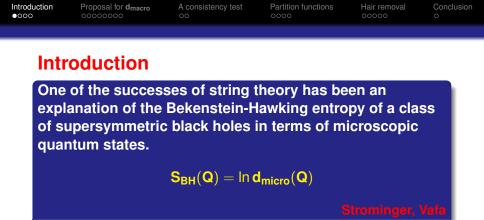
Introduction	Proposal for d _{macro}	A consistency test	Partition functions	Hair removal	Conclusion o

Black Hole Hair Removal

Ashoke Sen

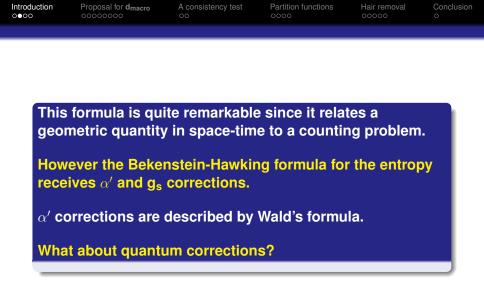
Harish-Chandra Research Institute, Allahabad, India

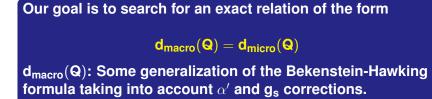
Helerences: Nabamita Banerjee, Ipsita Mandal, A.S., arXiv:0901.0359 Dileep Jatkar, A.S., Yogesh Srivastava, to appear



 $d_{micro}(\mathbf{Q})$: degeneracy of microstates carrying a given set of charges \mathbf{Q} .

 $S_{BH}(Q) = A/4G_N$





Introduction ○○○●	Proposal for d_{macro}	A consistency test	Partition functions	Hair removal	Conclusion O			
Wol	anvo the heat (abanaa of fina	ling quab a d	for				
	have the best of emal (BPS) bla		ing such a u	macro IOI				
	It is in this case that we have a precise definition of d _{micro} – or more accurately an appropriate index – in the							
	oscopic theor							

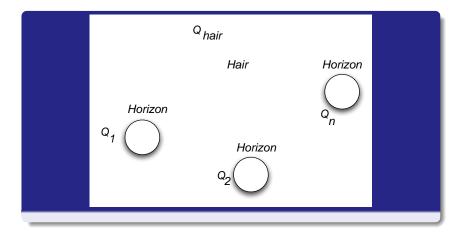
We shall work in some fixed duality frame so that we can distinguish between classical and quantum effects.

Introduction	Proposal for d _{macro} ●ooooooo	A consistency test	Partition functions	Hair removal	Conclusion o
Pro	posal for d	macro:			
Take	e a macroscop	ic configurati	on of charge	Q.	
cent	eneral such a d ered black hol ge Q _{hair} .				n

Hair: smooth normalizable deformations of the black hole solution with support outside the horizon(s).

d_{macro} will receive contribution from both the horizon and the hair.

Introduction	Proposal for d _{macro} o●oooooo	A consistency test	Partition functions	Hair removal	Conclusion o



Introduction	Proposal for d_{macro}	A consistency test	Partition functions	Hair removal	Conclusion O

Proposal for d_{macro}(Q):

$$\sum_{n} \sum_{\substack{\{\mathbf{Q}_k\}, \mathbf{Q}_{hair} \\ \sum_{k=1}^{n} \mathbf{Q}_k + \mathbf{Q}_{hair} = \mathbf{Q}}} \left\{ \prod_{k=1}^{n} d_{hor}(\mathbf{Q}_k) \right\} d_{hair}(\mathbf{Q}_{hair}; \{\mathbf{Q}_k\})$$

d_{hor}(Q_{hor}): contribution from the horizon with charge Q_{hor}

 d_{hair} : contribution from the hair of the n-centered black hole, with the horizons carrying charges $Q_1,\cdots Q_n$, and the hair carrying charge Q_{hair} .

Introduction	Proposal for d _{macro}	A consistency test	Partition functions	Hair removal	Conclusion o

d_{hair} can be computed as follows:

1. Identify supersymmetric deformations of the original black hole solution with support outside the horizon.

2. Carry out geometric quantization of these deformations and compute the associated degeneracies.

We shall return to a more detailed discussion of this soon.

Introduction	Proposal for d _{macro} 0000●000	A consistency test	Partition functions	Hair removal	Conclusion o

 d_{hor} : Should be given by some computation in the near horizon $AdS_2 \times K$ geometry of the extremal black hole.

→ Quantum Entropy Function.

Although it will not be directly related to our analysis we shall describe this proposal very briefly.

Introduction

Proposal for d_{macro}

A consistency test

Partition functions

Hair removal

e

Conclusion o

Make a euclidean continuation of the AdS₂ factor and represent it as a Poincare disk.

$$\mathsf{d}_{\mathsf{hor}} = \left\langle \mathsf{exp}[-\mathsf{iq}_{\mathsf{k}} \oint \mathsf{d} heta \, \mathsf{A}^{(\mathsf{k})}_{ heta}]
ight
angle^{\mathsf{finit}}$$

(): Path integral over string fields in the euclidean near horizon background geometry.

 $\{q_k\}$: electric charges carried by the black hole, representing electric flux of the gauge field $A^{(k)}$ through AdS_2

∮: integration along the boundary of AdS₂

finite: Infrared finite part of the amplitude.

Introduction	Proposal for d _{macro} oooooo●o	A consistency test	Partition functions	Hair removal	Conclusion o

Important point for us:

 d_{hor} is determined completely in terms of the near horizon geometry of the black hole.

Thus two black holes with identical near horizon geometry will have identical $\ensuremath{\mathsf{d}_{\mathsf{hor}}}$

Introduction	Proposal for d _{macro}	A consistency test	Partition functions	Hair removal	Conclusion o
Deg	eneracy vs. in	dex			
	n on the micro x rather than a	· · · · · · · · · · · · · · · · · · ·		mpute an	
	s we should al roscopic side.	-	he index I _{macr}	_o on the	
Prop	oosed formula	for I _{macro} :			
$\overline{\Sigma}$	· ·	$\begin{cases} \prod_{k=1}^{n} \mathbf{d}_{kar}(\mathbf{Q}_{k}) \end{cases}$	$\left(-1 \right)^{2J_{hor}}$	ir(Qhair [·] {Qk	3)

 $\sum_{\substack{n \in \mathbb{Q}_{k}, \mathbf{Q}_{hair} \\ \sum_{k=1}^{n} \mathbf{Q}_{k} + \mathbf{Q}_{hair} = \mathbf{Q}}} \prod_{k=1}^{n} \mathbf{Q}_{hor}(\mathbf{Q}_{k}) \int_{\mathbf{Q}_{k}} (-1)^{n} \mathbf{Q}_{hair}(\mathbf{Q}_{hair})$

Ihair: Index of the hair

 J_{hor} : total angular momentum associated with the horizon (part of $\mathbf{Q}_{hor})$

Introduction	Proposal for d _{macro}	A consistency test ●○	Partition functions	Hair removal	Conclusion o
A co	onsistency	test:			

We consider two single centered black holes in type IIB string theory compactified on K3 \times S¹:

1. Rotating charged black hole carrying Q_5 units of D5-brane charge along K3 \times S¹, Q₁ units of D1-brane charge along S¹, n units of momentum along S¹ and equal angular momentum J along the two transverse planes.

 \rightarrow a BMPV black hole. Breckenridge, Myers, Peet, Vafa

2. The same black hole with transverse space Taub-NUT.

 \rightarrow a four dimensional black hole.

Gauntlett, Gutowski, Hull, Pakis, Real

Introduction

A consistency test

Partition functions

Hair removal

Conclusion o

These two black holes have identical near horizongeometry.Gaiotto, Strominger, Yin; Shih, Stro

However the microscopic degeneracies are different.

This difference must be accounted for by the hair degrees of freedom of the two black holes.

Our goal:

1. Explicitly compute the degeneracies associated with the hair degrees of freedom of the two black holes.

2. Remove these hair contributions from the respective microscopic degeneracies.

3. Show that the final results after hair removal are identical for the two black holes.

Introduction	Proposal for d _{macro}	A consistency test	Partition functions ●000	Hair removal	Conclusion o

Partition functions

Note that both the BMPV black hole and the four dimensional black hole are characterized by four quantum numbers Q_1 , Q_5 , n and J.

The degeneracy depends only on n, J and the combination $N\equiv Q_5(Q_1-Q_5).$

Thus in the microscopic analysis we can set $Q_5 = 1$ and analyze the partition function $Z(\rho, \sigma, v)$.

 $(\rho, \sigma, \mathbf{v})$: conjugate to $(\mathbf{n}, \mathbf{Q}_1, \mathbf{J})$.

Introduction	Proposal for d _{macro}	A consistency test	Partition functions o●oo	Hair removal 00000	Conclusion o
Res	ult:				
Z _{5D} ($(ho,\sigma,\mathbf{v}) = \mathbf{e}^{-1}$	$2\pi i ho - 2\pi i\sigma \prod_{\substack{k,l,j\in \mathbf{Z}\\k>1,l>0}}$		$\left(\rho l+vj ight) ight)^{-c(4lk)}$	(−j ²)
	×	$\prod_{l\geq 1} \Big\{ (1-e^{2\pi i(l)}) \Big\}$		$(2\pi i(l\rho - v))^{-2}$	
	(1	$- e^{2\pi i l ho})^4 \Big\} (-$	$(e^{\pi i v} - e^{-\pi i v})$	^{iv}) ² .	
Z4,	$D(ho,\sigma,\mathbf{V}) = -$			$-c(4 k-i^2)$	
	k	$\prod_{\substack{k,l,j\in\mathbf{Z}\\ k,l\geq 0,j<0 \text{ for } k=l=0}} \left(f(x) \right)^{k}$	$1-e^{2\pi i(\sigma k+ ho l+}$	vj))	· .
			Dijkgraaf, Ve	erlinde, Verl	inde

Introduction Proposal for d_{macro} A consistency test of the condition of the coefficients
$$c(n)$$
 are defined via

$$8 \left[\frac{\vartheta_2(\tau, z)^2}{\vartheta_2(\tau, 0)^2} + \frac{\vartheta_3(\tau, z)^2}{\vartheta_3(\tau, 0)^2} + \frac{\vartheta_4(\tau, z)^2}{\vartheta_4(\tau, 0)^2} \right] = \sum_{j,n \in \mathbb{Z}} c(4n-j^2) e^{2\pi i n\tau + 2\pi i j z}$$

The starting point of both the four and five dimensional black holes is the elliptic genus of symmetric product of K3's, describing the degeneracies associated with the relative motion between the D1 and D5-branes. Dijkgraaf, Moore, Verlinde, Verlinde

 Z_{5D} and Z_{4D} are obtained by multiplying it by the partition function associated with the additional degrees of freedom of the system.

Introduction 0000	Proposal for d _{macro}	A consistency test	Partition functions ○○○●	Hair removal 00000	Conclusion o		
Tasl	ſ						
	1. Calculate the partition function Z_{5D}^{hair} associated with the hair degrees of freedom of the 5D black hole.						
	2. Calculate the partition function Z_{4D}^{hair} associated with the hair degrees of freedom of the 4D black hole.						
Com	npare Z_{5D}/Z_{5D}^{hair}	with Z_{4D}/Z_{4D}^{hai}	ir.				

Introduction 0000	Proposal for d _{macro}	A consistency test	Partition functions	Hair removal ●0000	Conclusion o		
Hai	r removal						
Hair of five dimensional black hole:							
1. Normalizable plane wave of gravitons describing transverse oscillation of the system.**							
– characterized by four independent functions of $(\mathbf{t}+\mathbf{y})$							
t: tin	ne y: cooi	dinate along	S ¹				

2. Normalizable plane wave like excitations of the gravitino.

- characterized by four independent functions of (t + y)

3. Some additional fermion zero modes associated with broken supersymmetry.

Introduction

Proposal for d_{macro}

A consistency test

Partition functions

Hair removal ○●○○○ Conclusion o

All these deformations have been constructed explicitly as classical solutions of the supergravity equations of motion.

**: The graviton plane wave modes have curvature singularity at the future event horizon. Horowitz, Yang; Kaloper, Myers, Ros

Thus we should not count them as true hair degrees of freedom.

Result for the hair partition function:

$$\mathsf{Z}_{\mathsf{5D}}^{\mathsf{hair}} = (\mathsf{e}^{\pi i \mathsf{v}} - \mathsf{e}^{-\pi i \mathsf{v}})^4 \prod_{\mathsf{I} \geq \mathsf{1}} (\mathsf{1} - \mathsf{e}^{2\pi i \mathsf{I}
ho})^4.$$

Introduction 0000	Proposal for d _{macro}	A consistency test	Partition functions	Hair removal oo∙oo	Conclusion o
Sing	ularity free ha	ir of four dim	ensional blac	k hole:	
1 N/	ormalizable pla	ane wave of d	uravitone des	oribina	
	sverse oscillat			LIDING	
ob	areatorized by	2 indonondo	nt functions (A († 1 A 1)	
– ch	aracterized by	5 independer		n (t + y)	
2. PI	ane wave like	excitations of	f the self-dua	2-form fie	lds

associated with the normalizable harmonic 2-form of the Taub-NUT space.

- characterized by 21 independent functions of (t + y)

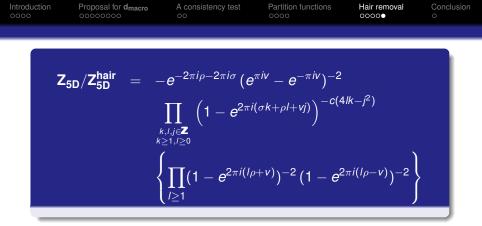
3. Normalizable plane wave like excitations of the gravitino.

characterized by 4 independent functions of (t + y)

Introduction	Proposal for d _{macro}	A consistency test	Partition functions	Hair removal 000●0	Conclusion o

4. Some additional fermion zero modes.

$$\mathsf{Z}_{\mathsf{4D}}^{\mathsf{hair}}(
ho,\sigma,\mathsf{v}) = \prod_{\mathsf{I}=\mathsf{1}}^{\infty} \Big[\left(\mathsf{1}-\mathsf{e}^{2\pi i \mathsf{l}
ho}
ight)^{-2\mathsf{0}}$$



$Z_{4D}/Z_{4D}^{hair} =$ same as above

Thus the two results match, as is expected from identification of the near horizon geometries of the two black holes.

Introduction	Proposal for d _{macro}	A consistency test	Partition functions	Hair removal	Conclusion ●

Conclusion

Our results indicate that two black holes with the same near horizon geometry have identical microscopic degeneracies after we remove the contribution to the degeneracies from the hair degrees of freedom of the black hole.

This is consistent with the hypothesis that we can associate a degeneracy to the horizon of the black hole that can be expressed as some computation in the near horizon geometry of the black hole without any reference to the full black hole solution.