Compactifications on Generalized Geometries

Jan Louis Universität Hamburg

Paris, June 2009

Introduction

Phenomenological models in string theory:

- space-time background $M_{10} = M_4 \times \mathbf{Y_6}$
- N = 1 (spontaneously broken) supersymmetry

realized as

- \Rightarrow Heterotic string with Y_6 : Calabi-Yau threefold/orbifold
- ➡ Type II/I with space-time filling D-branes and orientifold-planes
 Y₆ : generalized Calabi-Yau orientifold
 (with background flues)

(with background fluxes)

Purpose of this talk:

review string compactifications on generalized geometries (with N = 2, 4 supersymmetry)

Compactification:

Space-time background:	\mathbf{M}_{10}	=	${f M_4} imes {f Y_6}$
Lorentz-group:	${f SO(1,9)}$	\rightarrow	SO(1,3) imes SO(6)
10D Supercharge:	16	\rightarrow	$({f 2},{f 4})\oplus (ar{f 2},ar{f 4})$

Impose:

1. existence of 4D supercharge(s) \Rightarrow existence of global spinor(s) η

 \Rightarrow Y_6 has reduced structure group

$$\begin{aligned} \mathbf{SO(6)} &\to \left\{ \begin{array}{ll} \mathbf{SU(3)} & \text{s.t.} & \mathbf{4} \to \mathbf{3} + \mathbf{1} \\ \mathbf{SU(2)} \times \mathbf{SU(2)} & \text{s.t.} & \mathbf{4} \to (\mathbf{2},\mathbf{1}) + (\mathbf{1},\mathbf{2}) \end{array} \right. \end{aligned}$$

2. background preserves supersymmetry

 $\delta \Psi = \nabla \eta + (\gamma \cdot \mathbf{F}) \eta + \dots = 0$, $\mathbf{F} = \text{background fluxes}$

- $\nabla \eta = 0 \Rightarrow \mathbf{Y_6}$ is Calabi-Yau manifold
- here: study manifolds with SU(3)/SU(2)-structure ($\nabla \eta \neq 0$)

Manifolds with SU(3) structure:

[Gray, Hervella, Salamon, Chiossi, Hitchin, ...]

characterized by two tensors $\mathbf{J}, \mathbf{\Omega}$ (follows from existence of η)

 $\Rightarrow (1,1)\text{-form}$ $\mathbf{J_{mn}} = \eta^\dagger \gamma_{[\mathbf{m}} \gamma_{\mathbf{n}]} \eta \ , \qquad \mathbf{dJ} \neq \mathbf{0}$

 \Rightarrow (3,0)-form

$$oldsymbol{\Omega_{mnp}} = \eta^\dagger \gamma_{[\mathbf{m}} \gamma_{\mathbf{n}} \gamma_{\mathbf{p}]} \eta \;, \qquad \mathbf{d} oldsymbol{\Omega}
eq \mathbf{0}$$

Remarks:

- $dJ, d\Omega \sim$ (intrinsic) torsion of Y_6
- Calabi-Yau: $\nabla \eta = \mathbf{0} \Rightarrow \mathbf{dJ} = \mathbf{d\Omega} = \mathbf{0}$

⇒ torsion parameterizes the deviation from Calabi-Yau

Manifolds with $SU(3) \times SU(3)$ structure:

[Jescheck,Witt; Graña,Minasian,Petrini,Tomasiello; Graña,Waldram,JL; Bilal,Cassani; Kashani-Poor,Minasian, ...]

In type II string theory one can be slightly more general:

choose different spinors η^1, η^2 for the two gravitini $\Psi^{1,2}$

each η def. SU(3)-structure \Rightarrow together: SU(3) \times SU(3)-structure (characterized by pair J^{1,2}, $\Omega^{1,2}$)

<u>Hitchin:</u> embed in $SU(3) \times SU(3)$ in O(6, 6) acting on $T \oplus T^*$ \Rightarrow structure characterized by two pure spinors Φ^+, Φ^- of O(6, 6)

 $\Phi^+ = \mathbf{e}^{\mathbf{B}} \eta^{\mathbf{1}}_+ \otimes \bar{\eta}^{\mathbf{2}}_+ \simeq \sum \Phi^+_{\text{even}} , \qquad \Phi^- = \mathbf{e}^{\mathbf{B}} \eta^{\mathbf{1}}_+ \otimes \bar{\eta}^{\mathbf{2}}_- \simeq \sum \Phi^+_{\text{odd}} ,$

 $\mathbf{SU}(\mathbf{3}) \text{ structure } (\eta^{\mathbf{1}} = \eta^{\mathbf{2}}): \qquad \Phi^{+} = \mathbf{e}^{\mathbf{B} + \mathbf{i}\mathbf{J}} \ , \qquad \Phi^{-} = \mathbf{e}^{\mathbf{B}} \mathbf{\Omega} \ ,$

Low energy effective action:

$$S = \int_{\mathbf{M}_4} \frac{1}{2} \mathbf{R} - \mathbf{g}_{ab}(\mathbf{z}) \mathbf{D}_{\mu} \mathbf{z}^{a} \mathbf{D}^{\mu} \mathbf{z}^{b} - \mathbf{V}(\mathbf{z}) + \dots$$

 $rac{1}{2}$ Type II string theory: S is N = 2 gauged supergravity

- correspond to deformations of $\, {f B}, {f J}, \Omega \,$ or $\, {f \Phi}^+, {f \Phi}^- \,$
- scalars from RR-sector

$$\Rightarrow N = 2$$
 constraint: $\mathcal{M} = \mathcal{M}_{SK} \times \mathcal{M}_{QK}$

IIA : $\mathcal{M}_{SK} = \mathcal{M}_{\Phi^+}$, $\mathcal{M}_{QK} \supset \mathcal{M}_{\Phi^-}$, IIB : $\Phi^+ \leftrightarrow \Phi^-$

 $\Rightarrow \underline{\text{Impose}} \text{ "standard } N = 2" \text{ (no massive gravitino multiplets)} \\\Rightarrow SU(3) \text{-structure without triplets } \mathbf{3}: \ dJ^2 = 0 \text{ and } d\Omega^{3,1} = 0 \\\Rightarrow SU(3) \times SU(3) \text{-structure without } (\mathbf{3}, \mathbf{1}), (\mathbf{1}, \mathbf{3})$

 $\underline{\mathsf{Metric}\ \mathbf{g_{ab}}}: \qquad \mathsf{special}\ \mathsf{K\"ahler}\ \mathsf{metric}\ \mathsf{on} \quad \mathcal{M} = \mathcal{M}_{\Phi^+} \times \mathcal{M}_{\Phi^-}$

[Hitchin; Graña, Gurrieri, Micu, Waldram, JL,...]

$$\begin{split} \mathbf{e}^{-\mathbf{K}_{\Phi^+}} &= \int_{\mathbf{Y}} \langle \Phi^+, \overline{\Phi}^+ \rangle \\ &= \int_{\mathbf{Y}} \mathbf{J} \wedge \mathbf{J} \wedge \mathbf{J} , \quad \text{ for } \quad \Phi^+ = \mathbf{e}^{\mathbf{B} + \mathbf{i} \mathbf{J}} , \\ \mathbf{e}^{-\mathbf{K}_{\Phi^-}} &= \int_{\mathbf{Y}} \langle \Phi^-, \overline{\Phi}^- \rangle \\ &= \int_{\mathbf{Y}} \Omega_3 \wedge \overline{\Omega}_3 , \quad \text{ for } \quad \Phi^- = \Omega_3 \end{split}$$

where $\langle \Phi^+, \overline{\Phi}^+ \rangle = \Phi_0^+ \wedge \overline{\Phi}_6^+ - \Phi_2^+ \wedge \overline{\Phi}_4^+ + \Phi_4^+ \wedge \overline{\Phi}_2^+ - \Phi_6^+ \wedge \overline{\Phi}_0^+$, etc.

c→ e^{-K} is quartic invariant of O(6, 6) (Hitchin functional)
 c→ for SU(3) same expression as in Calabi-Yau compactifications

Include RR-sector: geometry of \mathcal{M}_{QK} [Graña, Sim, Waldram, JL] RR-scalars $C \neq 0 \implies \mathcal{M}_{SK} \times \frac{SU(1,1)}{U(1)} \to \mathcal{M}_{QK}$ $SO(6,6) \times SU(1,1) \to E_7$ (U-duality group)

⇒ Exceptional Generalized Geometry [Hull; Pacheco, Waldram]

 \Rightarrow N = 2 supergravity can be formulated in terms of $\mathbf{E_7}$ rep.

 $133 \rightarrow (1,3) + (66,1) + (32,2)$

embed Φ^- in 133°: $K_+ = K_1 + iK_2 = e^C(0, 0, \mathbf{u}^{\mathbf{i}}\Phi^-)$ highest weight SU(2) embedding $[K_a, K_b] = 2\kappa\epsilon_{abc}K_c$ [Kobak,Swann] <u>Hyperkählercone:</u> $\mathcal{M}_{QK} \to \mathcal{M}_{HKC}$ (= $\frac{E_{7(7)}}{SO(12)^*} \times \mathbf{R}^+$ locally) Kählerpotential: $\chi \sim \sqrt{trK_+K_-} \sim e^{-\phi}\sqrt{i\langle\Phi^-, \bar{\Phi}^-\rangle}$

agrees with [Rocek, Vafa, Vandoren; Neitzke, Pioline, Vandoren]

Potential: is derived from Killing prepotential (or superpotential) \vec{P} \Rightarrow IIA

$$\mathbf{P}^{1} + \mathbf{i}\mathbf{P}^{2} \sim \int_{Y_{6}} \langle \mathbf{\Phi}^{+}, d\mathbf{\Phi}^{-} \rangle , \qquad \mathbf{P}^{3} \sim \int_{Y_{6}} \langle \mathbf{\Phi}^{+}, F \rangle$$
$$F \equiv \sum_{\text{RR-forms}} F^{\text{RR}}$$

Note:

- as expected \vec{P} depends on torsion and flux
- large volume mirror symmetry intact
- \vec{P} can be given in terms of E_7 quantities \longrightarrow [Graña, Sim, Waldram, JL]
- gauged N = 2 supergravity only with charged hypermultiplets

Non-perturbative dualities

Proposal: Het. on $K3 \times T^2$ with flux \leftrightarrow IIA on $SU(3) \times SU(3)$ het. T^2 -fluxes induce non-Abelian vector multiplets Problem: (partial) resolution: [Aharony,Berkooz,Micu,JL] consider M-Theory on 7d-SU(3)-manifold: CY₆ $\times_f S^1$ with $\mathbf{d}\omega_2^{\mathbf{a}} = \mathbf{T}_{\mathbf{b}}^{\mathbf{a}}\omega_2^{\mathbf{b}} \wedge \mathbf{d}\mathbf{z}$, $\omega_2^{\mathbf{a}}|_{\mathbf{CY}} \in \mathbf{H}^{(1,1)}(\mathbf{CY}_6)$ \Rightarrow charged vector multiplets with scalar derivatives: $D\vec{x} - \vec{k}_B A^B$ Killing vectors obey : $[k_a, k_b] = [k_0, k_0] = 0$, $[k_a, k_0] = -T_a^b k_b$ reason: het. W^{\pm} masses heavy generically but light in M-theory regime still not a perfect match

 \Rightarrow consider het. compactifications on SU(2)-manifolds

Manifolds with SU(2)-structure:

[Gauntlett, Martelli, Waldram; GMPT; Bovy, Lüst, Tsimpis; Triendl, JL, ...]

 $\mathbf{SU(3)}\times\mathbf{SU(3)}\supset\mathbf{SU(2)}\subset\mathbf{SO(6)}$

2 cases:

 $\eta^{1} = \mathbf{c}\eta^{2}$ along subspaces of $Y_{6} \Rightarrow 2$ supercharges globally defined $\eta^{1} \neq \mathbf{c}\eta^{2}$ anywhere on $Y_{6} \Rightarrow 4$ supercharges globally defined (global SU(2)-structure)

global SU(2)-structure:

- \Leftrightarrow characterized by the pair $\mathbf{J^{1,2}}, \mathbf{\Omega^{1,2}}$
- $\Rightarrow \text{ or three 2-forms } \mathbf{J}_{\alpha} \text{ satisfying} \qquad \mathbf{J}_{\alpha} \wedge \mathbf{J}_{\beta} \sim \delta_{\alpha\beta}$ and a complex 1-form **v** satisfying

$$\mathbf{v} \cdot \mathbf{v} = \mathbf{0}, \quad \mathbf{\bar{v}} \cdot \mathbf{v} = \mathbf{2}, \quad \iota_{\mathbf{v}} \mathbf{J}_{\alpha} = \mathbf{0}$$

properties of global SU(2)-structure:

- \checkmark existence of \mathbf{v} \Rightarrow existence of almost product structure P satisfying $P^2=1$
 - \Rightarrow this splits the tangent space $TY = T_2Y \oplus T_4Y$
 - \Rightarrow and is a generalization of $K3 \times T^2$ where product structure is integrable.
- r > formulation in terms of (two) pure <math>O(6, 6) spinors exists
- $rac{1}{2}$ embedding into E_7 exits [Triendl,JL]
- $\Rightarrow SU(2) \times SU(2) \text{ does not exist [Triendl,JL]}$ (due to different chiralities in d = 4)

Low energy effective action:

$$S = \int_{\mathbf{M}_4} \frac{1}{2} \mathbf{R} - \mathbf{g}_{ab}(\mathbf{z}) \mathbf{D}_{\mu} \mathbf{z}^{a} \mathbf{D}^{\mu} \mathbf{z}^{b} - \mathbf{V}(\mathbf{z}) + \dots$$

r Type II string theory: S is N = 4 gauged supergravity

 \Rightarrow deformations of the NS-sector (metric, B, dilaton S) [Triendl, JL]

$$\mathcal{M}_{\rm NS} = \frac{\rm SO(4,4+n)}{\rm SO(4) \times SO(4+n)} \times \frac{\rm SU(1,1)_{\rm S}}{\rm U(1)} \times \frac{\rm SU(1,1)_{\rm T}}{\rm U(1)} \times \frac{\rm SU(1,1)_{\rm U}}{\rm U(1)}$$

Sinclude RR-scalars [Triendl,JL]

$$\mathcal{M}_{\mathrm{IIA/B}} = \frac{\mathrm{SO}(6,6+n)}{\mathrm{SO}(6)\times\mathrm{SO}(6+n)} \times \frac{\mathrm{SU}(1,1)_{\mathrm{T/U}}}{\mathrm{U}(1)}$$

 \varPhi consistent with N=4 constraint

 $\clubsuit \text{ compute } V \rightarrow [\operatorname{Reid-Edwards}, \operatorname{Spanjaard} \And \text{ in preparation}]$

Heterotic on SU(2)-structure/N = 2 [Martinez, Micu, JL]

$$\stackrel{\bullet}{\to} N = 2 \text{ constraint: } \mathcal{M} = \mathcal{M}_{SK} \times \mathcal{M}_{QK}$$

find:
$$\mathcal{M}_{SK} = \frac{\mathbf{SO}(\mathbf{2}, \mathbf{2} + \mathbf{m})}{\mathbf{SO}(\mathbf{2}) \times \mathbf{SO}(\mathbf{2} + \mathbf{m})} \times \frac{\mathbf{SU}(\mathbf{1}, \mathbf{1})_{S}}{\mathbf{U}(\mathbf{1})} , \qquad \mathcal{M}_{QK} \supset \frac{\mathbf{SO}(\mathbf{4}, \mathbf{4} + \mathbf{n})}{\mathbf{SO}(\mathbf{4}) \times \mathbf{SO}(\mathbf{4} + \mathbf{n})}$$

 $\Rightarrow \text{ compute } V \text{ for K3 fibered over } T^2: \mathbf{Y_6} = \mathbf{K3} \times_f T^2$

$$\mathbf{d}\omega_{\mathbf{2}}^{\mathbf{a}} = \mathbf{T}_{\mathbf{ib}}^{\mathbf{a}} \ \omega_{\mathbf{2}}^{\mathbf{b}} \wedge \mathbf{d}\mathbf{z}^{\mathbf{i}} \ , \qquad \omega_{\mathbf{2}}^{\mathbf{a}}|_{\mathbf{K3}} \in \mathbf{H}^{(\mathbf{2})}(\mathbf{K3})$$

KK reduction reveals charged hypermultiplets

$$P^{\alpha}_{i} \sim \varepsilon_{ij} \Big[\int_{Y_6} dB \wedge J^{\alpha} \wedge dz^j - \tfrac{1}{2} \varepsilon^{\alpha\beta\gamma} \int_{Y_6} J^{\beta} \wedge dJ^{\gamma} \wedge dz^j \Big] \; .$$

- dual to 6d SU(3) compactifications
- general SU(2)-structure compactifications \rightarrow [in preparation]
- \Rightarrow no complete picture yet

truncates spectrum and selects

$$\mathcal{M}_{\mathrm{SK}} \times \mathcal{M}_{\mathrm{SK}} \ \subset \ \frac{\mathcal{M}_{\mathrm{SK}} \times \mathcal{M}_{\mathrm{QK}}}{\mathbf{SO}(6) \times \mathbf{SO}(6+\mathbf{n})}$$

with

$$\mathcal{M}_{\rm SK} = \frac{SU(1,1)_U}{U(1)} \times \frac{SO(2,n_+)}{SO(2) \times SO(n_+)} \,, \qquad \mathcal{M}_{\rm QK} = \frac{SO(4,n_-)}{SO(4) \times SO(n_-)}$$

⇒ non-Abelian gauging with vectors and hypers charged Killing vectors:

$$[k_0, k_1] \sim k_1$$
, $[k_0, k_a] \sim T_a^b k_b$, $[k_1, k_a] = [k_a, k_b] = 0$.

cannot be obtained as SU(3)-structure compactifications.

Summary

discussed backgrounds with $SU(3)(\times SU(3))/SU(2)$ structure

- Scalar manifold is independent of torsion
- \Rightarrow NS-sector expressed in terms O(6,6) quantities (generalized geometry)
- \Rightarrow NS + RR-sector expressed in terms E_7 (exceptionally generalized geometry)
- G (pre)potential depends on torsion and background fluxes
- generalized mirror symmetry intact (in the supergravity limit) non-perturbative dualities not quite yet