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One can associate an entropy              and a temperature to 

a black hole in such a way that it seems to obey the laws of 

thermodynamics, just like a gas in a box. Is this just an 

analogy? If not, what are the atoms that underlie black 

holes?

S = A
4G

Black hole thermodynamics



These atoms cannot be gravitons or something like that: 

there would give rise to an entropy that scales as             

rather than             .

S » V
S » A

The AdS/CFT correspondence has provided an indirect 

answer: these atoms are the degrees of freedom of a 

holographically dual field theory that lives in one 

dimension less. 

Though this resolves the issue in principle, it is not so 

easy to apply it to practical questions about black 

holes. 

For many black holes, the dual field theory description 

has been successfully used to reproduce the entropy of 

the black hole by counting the number of degrees of 

freedom in the field theory.

One practical question it does answer:
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Idea: an analogous story applies to black holes as 

well. This would explain why, when collapsing 

different pure states to form black holes, they are 

difficult to distinguish from each other: no hair 

theorem.

It would also allow us to compute, in principle, how 

information about the initial state is encoded in the 

resulting Hawking radiation. 



In certain cases it has been shown that for black holes the 

classical phase space of the atoms can equivalently be 

described by spaces of smooth solutions to the (super)gravity 

equations of motion. (pioneered by Mathur: fuzzballs). 

Smoothness here is crucial: singularities arise after averaging 

(or coarse graining) over degrees of freedom. The 

smoothness requirement is also what makes this idea 

compatible with holography.  

Pure states             smooth geometries

Mixed states           singular geometries    

S = 0

S 6= 0



Many caveats:

-need to include smooth solutions with Planck-size 

curvature.

-not clear what happens when higher derivative 

corrections are included.

-only works for extremal supersymmetric black holes.

-so far no complete description for any macroscopic black 

hole: strong evidence that stringy degrees of freedom are 

always necessary (see later)
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This picture has been developed in great detail for 

“small” black holes. One can make sense of the notion of 

“adding” geometries, and show that

+ + +…

Of course, we would like to generalize this picture to 

large, macroscopic black holes. 



Adding geometries in AdS/CFT:

An asymptotic AdS geometry is dual to a state. From 

asymptotics can read off the one-point functions of 

operators in the field theory. hÃ
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Large supersymmetric black holes carrying electric charge Q 

and magnetic charge P exist in four dimensions. (P and Q 

can be vectors with many components). 

There exists however a much larger set of solutions of the 

gravitational field equations, which includes bound states of 

black holes, and also many smooth solutions. 

Put black holes with charges                        at locations  
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There are corresponding solutions of the field 

equations only if (necessary, not sufficient)

Here,                                                is the 

electric-magnetic duality invariant pairing 

between charge vectors. The constant vector 

h determines the asymptotics of the solution.

Solutions are stationary with angular 

momentum
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Typical setup: type IIA on CY

Magnetic charges: D6,D4

Electric charges: D0,D2
D6-D4-D2-D0 D6-D4-D2-D0

fixed

Example:

 Whenever the total D6-brane charge of a solution 

vanishes, one can take a decoupling limit so that the 

geometry (after uplifting to d=5) becomes asymptotic to 

AdS3xS2xCY.  (dual=MSW (0,4) CFT)

 When the centers correspond to pure branes with only a 

world-volume gauge field, the 5d uplift is a smooth 

geometry. The space of all such solutions will be our 

candidate phase space.

Maldacena, Strominger, Witten



When the two centers correspond to pure fluxed 

D6-branes, i.e. they correspond to D6-branes with 

a non-trivial gauge field configuration there is a 

coordinate change which maps the solution into 

global AdS3.

This coordinate transformation correspond to 

spectral flow in the CFT.

Denef, Gaiotto, Strominger, vdBleeken, Yin

Uplift of a D4-D2-D0 black hole yields the BTZ black 

hole, and can apply Cardy.



The BMPV black hole does not admit a decoupling limit 

to AdS3. Cannot use CFT methods to compute its 

entropy. But

BMPV

D6 + flux

can be put in AdS3. Dual to a sector of the CFT (cf 

Sen’s talk) which we do not know how to characterize. 

In Cardy regime single centered black hole dominates 

entropy, but numerical evidence suggests that for         

the above configuration dominates (entropy enigma). 

May in principle be able to microscopically determine 

BMPV entropy in this way.

L
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Full phase space=set of all solutions of 

the equations of motion.

Set of smooth solutions
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Result:

Can now use various methods to quantize the phase 

space, e.g. geometric quantization. Can explicitly find 

wavefunctions for various cases. 

In particular, one can use this to reproduce and extend a 

mathematical result known as the wall-crossing formula.



Of particular interest: scaling solutions: solutions where 

the constituents can approach each other arbitrarily 

closely.

Bena, Wang, Warner; Denef, Moore



In space-time, a very deep throat develops, which 

approximates the geometry outside a black hole ever 

more closely.

None of these geometries has large curvature: they 

should all be reliably described by general relativity.

However, this conclusion is incorrect!

The symplectic volume of this set of solutions is finite. 

Throats that are deeper than a certain critical depth are 

all part of the same ħ-size cell in phase space: wave-

functions cannot be localized on such geometries.

Quantum effects become highly macroscopic and make 

the physics of very deep throats nonlocal. 

This is an entirely new breakdown of effective field 

theory.



Wave functions have support 

on all these geometries



As a further consistency check of this picture, it also 

resolves an apparent inconsistency that emerges when 

embedding these geometries in AdS/CFT.

This is related to the fact that very deep throats seem to 

support a continuum of states as seen by an observer at 

infinity, while the field theories dual to AdS usually have a 

gap in the spectrum.

The gap one obtains agrees with the expected gap 1/c 

in the dual field theory (the dual 2d field theory 

appears after lifting the solutions to five dimensions 

and taking a decoupling limit).

Bena, Wang, Warner



Are there enough smooth supergravity solutions 

to account for the black hole entropy?

Largest set we have been able to find:

D6 D6

D0’s

Cf Denef, Gaiotto, 

Strominger, vdBleeken, Yin

This is not a prediction of AdS/CFT. 



In terms of standard 2d CFT quantum numbers we 

find the following number of states:
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This is less than the black hole entropy, which 

scales as

S » 2¼
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Perhaps we are simply missing many solutions?

Try to find upper bound: count the number of states in a 

gas of BPS supergravitons. Result:¡
3
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Clearly backreaction will be important. Difficult to deal 

with, but can impose one dynamical feature: stringy 

exclusion principle. 

Maldacena, Strominger
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We find precisely  the same result as before:

Strongly suggests supergravity is not sufficient to 

account for the entropy.

Stringy exclusion principle is visible in classical 

supergravity (and not so stringy).



Summary:

Gravitational entropy arises from coarse graining 

microstates

For almost all states                       looks like a black hole 

geometry to great accuracy.

For small black holes, can realize all states in terms of 

smooth supergravity solutions.

For large black holes, need both smooth supergravity 

solutions as well as stringy degrees of freedom.

Required non-locality arises because the fluctuations        

a                     in the metric are much larger than naively 

expected near the horizon.

Low energy effective field theory breaks down in a non-

local way due to the same quantum effects                          
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Towards more realistic black holes? Try to repeat the 

arguments e.g. for extremal Kerr. Dual to a CFT? 

Guica, Hartman, Song, Strominger

ds2 = 2G
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Generate a Virasoro algebra             “chiral CFT”

Cardy reproduces entropy of extremal Kerr.



Best candidate dual is the DLCQ of a 2d CFT.

Can be made more precise in other cases. for example, 

the near horizon limit of extremal BTZ looks like

This is AdS2 with an electric field. Finite y slices, with   

precisely implement the definition of Seiberg for taking 

the DLCQ limit. The boundary indeed has a null circle.

More precisely, the above metric is dual to
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The DLCQ operation freezes the right movers. The AdS2

isometries are part of the right movers, and therefore all 

physical excitations are constant on AdS2. All physical 

excitations involve φ.

In the bulk this follows from an AdS-fragmentation 

argument.

Presence of c/24 in the right-movers explains why Cardy 

still works (at least with susy: use elliptic genus). Just 

having a Virasoro is not enough.

For near-horizon of Kerr, the AdS2 part can also not be 

excited.

Features:

Amsel, Horowitz, Marolf, Roberts;

Diaz, Reall, Santor



The near-horizon geometry of extremal BTZ and extremal 

Kerr even share some dynamics:
ds2 = L22
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Same equation of motion

4d Einstein eqns

3d Einstein eqn + cosm const

Central charge of CFT dual of BTZ also agrees 

with that of Kerr/CFT.



All this strongly suggests that the near-horizon geometry of 

extremal Kerr is dual to the DLCQ of some 2d CFT.

It would be very interesting to find the holographic dual of this 

2d CFT. 

For now will simply assume it exists and assume the mass gap 

is 1/c.

This puts the radius for quantum fluctuations in 
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at    of order       . For GRS 1915+105,                        

This is a very small distance and seems related to 

quantization of angular momenta….

J » 2£ 1079.r 1=J



OUTLOOK:

Several naïve black hole expectations have been 

made precise in extremal supersymmetric 

situations. (coarse graining microstates, 

typicality,….)

Extend to other (cosmological) singularities? New 

interpretation of the Hartle-Hawking no-boundary 

proposal? Entropy of cosmological horizon is sum 

over smooth cosmologies?

Extend to generic Schwarzschild black holes: 

AdS/CFT may allow us to make some progress in 

this direction.



Can we understand anything about the stringy degrees of 

freedom that we need to account for the entropy of a large 

black hole?

What happens when you fall into a black hole? Fluctuations 

in the metric are larger than you would naively expect and 

just enough for information to come out. Eventually classical 

geometry will cease to exist and you will thermalize……

Explore the open string picture in more detail (this involves 

some quantum mechanical gauge theory and interesting 

connections between the Coulomb and Higgs branch)

Finally, try to address more complicated dynamical black 

hole questions (see e.g. Erik Verlinde’s talk next week on 

holographic neutron stars – joint work with K. Papadodimas)


