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• Scalar field φ with a potential,

• Potential drives acceleration.

• Acceleration is prolonged if V(φ) is flat in Planck 

units: 
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tensor-to-scalar ratio, 

a measure of the 

primordial tensor signal 



Successes of inflation

• Ameliorates horizon problem.

• Successful generic predictions:

• Flatness       (Boomerang + DASI + Maxima)

• Spectrum of scalar perturbations that are:

• Nearly scale-invariant (COBE)

• Adiabatic (WMAP+ACBAR+CBI)

• Nearly Gaussian (WMAP)

• Correlated on super-horizon scales (WMAP)



• Scalar perturbations are well-tested:

– Via temperature and polarization anisotropies 

of the CMB

– As the seeds for structure formation
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Next decade: may anticipate observation of deviations 

from the generic predictions:
• Spectrum of tensor perturbations

• Primordial non-Gaussianity (e.g., three-point function)





• I will first carefully explain why string 

theory can be useful for inflation.

• I will then explain what one needs to do to 

produce a useful model of inflation in 

string theory.

• I will then review two well-motivated 

scenarios, sketching the mechanisms and 

pointing out their strengths and 

weaknesses.





• Inflationary Lagrangian generically receives 

critical contributions from              Planck-

suppressed operators. 
– Very generally, we expect contributions from integrating out 

massive degrees of freedom to which the inflaton couples.

– The key point is that for inflation, even Planck-mass degrees of 

freedom are important (for O(1) couplings).  

– Moreover, we know that some new degrees of freedom must

appear at, or well below, the Planck scale.

• In this sense, inflation is sensitive to the ultraviolet 

completion of gravity.

– This is a remarkable opportunity for string theory.
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• Another statement of the problem: without a symmetry, 

inflaton mass can run up to the cutoff , and >H.

• Note that this even affects low-scale models with small 

inflaton excursions. 

• For models with large inflaton excursions,               ,                                          

the situation is more dramatic: since , one 

must understand why the inflaton couples so weakly to 

the massive d.o.f. that its potential can remain flat over a 

range         .

– i.e., one needs to understand why the inflaton enjoys a symmetry 

that controls its couplings to Planck-mass d.o.f.
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• Since the UV completion of gravity matters for inflation, we are well 

advised to study inflation in quantum gravity.

• String theory provides toy models of inflation in quantum gravity in 

which we can study, e.g.,

– Couplings to Planck-mass degrees of freedom

– Symmetries preventing such couplings

• In string inflation, the Planck-suppressed contributions take various 

forms (string loop and  corrections, both perturbative and nonperturbative; 

Euclidean D-brane contributions; backreaction effects; …)

• In practice, most of these contributions may be understood as 

arising from integrating out massive moduli.

• Knowing (and controlling) the inflaton potential therefore requires 

detailed information about moduli stabilization, i.e. about the 

effective action in a stabilized vacuum.
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I. Invoke a symmetry strong enough to forbid all such 

contributions.
• i.e., forbid the inflaton from coupling to massive d.o.f.

Freese, Frieman, Olinto 90;  

Arkani-Hamed, Cheng, Creminelli, Randall 03;

Kallosh, Hsu, Prokushkin 04;   

Dimopoulos, Kachru, McGreevy, Wacker 05;  

Conlon & Quevedo 05; 

L.M., Silverstein, Westphal 08



I. Invoke a symmetry strong enough to forbid all such 

contributions.
• i.e., forbid the inflaton from coupling to massive d.o.f.

II. Enumerate all relevant contributions and determine 

whether fine-tuned inflation can occur.
• i.e., arrange for cancellations.

Freese, Frieman, Olinto 90;  

Arkani-Hamed, Cheng, Creminelli, Randall 03;

Kallosh, Hsu, Prokushkin 04;   

Dimopoulos, Kachru, McGreevy, Wacker 05;  

Conlon & Quevedo 05; 

L.M., Silverstein, Westphal 08

Baumann, Dymarsky, Klebanov, L.M., 07; 

Haack, Kallosh, Krause, Linde, Lüst, Zagermann, 08; 

Baumann, Dymarsky, Kachru, Klebanov, L.M., 08





• We would begin with a theory of INITIAL conditions valid 

at the string scale.

• We would understand the dynamics connecting the 

INITIAL state to a configuration with lower energy and six 

(metastably) compact dimensions.

• We would predict a suitable initial configuration for the 

period of inflation that produced the CMB. 

• The resulting inflationary epoch would have signatures 

that could not arise in any effective field theory model.

• I would personally predict specific, decisive signatures 

that would be observed a few months later.



• We would begin with a theory of INITIAL conditions valid at 

the string scale.
– Much thought, not much progress.

• We would understand the dynamics connecting the INITIAL

state to a configuration with lower energy and six 

(metastably) compact dimensions.
– Still waiting for a reliable realization of something like Brandenberger-Vafa.

• We would predict a suitable initial configuration for the 

period of inflation that produced the CMB. 
– Limited work, not much success.

• The resulting inflationary epoch would have signatures that 

could not arise in any effective field theory model.
– No evidence this is even possible.

• I would personally predict specific, decisive signatures that 

would be observed a few months later.



• We begin our analysis with six (metastably) compact dimensions.  

Moduli stabilization is incorporated, but as an assumption, not a 

dynamical output.

• We typically assume a smooth initial patch of size > H-1.

• We typically assume suitable initial conditions for the inflaton‟s 

homogeneous evolution, e.g. small kinetic energy.

• All analyses undertaken in effective field theory derived by 

dimensional reduction from a specified compactification.

• Specification of 10D data is usually incomplete, given the lack of 

explicit metrics and fully explicit methods of moduli stabilization.

These limitations reflect the state of the field. Few scenarios overcome 

any of them.

There are many other flaws that we have learned to overcome in the 

past decade!



• MODULI STABILIZATION.
– Solid qualitative understanding in several classes of compactifications.

– Has crucial consequences for the inflation action. Properly incorporated 

in the handful of most advanced models.

• MECHANISMS.
– Nontrivial kinetic terms (e.g. DBI).

– Warping.

– Symmetries of string compactifications.

• SIGNATURES.
– Non-Gaussianity.

– Cosmic strings.

– Constraints among observables (in given classes of models).



• Theory side: 

– Computability.  One must carefully choose a configuration 

that admits enough approximations to be tractable (local 

approximation; toroidal orientifold…)

– Naturalness.  Often search in vain for models in which the 

inflaton potential is naturally flat.

• Observations side:

– Signatures:
• Tensor modes require super-Planckian range

• Non-Gaussianity requires deviation from single-field slow roll

– E.g., nontrivial kinetic terms, multiple fields, broken slow roll

• As usual, one tries to do things that are doable, elegant, 

and interesting.



CHECKLIST for INFLATION IN STRING THEORY

 Are the moduli stabilized?

 Has the inflaton action been computed correctly?

 Effects of massive moduli?  Adiabatic approximation?

 String loop corrections?  corrections? Failures of other 

approximations (probe, noncompact, specific geometry)? 

Nonperturbative effects?

 Has it been established that inflation can occur?

 If it is claimed that inflation works naturally without fine tuning, the 

claim is almost certainly wrong.

 Special cases:

 If the field range is super-Planckian, is this under control?

 If nontrivial kinetic terms matter, are they under control?

 If the number of fields is large, are their quantum effects included?

 Is the phenomenology acceptable?

 CMB constraints, reheating, defects…

 If firm predictions are made, ask how this was accomplished.





• INFLATON

– Open string (e.g., moving D3-brane)  

– Closed string (e.g., Kahler modulus)

• FIELD RANGE

– Small field

– Large field

• MECHANISM

– Slow roll

– DBI

– Repeated events (e.g. chain inflation, trapped inflation)

• SYMMETRY

– No symmetry

– Discrete symmetry forbidding inflaton mass

– Shift symmetry  

• ACCURACY/COMPLETENESS

– Obviously incomplete

– “Nearly all terms computed”

– Limited only by explicitness of moduli stabilization
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• INFLATON

– Open string (e.g., moving D3-brane)  

– Closed string (e.g., Kahler modulus)

• FIELD RANGE

– Small field

– Large field

• MECHANISM

– Slow roll

– DBI

– Repeated events (e.g. chain inflation, trapped inflation)

• SYMMETRY

– No symmetry

– Discrete symmetry forbidding inflaton mass

– Shift symmetry  

• ACCURACY/COMPLETENESS

– Obviously incomplete

– “Nearly all terms computed”

– Limited only by explicitness of moduli stabilization



Dvali&Tye 1998

Dvali,Shafi,Solganik 2001

Burgess,Majumdar,Nolte,Quevedo,Rajesh,Zhang 2001

Kachru, Kallosh, Linde, Maldacena, L.M., Trivedi, 2003



CY orientifold, with 

fluxes and nonperturbative W

(KKLT 2003)

warped throat

(e.g. Klebanov-Strassler)

D3-brane

anti-D3-brane

(3+1)d

Kachru, Kallosh, Linde, Maldacena, L.M., Trivedi, 2003 

warped throat gives:
weak Coulomb potential

control of energy scales





Specifically, what is the effect of moduli stabilization on the 

potential for a D3-brane in a throat?







ISD solutions:

0G  



ISD solutions:

D3-branes feel no potential in ISD solutions („no-scale‟), 

but

nonperturbative stabilization of Kähler moduli will spoil this.

0G  



ED3/D7-branes 

responsible for 

Kähler moduli 

stabilization



ED3/D7-branes 

responsible for 

Kahler moduli 

stabilization
DeWolfe, L.M., Shiu, & Underwood, hep-th/0703088.

For generic A(y), solutions to

i.e., supersymmetric D3-brane vacua, are .  But 

where are they, and what is the potential in between?



ED3/D7-branes 

responsible for 

Kahler moduli 

stabilization
DeWolfe, L.M., Shiu, & Underwood, hep-th/0703088.

For generic A(y), solutions to

i.e., supersymmetric D3-brane vacua, are .  But 

where are they, and what is the potential in between?



• Compute A(y) in a special case.

Berg, Haack, Kors, hep-th/0404087

Baumann, Dymarsky, Klebanov, Maldacena, L.M., & Murugan, hep-th/0607050.

• Characterize the structure of the potential more generally.
Baumann, Dymarsky, Kachru, Klebanov, & L.M., 0808.2811.

Baumann, Dymarsky, Kachru, Klebanov, & L.M., in preparation.

Today: characterize the general structure.



Clearly hard to compute in full generality.



Clearly hard to compute in full generality.

Goal: systematic coupling of compact space to a local model.



Clearly hard to compute in full generality.

Goal: systematic coupling of compact space to a local model.

Idea: for a D3-brane well inside a warped throat, leading effects captured 

by structure of throat + some information about boundary conditions in UV.

Concretely, I will compute the potential for a D3-brane in a Klebanov-

Strassler throat attached to a general bulk whose Kähler moduli are 

stabilized nonperturbatively.  In practice, will use Klebanov-Witten SCFT.
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interested in the profile of Φ-.



The D3-brane potential comes from Φ- alone.  So we are 

interested in the profile of Φ-.

Arbitrary compactification effects can be represented by 

specifying boundary conditions for Φ- in the UV of the 

throat, i.e. by allowing arbitrary non-normalizable Φ-

profiles.



The D3-brane potential comes from Φ- alone.  So we are 

interested in the profile of Φ-.

Arbitrary compactification effects can be represented by 

specifying boundary conditions for Φ- in the UV of the 

throat, i.e. by allowing arbitrary non-normalizable Φ-

profiles.



The warped geometry filters the compactification 

effects; in gauge theory variables,

The leading contributions are those that diminish 

least rapidly towards the IR, i.e. the most 

relevant operators in the gauge theory.

By determining the spectrum of dimensions ∆i we 

can extract the leading terms in the potential.
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Consider linearized Φ- perturbations around a finite-length KS 

throat, which we approximate by AdS5 x T1,1.

In general, many other modes are turned on, but at the linear

level they do not couple to D3-branes. 
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GKP



Linearity + absence of sources.



We should solve                                                            

incorporating a source.

To do this, one solves the G  e.o.m, turns on a general G 

background, and extracts the leading terms in - that result.

Answer:

( )G c r h 
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D. Baumann, A. Dymarsky, S. Kachru, I. Klebanov, & L.M., work in progress.



Recap: after solving

with a general G background, the D3-brane potential is

supported by                        from homogeneous solution

So the D3-brane potential originates in UV perturbations of         

and       .

For a better understanding, let‟s try 

another perspective.
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Normalizable perturbations in supergravity correspond to 

perturbations of the state of the dual CFT.  These IR 

contributions typically decouple from the 

compactification, and hence are easily included.

Non-normalizable perturbations in supergravity correspond 

to perturbations of the Lagrangian of the dual CFT.  

These UV contributions originate in the compact region.

Maldacena, 1997

Gubser, Klebanov, & Polyakov, 1998

Witten, 1998
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Arbitrary compactification effects can be represented by 

incorporating arbitrary perturbations of the CFT Lagrangian, 

including coupling it to 4D gravity and to hidden sector 

degrees of freedom.

(For anti-D3, cf. Aharony, Antebi, Berkooz.)



Arbitrary compactification effects can be represented by 

incorporating arbitrary perturbations of the CFT Lagrangian, 

including coupling it to 4D gravity and to hidden sector 

degrees of freedom.

i i

chiral
i iK c W d    O O

By following this prescription for the Klebanov-Witten SCFT dual 

to AdS5 x T1,1, one precisely reproduces the gravity-side 

potential.

D. Baumann, A. Dymarsky, S. Kachru, I. Klebanov, & L.M., 0808.2811.



Moreover, the leading (r1) term comes from a superpotential 

perturbation by the lowest-dimension gauge invariant 

operator in the Klebanov-Witten SCFT,

exactly as one would expect.

(relation to G-flux: cf. Graña & Polchinski 0009211.)

( )W Tr AB 

Klebanov-Witten SCFT:
SU(N) x SU(N) gauge group

SU(2) x SU(2) x U(1)R global symmetry

bifundamentals Ai, Bi



Special case is explicitly computable: assume the moduli-

stabilizing D7-branes hang into the throat region

Can compute superpotential.  

Resulting potential:

Identical structure!

Baumann, Dymarsky, Klebanov, Maldacena, 

L.M., & Murugan, hep-th/0607050.
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L.M., Silverstein,& Westphal, 0808.0706

Flauger, L.M., Pajer, Silverstein, Westphal, Xu 0906.nnnn

see also:

Silverstein & Westphal, 0803.3085.



tensor-to-scalar ratio, 

a measure of the 

primordial tensor signal 



Image: Seljak and Zaldarriaga

(curl-free)                       (curl)

Primordial tensors induce curl of CMB photons‟ polarization 

(B-mode), and hence may be visible: Planck, SPIDER, 

QUIET, BICEP, EBEX, PolarBEAR, CMBPol?



D.H. Lyth, 1996

Threshold for detection:

0.22

~ 0.05

0.01

~ 0.001?
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D.H. Lyth, 1996



• Need:

– Large range

– Flat potential (e.g., symmetry)
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N = the number of colors in the dual gauge theory

D. Baumann and L.M., hep-th/0610285.
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Axion shift symmetry protects inflaton potential.

 4 cosV fFreese, Frieman, & Olinto, 1990:
f > MP
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Axion shift symmetry protects inflaton potential.

 4 cosV fFreese, Frieman, & Olinto, 1990:
f > MP

Banks, Dine, Fox, & Gorbatov, hep-th/0303252.

Dimopoulos, Kachru, McGreevy, & Wacker, hep-th/0507205

N-flation: use N ~103 axions at once, 

as a collective excitation. 
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Axion shift symmetry protects inflaton potential.

 4 cosV fFreese, Frieman, & Olinto, 1990:
f > MP

Our idea: recycle a single axion N times.

“Axion monodromy”

Banks, Dine, Fox, & Gorbatov, hep-th/0303252:

But, f > MP not attainable in computable limits of string 

theory?

Dimopoulos, Kachru, McGreevy, & Wacker, hep-th/0507205

N-flation: use N ~103 axions at once, 

as a collective excitation. 



D5-brane/NS5-brane
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• Fivebrane contribution not periodic: as axion shifts by a 

period, potential undergoes a monodromy

• This unwraps the axion circle and provides a linear potential 

over an a priori unlimited field range. 

• In practice, controllable over  large 

(>> MP) but finite range.

cf. inflation from D-brane monodromy Silverstein&Westphal, 0803.3085.



• e.g., ED3/ED1 in K

4







• Inflation in string theory is strongly motivated by the 

sensitivity of inflation to Planck-scale physics.

• Progress in recent years:

– a few reasonably complete models, thanks to advances in moduli 

stabilization

– various mechanisms (e.g. DBI, warping, monodromy)

– some interesting signatures (e.g. equilateral NG, cosmic 

superstrings, features in spectrum and bispectrum)

• In the future:

– need much more comprehensive understanding of the space of 

possible models

– can readily make progress given better compactification technology

– near-future experiments will surely constrain, and may observe, 

distinctive signatures of inflation!




