integrals in the class of multiple polylogarithms (MPL),
the discontinuities described by cuts are naturally found within the Hopf algebra of MPL.

3 equivalent definitions of discontinuities: “Cut = Disc = δ”

Known for the first cut; we extend it to sequences of cuts.

In this talk: I explain this claim and give some examples, and then comment on reconstruction of
the full integral from its cuts.
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Multiple polylogarithms (MPL)

A large class of (massless) integrals are described by multiple polylogarithms:

I (a0; a1, . . . , an; an+1) ≡
∫ an+1

a0

dt

t − an
I (a0; a1, . . . , an−1; t)

Examples:

I (0; 0; z) = log z, I (0; a; z) = log

(
1−

z

a

)
I (0;~an; z) =

1

n!
logn

(
1−

z

a

)
, I (0;~0n−1, a; z) = −Lin

(
z

a

)

Harmonic polylog if all ai ∈ {−1, 0, 1}.

n is the transcendental weight.

Observation: most known Feynman integrals can be written in terms of classical and harmonic
polylogs.
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Hopf algebra

Product and coproduct:

µ : H⊗H → H, ∆ : H → H⊗H

Compatible:

∆(a · b) = ∆(a) ·∆(b) ,

The algebra is graded by transcendental weight:

Hn
∆−→

n⊕
k=0

Hk ⊗Hn−k .

Coassociative (i.e. a ⊗ b ⊗ c is unambiguous), and

∆n1,...,nk
: Hn → Hn1

⊗ . . .⊗Hnk
.
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Hopf algebra of MPL

Goncharov’s coproduct formula for MPL (modulo π):

∆I (a0; a1, . . . , an; an+1)

=
∑

0=i0<···<ik<ik+1=n+1

I (a0; ai1 , . . . , aik ; am+1)⊗
k∏

p=0

I (aip ; aip+1, . . . , aip+1−1; aip+1
)

Examples:

∆(a · b) = ∆(a) ·∆(b)

∆(1) = 1⊗ 1

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log x log y) = 1⊗ (log x log y) + log x ⊗ log y + log y ⊗ log x + (log x log y)⊗ 1

∆(Lin(z)) = 1⊗ Lin(z) + Lin(z)⊗ 1 +

n−1∑
k=1

Lin−k (z)⊗
logk z

k!
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Symbols of MPL

The “symbol” S is essentially the maximal iteration.

S(F ) ≡ ∆1,...,1(F ) ∈ H1 ⊗ . . .⊗H1 .

S
(

1

n!
logn z

)
= z ⊗ · · · ⊗ z︸ ︷︷ ︸

n times

S(Lin(z)) = −(1− z)⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
(n−1) times

(most familiar from remainder functions [Goncharov, Spradlin, Vergu, Volovich])
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Coproducts of Feynman integrals

Observation: first entries are Mandelstam invariants, and

∆1,n−1F =
∑
i

log(−si )⊗ fsi

where fsi is the discontinuity of F in the channel si . [Gaiotto, Maldacena, Sever, Viera]

Thus: the coproduct captures standard cuts.

Is there an extension to generalized cuts?
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Cut=Disc=δ for generalized cuts

Need to define generalized cuts: as a sequence of traditional cuts.

Need to specify kinematic regions.

Need to identify the MPL alphabet and explain the correspondence.

Limited by: number of channels, transcendental weight, and number
of independent variables.
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Definition of Disc

The discontinuity across the branch cut.

Discx [F (x ± i0)] = lim
ε→0

[F (x ± iε)− F (x ∓ iε)] ,

Example:
Discx log(x + i0) = 2πi θ(−x).

Sequential:

Discx1,...,xk F ≡ Discxk
(
Discx1,...,xk−1

F
)
.
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Definition of multiple cuts

Cuts1,...,sk F

With real kinematics.

Defined by: cut propagators + consistent energy flow + corresponding
kinematic region

Region is such that cut invariants si are positive and all others are
negative.

Multiple cuts are taken simultaneously.
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Cutting Rules

Traditional [Veltman]:

for massless scalar theory.
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Cutting Rules

Generalized:

Colors are ci = 0, 1 for each cut i .

We must allow repeated cuts of same propagator or same loop – but
forbid the same channel.
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From Mandelstam invariants to MPL variables

From the Largest Time Equation [Veltman]:

F + F ∗ = −
∑
s

Cuts F ,

Hence:

Discs F = −Cuts F .

Generalize to:

Cuts1,...,sk F = (−1)k Discs1,...,sk F .

Valid in a particular kinematic region: cut invariants si positive, others
negative.

Strictly real kinematics.
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Definition of δ

If

∆1,1,...,1︸ ︷︷ ︸
k times

,n−kF =
∑

{x1,...,xk}

log x1 ⊗ · · · ⊗ log xk ⊗ gx1,...,xk ,

then

δx1,...,xkF
∼= gx1,...,xk .

More precisely: match branch points. The “∼=” means modulo π.

Motivated by coproduct identity : ∆ Disc = (Disc⊗id) ∆ [Duhr]

and first entry condition.

If δxF ∼= gx , then Discx F ∼= (Discx ⊗ id)(log x ⊗ gx) = ±2πi gx . Sign
determined by iε prescription.
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Coproduct and discontinuities for Feynman integrals

Discs1 F = θ(s1) (−2πi) δs1F .

Discs1,...,sk F
∼= Θ

∑
x1,...,xk

±(2πi)kδx1,...,xkF .

∼= means mod π

Θ restricts to the correct kinematic region (corresponding to cuts)

Assume prior knowledge of alphabet (e.g. from cuts)

Underlying claim: kinematics put us on the branch cuts, so that it is
correct to use our definition of Disc.

Ruth Britto From Cuts to Coproducts of Feynman Integrals



Basic example: 3-mass triangle

k

p2 − k

p3 + k

p3

p1

p2

T = − i

p2
1

2

z − z̄

(
Li2(z)− Li2(z̄) +

1

2
log(zz̄) log

(
1− z

1− z̄

))
≡ − i

p2
1

2

z − z̄
P2

Discp2
2
T = − 2π

p2
1(z − z̄)

log
1− z

1− z̄
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Coproduct of the 3-mass triangle

∆P2 = P2 ⊗ 1 + 1⊗ P2 +
1

2
log(zz̄)⊗ log

1− z

1− z̄
+

1

2
log[(1− z)(1− z̄)]⊗ log

z̄

z

= P2 ⊗ 1 + 1⊗ P2 +
1

2
log
(
−p2

2

)
⊗ log

1− z

1− z̄
+

1

2
log
(
−p2

3

)
⊗ log

z̄

z

+
1

2
log(−p2

1)⊗ log
1− 1/z̄

1− 1/z

Alphabet: {z, z̄, 1− z, 1− z̄}.

Here

zz̄ =
p2

2

p2
1

, (1− z)(1− z̄) =
p2

3

p2
1

√
λ = z − z̄
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First cut of the 3-mass triangle

Cut in the p2
2 channel.

k

p2 − k

p3 + k
p1

p2

p3

Kinematic region: p2
2 > 0; p2

1 , p
2
3 < 0.

Cutp2
2
T = −2π

∫ 1

−1
d cos θ

1

p2
3 + p2

1 − p2
2 − cos θ

√
λ(p2

1 , p
2
2 , p

2
3)

= −
2π

p2
1

∫ 1

0
dx

1

1− z̄ − x
√
λ

√
λ = z − z̄

=
2π

p2
1(z − z̄)

log
1− z

1− z̄
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First cut of the 3-mass triangle

Cut in the p2
2 channel.

k

p2 − k

p3 + k
p1

p2

p3

Kinematic region: p2
2 > 0; p2

1 , p
2
3 < 0.

Cutp2
2
T =

2π

p2
1(z − z̄)

log
1− z

1− z̄

= −Discp2
2
T

Discp2
2
T ∼= (−2πi)δp2

2
T .

Ruth Britto From Cuts to Coproducts of Feynman Integrals



Second cut of the 3-mass triangle

p1

p2

p3 k

p2 − k

p3 + k

Cutp2
3 ,p

2
2
T =

4π2i

p2
1(z − z̄)

Kinematic region: p2
3 , p

2
2 > 0; p2

1 < 0
Equivalently: z̄ < 0, z > 1.

Now we have to match the alphabet with Mandelstam invariants:

Discp2
2 ,p

2
3
T = Cutp2

2 ,p
2
3
T .

Discp2
2 ,p

2
3
T ∼= 4π2 Θ δp2

2 ,1−zT
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2-loop example: 3-point ladder

p1

p2

p3
1

2

3

4

5

6

L = i
(
p2

1

)−2 1

(1− z)(1− z̄)(z − z̄)
F

F = 6
[
Li4 (z)− Li4(z̄)

]
− 3 log (zz̄)

[
Li3 (z)− Li3(z̄)

]
+

1

2
log2(zz̄)

[
Li2(z)− Li2(z̄)

]
.

zz̄ =
p2

2

p2
1

, (1− z)(1− z̄) =
p2

3

p2
1
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Coproduct of the ladder

p1

p2

p3
1

2

3

4

5

6

∆1,1,2F = log
p2

3

p2
1

⊗ log z ⊗
(

log z log z̄ −
1

2
log2 z̄

)

− log
p2

3

p2
1

⊗ log z̄ ⊗
(

log z log z̄ −
1

2
log2 z

)

− log
p2

2

p2
1

⊗ log(1− z)⊗
(

log z log z̄ −
1

2
log2 z

)

+ log
p2

2

p2
1

⊗ log(1− z̄)⊗
(

log z log z̄ −
1

2
log2 z̄

)

+ log
p2

2

p2
1

⊗ log(zz̄)⊗ [Li2(z)− Li2(z̄)] ,

Individual cuts diverge, but sum is finite.

Same alphabet as triangle. p2
2

p2
1

= zz̄,
p2

3
p2

1
= (1− z)(1− z̄)
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Two cuts of the ladder

Cutp2
1 ,p

2
2
F = Discp2

1 ,p
2
2
F ∼= −(2πi)2 Θ δp2

1 ,z̄
F ,

Cutp2
2 ,p

2
1
F = Discp2

2 ,p
2
1
F ∼= (2πi)2 Θ [δp2

2 ,z
+ δp2

2 ,1−z ]F ,

Variables matched within the correct kinematic region:
p2

1 , p
2
2 > 0 and p2

3 < 0, or equivalently 0 < z̄ < 1 < z.
Follow iε for signs.
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Two cuts of the ladder

Cutp2
1 ,p

2
3
F = Discp2

1 ,p
2
3
F ∼= −(2πi)2 Θ δp2

1 ,1−zF ,

Cutp2
3 ,p

2
1
F = Discp2

3 ,p
2
1
F ∼= (2πi)2 Θ [δp2

3 ,z̄
+ δp2

3 ,1−z̄ ]F ,

Kinematic region: p2
1 , p

2
3 > 0 and p2

2 < 0, or equivalently z̄ < 0 < z < 1.
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Cuts live strictly within their own regions

Notice: the “1236” cut diagram is common to both double-cuts, but
gives different values!

?
= “Disc”

Must place individual cut diagrams in kinematic contexts.

Ruth Britto From Cuts to Coproducts of Feynman Integrals



Third cut of the ladder?

p1

p2

p3

k2

p3 − k2

k1 + k2

p3 + k1

k1

p1 − k1

Cut = 0 in the kinematic region p2
1 , p

2
2 , p

2
3 > 0.

Disc = 0 : no region detects the three cuts simultaneously.

It’s consistent, but we must continue to more complicated examples. (in
progress)
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Reconstructing the full coproduct from cuts

Integrability condition on symbols: for each k,∑
i1,...,in

ci1,...,in d log aik ∧ d log aik+1
ai1 ⊗ · · · ⊗ ak−1 ⊗ ak+2 ⊗ · · · ⊗ ain = 0 .

Combine with first entry condition (=Mandelstam invariant) and known cut(s).

Remark: integrability may sometimes account for exchanging order of cuts.
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Reconstructing the full coproduct from cuts

Integrability condition on symbols: for each k,∑
i1,...,in

ci1,...,in d log aik ∧ d log aik+1
ai1 ⊗ · · · ⊗ ak−1 ⊗ ak+2 ⊗ · · · ⊗ ain = 0 .

Combine with first entry condition (=Mandelstam invariant) and known cut(s).
Example: p2

2 cut of triangle.
1

2
(zz̄)⊗

1− z

1− z̄
.

For integrability, add

1

2
(1− z)⊗ z̄ −

1

2
(1− z̄)⊗ z .

For the first entry condition, add

1

2
(1− z̄)⊗ z̄ −

1

2
(1− z)⊗ z .

Both conditions are satisfied.

Result:

S(T ) =
1

2
zz̄ ⊗

1− z

1− z̄
+

1

2
(1− z)(1− z̄)⊗

z̄

z
,
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Reconstructing the full coproduct from cuts

Integrability condition on symbols: for each k,∑
i1,...,in

ci1,...,in d log aik ∧ d log aik+1
ai1 ⊗ · · · ⊗ ak−1 ⊗ ak+2 ⊗ · · · ⊗ ain = 0 .

Combine with first entry condition (=Mandelstam invariant) and known cut(s).

Reconstruction of the symbol of the ladder is unique from any of its single or double
cuts.

Knowledge of alphabet is crucial.
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Reconstructing the full function–from dispersion relations

From the imaginary part, reconstruct the integral:

A(K 2) =
1

π

∫ ∞
0

ds
Im A(s)

s − K 2

Classic example: On-shell vertex function, 2 loops. [Van Neerven, 1986]

Integration is still hard work.
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Double dispersion relations

Previously computed at one loop, with strictly real momenta. [Mandelstam; Ball,

Braun, Dosch]. From iterated cuts.
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Dispersion relations and MPL

Classic dispersion relation for triangle is complicated:

T = −
1

2πi

∫ ∞
0

ds

s − (p2
2 + iε)

2π√
λ(p2

1 , s, p
2
3 )

log
p2

1 − s + p2
3 −

√
λ(p2

1 , s, p
2
3 )

p2
1 − s + p2

3 +
√
λ(p2

1 , s, p
2
3 )
.

With MPL alphabet:

T =
−i
p2

1

1

z − z̄

∫ 1

0

dw

(
1

w − z̄
−

1

w − z

)[
2 log(1− w)− log(1− z)(1− z̄)

]
Double dispersion relation:

T =
−i
p2

1

∫ ∞
1

dw

∫ 0

−∞
dw̄

1

ww̄ − zz̄

1

(1− w)(1− w̄)− (1− z)(1− z̄)
.

Similar for ladder.
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2
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.

With MPL alphabet:

T =
−i
p2

1

1

z − z̄

∫ 1

0

dw

(
1

w − z̄
−

1
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∫ ∞
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Summary & Outlook

We propose relations of the form Cut = Disc = δ for sequential cuts and explain how they
can be made precise.

I Important to posit correct alphabet – and cuts gives clues!
I MPL formalism helps for performing cut integrals.

We propose avenues for reconstructing the coproduct/symbol/full integral making use of the
integrability of the symbol.

Need to study a wide range of examples.

What about masses? Hopf algebra not yet formulated for that case.

Make contact with maximal cuts/ complex residues of multiloop integrals?

Should cutting rules be expanded to capture more of the coproduct? e.g. repeated cuts in
the same channel, crossed cuts, ...
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