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SA = WL

Figure 1: The polygon is specified at the AdS boundary by the positions of the cusps xi.
These positions are related to an ordered sequence of momenta ki by ki = xi−xi−1. The two
dimensional a minimal surface streches in the AdS bulk and ends on the polygonal contour
at the boundary.

2 The classical sigma model and Hitchin equations

The classical AdS5 sigma model is integrable. This can be shown by exhibiting a one pa-
rameter family of flat connections. For our problem, it will be convenient to choose this
one parameter family in a special way which will simplify its asymptotic behavior on the
worldsheet. In fact, to make this choice we will make use of the Virasoro constraints of the
theory. This has been explained in detail in previous papers [22, 23, 24, 25, 26, 27]. Instead
of repeating the whole discussion, we will present a slightly more abstract and algebraic
version here.

2.1 General integrable theories and Hitchin equations

Let us assume that we have a coset space G/H . Let us assume that the Lie algebra G
has a Z2 symmetry that ensures integrability. In other words, imagine that the Lie algebra
has the decomposition G = H + K so that H is left invariant under the action of the Z2

generator while elements in K are sent to minus themselves. We then write the G invariant
currents J = g−1dg. This is a flat current dJ + J ∧ J = 0. We can decompose J in terms its
components along H and K as

J = g−1dg = H + K (3)

When we gauge the sigma model we add a gauge field along H, and we can do local H
gauge transformations. The equations of motion of the system can be written in terms of

5

String theory : prediction at strong coupling

Wn = e�
p

�
2⇡ An+...

minimal surface area in

p
� � 1

AdS5

number of gluons

[Alday,Maldacena’07]
[Drummond,Korchemsky,Sokatchev’07]

[Brandhuber,Heslop,Travaglini’07]
[Drummond,Henn,Korchemsky,Sokatchev’07]

[Alday,Maldacena’07]
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Goal of this talk

Innocent constant? look at collinear limit

Wn ! Wn�1 must hold true

An ! An�1 must also be true

clash?

W
n

= e�
p

�
2⇡ An+

p
�(n�4)(n�5)

48n +o(
p
�)

1) Show that there is yet another large contribution
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2) Understand the collinear limit at strong coupling

W
n

= e�
p

�
2⇡ An+

p
�(n�4)(n�5)

48n +o(
p
�)

1) Show that there is yet another large contribution

Goal of this talk
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We have a 1+1d background : the flux tube sourced by two 
parallel null lines

Our method : the OPE picture
[Alday,Gaiotto,Maldacena,Sever,Vieira’09]

Decomposing over basis of flux tube eigenstates allows us to 
construct WL as a systematic expansion around the collinear 

limit

Bottom and top parts of the loop can be thought of as 
exciting the flux tube out of its ground state
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Refinement : the pentagon decomposition

vac

vac

 1

 2

 3

=
X

 i

"
Y

i

e�Ei⌧i+ipi�i+imi�i

#
P (0| 1)P ( 1| 2)P ( 2| 3)P ( 3|0)

To compute amplitudes we need

The spectrum of flux-tube states 

All the pentagon transitions

flux-tube energy flux-tube momentum

angular momentum
pentagon transition

[BB,Sever,Vieira’13]
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A bit slower I : the ratio

Exactly known and UV finite function 
of cross ratios

light-like pentagons
inscribed in the hexagonal WL

light-like square
as overlap of pentagons

No information loss
Free of divergences

logW
6

= BDS

6

� BDS

5�bottom

� BDS

5�top

+ BDS

4�middle

We want to 
compute
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⌧

�

�

A bit slower II : the OPE parameters

Null square has 3 (abelian) symmetries

[Alday,Gaiotto,Maldacena,Sever,Vieira’09]
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ui ⌘
x

2
i�1,i+1x

2
i�2,i+2

x

2
i�1,i+2x

2
i+1,i�2

1

u2
= 1 + e2⌧

1

u3
= 1 + (e�⌧ + e�+i�)(e�⌧ + e��i�)

u1

u2u3
= e2�+2⌧

Act with the 
symmetry generators 
on the bottom

6

1

2
3

4

5

A bit slower II : the OPE parameters

n� 5 middle squares ) 3(n� 5) conformal cross ratios

Produce a family of WL parameterized by

cross ratios
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A bit slower III : the flux tube

Square WL as reference state : the flux tube

vac

flux-tube vacuum

can be excited

 

flux-tube excited state  

Pentagon WL as flux-tube transition

vac
vac

vacuum-to-vacuum
transition

Pentagon transition
from       to 

can be doubly excited
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The flux-tube eigenstates

 = N particles state

Field insertions along a light-ray:
create/annihilate state on the flux tube

Adjoint fields of the theory

p(u) = 2u+ g2... m = 0,±1, . . .

rapidity

p = p(u1) + · · ·+ p(uN ) m = m1 + · · ·+mN

Spectral data

E(u) = twist + g2 . . .

= engineering dimension� spin projection along light-ray direction
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P (u|v) =

Pentagon transition
same but

on a pentagon

Symmetries of the square not 
preserved by pentagon

no conservation of flux-tube energy-
momentum

Summing over states
X

 

=
X

a,N

Z
du1 . . . duN µ(u1) . . . µ(uN )

2⇡

µ(u)
�(u� v) =

Square measure
or 2-point function

on the square

Square and pentagon transitions

P (u|v) ⇠ 1

i(u� v)µ(u)
when u ⇠ v

Relation

 

!

!

 

u

u

v

v
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Combining all pieces together

W
hex

= =
X

a

Z
duP a(0|u) e�E(u)⌧+ip(u)�+im�P a(ū|0)

Whep = =
X

a,b

Z
du dvP a(0|u) e�E(u)⌧1+ip(u)�1+im1�1P ab(ū|v)

⇥e�E(v)⌧2+ip(v)�2+im2�2Pb(v̄|0)

Lightest states dominate at large

i.e. in the collinear limit

What are they?
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Fundamental flux-tube excitations

twist-one excitations (scalar, fermion, gauge field)

higher-twist excitations (bound states of gauge field)
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Masses at finite coupling

Away from weak coupling : the scalars dominate

Their mass is exponentially small at strong coupling

[Alday,Maldacena’07]

and their dynamics is controlled by the O(6)     model�
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How to get pentagon transitions?

Idea : use single-particle transition to build higher ones

There are all kinds of pentagon transitions

These are the most fundamental ones
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Pentagon bootstrap

P (u|v)
P (v|u) = = S

u

u

u

v

v v

The flux-tube S-matrix determines             up to a 
symmetric function

Fundamental axiom
flux tube S-matrix
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Further axiom : mirror transformation

Mirror rotation
u�

u=
p(u�) = iE(u)

E(u�) = ip(u)

Non-perturbative!

x(u) =
1

2

⇣
u+

p
u

2 � 4g2
⌘ �2g 2g

��

Involve continuation through cut 
with size controlled by the coupling g =

p
�

4⇡
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Mirror axiom

=u��

u

v vP (u�� |v) = P (v|u)

Further axiom : mirror transformation

Mirror rotation
u�

u=
p(u�) = iE(u)

E(u�) = ip(u)

u2� u�3�

v v

uv u v
=

Watson equation OK

)Consistency
check
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Pentagon transition at any coupling

III. P (u�� |v) = P (v|u)

II. P (u|v) = S(u, v)P (v|u)

I. P (u|v) = P (�v|� u)

P (u|v)2 =
S(u, v)

g2(u� v)(u� v + i)S(u� , v)

At strong coupling:
P (u|v) /

�( 14 � i
2⇡ ✓12)�(

i
2⇡ ✓12)

�( 34 � i
2⇡ ✓12)�(

1
2 + i

2✓12)

✓12 =
⇡

2
(u� v)Function of difference of rapidities

(relativistic invariance)

Pentagon transition can be expressed in 
terms of flux tube S-matrix
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Hexagon in 2pt approximation

W
6

= 1 +
1

2

Z
d✓

1

d✓
2

(2⇡)2
|P (0|✓

1

, ✓
2

)|2e�m⌧(cosh ✓1+cosh ✓2)+im�(sinh ✓1+sinh ✓2) + . . .

where

Observation : W6 = W6(z) + . . . z = m
p

�2 + ⌧2

as a consequence of relativistic invariance

|P (0|✓1, ✓2)|2 = |P (✓1 + i⇡, ✓2)|2 = µ2 6

(✓212 +
⇡2

4 )(✓212 + ⇡2)
⇥ 1

P (✓1|✓2)P (✓2|✓1)
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Decoupling limit

⌧ � 1For all heavy flux tube excitations decouple

Still the physics remains rich as it is controlled by the O(6) model

We are left with the scalars

W6 = WO(6)(z) +O(e�
p
2⌧ )

WO(6)(z) is a complicated function of z = m
p

�2 + ⌧2
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Large distance behavior

W6 = 1 +O(e�2z)

At large distance z � 1

This is the deep (infrared) collinear limit

It is completely non perturbative

If we want to move away from it we must include states 
with more than 2 particles

⌧ � e
p
�/4
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Pdyn =
Y

i<j

1

P (✓i|✓j)

M =
Y

i>j

1

(✓i � ✓j + i⇡)(✓i � ✓j + i⇡2 )
⇥ (⇡1�i1,i2�i3,i4 + ⇡2�i1,i3�i2,i4 + ⇡3�i1,i4�i2,i3)

Structure of multi-particle transitions

P (0|✓1, . . . , ✓4)i1,...,i4 = Pdyn(✓1, . . . , ✓4)⇥Mi1,...,i4(✓1, . . . , ✓4)

Factorized ansatz

Dynamical (or abelian) part

Matrix part

✓1 ✓2 ✓3 ✓4

= + +
⇡1 ⇡2 ⇡3
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Application to hexagon

+ + + . . .

Contract bottom and top pentagon transitions

rational =

Y

i<j

1

((✓i � ✓j)2 + ⇡2
)((✓i � ✓j)2 +

1
4⇡

2
)

⇥ (6⇡1⇡
⇤
1 + . . .)

Get integrand =

Y

i<j

1

P (✓i|✓j)P (✓j |✓i)
⇥ rational

2

Monday, 16 June, 14



Algebraic structure of matrix part

corresponding to sum over states with K✓  particles
su(4) weights = (K2 � 2K1,K✓ � 2K2 +K1 +K3,K2 � 2K3)and

K2 = K✓ K1 = K3 =
1

2
K✓In particular for singlet states :

✓

w1

w2

w3

Integral representation of rational part

r =
1

K1!K2!K3!

Z Y

i

dw1,i

2⇡

Y

i

dw2,i

2⇡

Y

i

dw3,i

2⇡

⇥

Q
i<j

g(w1,i � w1,i)
Q
i<j

g(w2,i � w2,i)
Q
i<j

g(w3,i � w3,i)

Q
i,j

f(w2,i � 2
⇡ ✓j)

Q
i,j

f(w1,i � w2,j)
Q
i,j

f(w3,i � w2,j)

g(x) = x

2(x2 + 1) f(x) = x

2 +
1

4
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Short distance analysis

For z ⌧ 1

What is the small    behavior of the full sum?z

and higher contributions scale stronger

W2n-pt ⇠ log

n
(1/z)

W2-pt���!
z!0

r log(1/z) + s log log(1/z) + t

r ' 0.031 s ' �0.055 t ' �0.008

1 ⌧ ⌧ ⌧ e
p
�/4equivalently
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Pentagon as twist operator

Aympotically a pentagon = 5 quadrants glued together

excess angle =
⇡

2

�D1

1

2 2

3
3

4
4

4

5
5

=

twist operator

P ( edge 2| 0
edge 5) = h 0|�D | i
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Hexagon as a correlator of twist operators

W6 = h0|�D(⌧,�)�D(0, 0) |0i

5 5

4
4

3

3

3

2 2

1
1

6

6

6

=

distance = 
p

�2 + ⌧2

computed in O(6) sigma model
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OPE as form factor expansion

Insert complete basis of states

W
6

=
X

N

1

N !
h0|�D |✓

1

, . . . , ✓N i h✓
1

, . . . , ✓N |�D |0i e�m⌧
P

i cosh ✓i+im�
P

i sinh ✓i

P (0|✓1, . . . , ✓N ) = h✓1, . . . , ✓N |�D |0i

Pentagon transition = form factor of twist operator

Normalization

h0|�D |0i = 1 W6 ! 1

goes through all the axioms
for form factor of twist operator of 
[Cardy,Castro-Alvaredo,Doyon’07]

P

which enforces that z ! 1
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Short distance analysis 
revisited I

OPE fusion (valid for           )z ⌧ 1

3-point function

�D(⌧,�)�D(0, 0) ⇠ log (1/z)B

zA
�7(0, 0)

Critical exponent A

A = 2�D ��7 = 2�5/4 ��3/2

with        the scaling dimension of the twist operator �k�k

�k =
c

12
(k � 1

k
)

[Knizhnik’87]

c = central charge

2⇡(k � 1) = excess angle for �k
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Short distance analysis 
revisited I

Critical exponent from one-loop anomalous dimensionsB

B = �3

2
A = � 1

24

A =
1

36
since in our case c = 5

OPE fusion (valid for           )z ⌧ 1

3-point function

�D(⌧,�)�D(0, 0) ⇠ log (1/z)B

zA
�7(0, 0)

Critical exponent A

Monday, 16 June, 14



W6 =

C

z1/36 log (1/z)1/24
+ . . .

Short distance analysis 
revisited II

CConstant       is fixed in the IR by 

W6 ! 1 when z ! 1

z ⌧ 1For include subleading RG logs

and thus non-perturbative
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nmax=2

nmax=4

nmax=6

nmax=8

6 8 10 12 14
logH1êzL

0.10

0.15

0.20

0.25

log W

Numerical analysis I
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6 8 10 12 14
a-0.0130

-0.0125

-0.0120

-0.0115

-0.0110
log W + 1ê36 log z + 1ê24 log a

Numerical analysis II

logC = �0.01 running coupling

↵ = log (1/z) + . . .
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O(6) � model ↵0
expansion

1/⌧m 10  !

Cross over I

here
we can match short-distance O(6) analysis

with
string perturbative expansion

       Recall that

[Alday,Maldacena’07]

m =
21/4

�(5/4)
�1/8e�

p
�
4 (1 +O(1/

p
�)) ⌧ 1

z ⌧ 1
i.e. expression for
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W6 = f6 �� 7
288 e

p
�

144�
p

�
2⇡ A6(1 +O(1/

p
�))

Write string expansion as

and compare with O(6) result for 

f6 =
1.04

(�2 + ⌧2)1/72
+ . . . include terms                    in collinear limitO(e�

p
2⌧ )

O(6) � model ↵0
expansion

1/⌧m 10  !

Cross over II

z ⌧ 1

A6 = O(e�
p
2⌧ )

note that 
               

in collinear limit
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Generalization

Wn = h0|�D(⌧n�4,�n�4) . . .�D(⌧1,�1) |0i

Higher points amplitudes correspond to higher 
points correlators

Overall short-distance scaling is controlled by OPE fusion

�D . . .�D| {z }
n�4

⇠ m�(n�4)�( 5
4 )+�(n

4 )�'

' = 2⇡ ⇥ n� 4

4
with final excess angle 

This leads to the constant reported earlier
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Conclusion

At strong coupling SA develop a non-perturbative regime in 
the near collinear limit

This follows from the fact that the flux tube mass gap    
becomes extremely small

m

To properly understand this regime one should think in terms 
of correlators of twist operators

This way one can fix the collinear limit of SA at strong coupling

The string      expansion breaks down for extremely large 
values of 

↵0

⌧ ⇠ � log u2 ⇠ e
p
�/4
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