Compactifications on Generalized Geometries

Jan Louis

Universität Hamburg

$$
\text { Paris, June } 2009
$$

Introduction

Phenomenological models in string theory:

- space-time background $\quad M_{10}=M_{4} \times \mathbf{Y}_{6}$
- $N=1$ (spontaneously broken) supersymmetry
realized as
\Rightarrow Heterotic string with Y_{6} : Calabi-Yau threefold/orbifold
\Rightarrow Type II/I with space-time filling D-branes and orientifold-planes Y_{6} : generalized Calabi-Yau orientifold (with background fluxes)

Purpose of this talk:
review string compactifications on generalized geometries
(with $N=2,4$ supersymmetry)

Compactification:

Space-time background:

$$
\begin{aligned}
\mathrm{M}_{10} & =\mathrm{M}_{4} \times \mathbf{Y}_{6} \\
\mathrm{SO}(\mathbf{1}, \mathbf{9}) & \rightarrow \mathrm{SO}(\mathbf{1}, \mathbf{3}) \times \mathrm{SO}(\mathbf{6}) \\
\mathbf{1 6} & \rightarrow(\mathbf{2}, \mathbf{4}) \oplus(\overline{\mathbf{2}}, \overline{\mathbf{4}})
\end{aligned}
$$

Impose:

1. existence of $4 D$ supercharge(s) \Rightarrow existence of global spinor(s) η
$\Rightarrow \mathbf{Y}_{6}$ has reduced structure group

$$
\mathrm{SO}(6) \rightarrow\left\{\begin{array}{lll}
\mathrm{SU}(3) & \text { s.t. } & 4 \rightarrow 3+1 \\
\mathrm{SU}(2) \times \mathrm{SU}(2) & \text { s.t. } & 4 \rightarrow(2,1)+(1,2)
\end{array}\right.
$$

2. background preserves supersymmetry

$$
\delta \Psi=\nabla \eta+(\gamma \cdot \mathbf{F}) \eta+\ldots=0, \quad \mathbf{F}=\text { background fluxes }
$$

- $\nabla \eta=0 \quad \Rightarrow \mathbf{Y}_{\mathbf{6}}$ is Calabi-Yau manifold
- here: study manifolds with $\underline{\mathrm{SU}(3) / \mathrm{SU}(2) \text {-structure }(\nabla \eta \neq 0)}$

Manifolds with $S U(3)$ structure:
characterized by two tensors $\mathbf{J}, \Omega \quad$ (follows from existence of η)
c (1, 1)-form

$$
\mathbf{J}_{\mathbf{m n}}=\eta^{\dagger} \gamma_{[\mathbf{m}} \gamma_{\mathbf{n}]} \eta, \quad \mathbf{d} \mathbf{J} \neq \mathbf{0}
$$

c $(3,0)$-form

$$
\boldsymbol{\Omega}_{\mathbf{m n p}}=\eta^{\dagger} \gamma_{[\mathbf{m}} \gamma_{\mathbf{n}} \gamma_{\mathbf{p}]} \eta, \quad \mathbf{d} \boldsymbol{\Omega} \neq \mathbf{0}
$$

Remarks:

- $\mathrm{dJ}, \mathrm{d} \Omega \sim$ (intrinsic) torsion of Y_{6}
- Calabi-Yau: $\quad \nabla \eta=\mathbf{0} \Rightarrow \mathrm{d} \mathbf{J}=\mathrm{d} \boldsymbol{\Omega}=\mathbf{0}$
\Rightarrow torsion parameterizes the deviation from Calabi-Yau
$\underline{\text { Manifolds with } S U(3) \times S U(3) \text { structure: }}$
[Jescheck,Witt; Graña,Minasian,Petrini,Tomasiello; Graña,Waldram,JL; Bilal,Cassani;
Kashani-Poor,Minasian, ...]
In type II string theory one can be slightly more general:
choose different spinors η^{1}, η^{2} for the two gravitini $\Psi^{1,2}$
each η def. $\mathrm{SU}(3)$-structure \Rightarrow together: $\mathbf{S U}(\mathbf{3}) \times \mathbf{S U}(\mathbf{3})$-structure (characterized by pair $\mathrm{J}^{1,2}, \Omega^{1,2}$)

Hitchin: embed in $\mathbf{S U}(\mathbf{3}) \times \mathbf{S U}(\mathbf{3})$ in $\mathbf{O}(6,6)$ acting on $T \oplus T^{*}$
\Rightarrow structure characterized by two pure spinors Φ^{+}, Φ^{-}of $\mathbf{O}(\mathbf{6}, \mathbf{6})$

$$
\boldsymbol{\Phi}^{+}=\mathbf{e}^{\mathbf{B}} \eta_{+}^{1} \otimes \bar{\eta}_{+}^{2} \simeq \sum \boldsymbol{\Phi}_{\text {even }}^{+}, \quad \boldsymbol{\Phi}^{-}=\mathbf{e}^{\mathbf{B}} \eta_{+}^{1} \otimes \bar{\eta}_{-}^{2} \simeq \sum \Phi_{\text {odd }}^{+},
$$

$\mathbf{S U}(\mathbf{3})$ structure $\left(\eta^{1}=\eta^{2}\right)$:

$$
\mathbf{\Phi}^{+}=\mathrm{e}^{\mathrm{B}+\mathrm{i} \mathbf{J}}
$$

$$
\Phi^{-}=\mathrm{e}^{\mathrm{B}} \Omega,
$$

$\underline{\text { Low energy effective action: }}$

$$
\mathcal{S}=\int_{\mathbf{M}_{4}} \frac{1}{2} \mathbf{R}-\mathbf{g}_{\mathbf{a b}}(\mathbf{z}) \mathbf{D}_{\mu} \mathbf{z}^{\mathrm{a}} \mathbf{D}^{\mu} \mathbf{z}^{\mathbf{b}}-\mathbf{V}(\mathbf{z})+\ldots
$$

\Rightarrow Type II string theory: \mathcal{S} is $N=2$ gauged supergravity
$\Rightarrow z^{a}$: coordinates of scalar manifold \mathcal{M}

- correspond to deformations of $\mathbf{B}, \mathbf{J}, \Omega$ or Φ^{+}, Φ^{-}
- scalars from RR-sector
$\Rightarrow N=2$ constraint: $\mathcal{M}=\mathcal{M}_{\mathrm{SK}} \times \mathcal{M}_{\mathrm{QK}}$
IIA : $\quad \mathcal{M}_{\mathrm{SK}}=\mathcal{M}_{\Phi^{+}}, \quad \mathcal{M}_{\mathrm{QK}} \supset \mathcal{M}_{\Phi^{-}}, \quad$ IIB : $\quad \Phi^{+} \leftrightarrow \Phi^{-}$
\Rightarrow Impose "standard $N=2$ " (no massive gravitino multiplets)
$\Rightarrow S U(3)$-structure without triplets 3: $d J^{2}=0$ and $d \Omega^{3,1}=0$
$\Rightarrow S U(3) \times S U(3)$-structure without $(\mathbf{3}, \mathbf{1}),(\mathbf{1}, \mathbf{3})$

Metric $\mathrm{g}_{\mathrm{ab}}: \quad$ special Kähler metric on $\mathcal{M}=\mathcal{M}_{\Phi^{+}} \times \mathcal{M}_{\Phi^{-}}$ [Hitchin; Graña,Gurrieri,Micu,Waldram,JL,...]

$$
\begin{aligned}
\mathbf{e}^{-\mathbf{K}_{\Phi}+} & =\int_{\mathbf{Y}}\left\langle\Phi^{+}, \bar{\Phi}^{+}\right\rangle \\
& =\int_{\mathbf{Y}} \mathbf{J} \wedge \mathbf{J} \wedge \mathbf{J}, \quad \text { for } \quad \Phi^{+}=\mathbf{e}^{\mathbf{B}+\mathrm{i} \mathbf{J}}, \\
\mathrm{e}^{-\mathrm{K}_{\Phi^{-}}} & =\int_{\mathbf{Y}}\left\langle\Phi^{-}, \bar{\Phi}^{-}\right\rangle \\
& =\int_{\mathbf{Y}} \Omega_{3} \wedge \bar{\Omega}_{3}, \quad \text { for } \quad \Phi^{-}=\Omega_{3}
\end{aligned}
$$

where $\left\langle\Phi^{+}, \bar{\Phi}^{+}\right\rangle=\Phi_{0}^{+} \wedge \bar{\Phi}_{6}^{+}-\Phi_{2}^{+} \wedge \bar{\Phi}_{4}^{+}+\Phi_{4}^{+} \wedge \bar{\Phi}_{2}^{+}-\Phi_{6}^{+} \wedge \bar{\Phi}_{0}^{+}$, etc.
$\Rightarrow e^{-\mathbf{K}}$ is quartic invariant of $O(6,6)$ (Hitchin functional)
\Rightarrow for $S U(3)$ same expression as in Calabi-Yau compactifications

Include RR-sector: geometry of $\mathcal{M}_{\mathrm{QK}} \quad$ [Graña, Sim, Waldram, JL]
RR-scalars $C \neq 0 \Rightarrow \mathcal{M}_{\mathrm{SK}} \times \frac{\mathrm{SU}(\mathbf{1}, \mathbf{1})}{\mathbf{U}(\mathbf{1})} \rightarrow \mathcal{M}_{\mathrm{QK}}$

$$
\mathrm{SO}(\mathbf{6}, \mathbf{6}) \times \mathrm{SU}(\mathbf{1}, \mathbf{1}) \rightarrow \mathbf{E}_{\mathbf{7}} \quad \text { (U-duality group) }
$$

\Rightarrow Exceptional Generalized Geometry [Hull; Pacheco,Waldram]
$\Rightarrow N=2$ supergravity can be formulated in terms of \mathbf{E}_{7} rep.

$$
133 \rightarrow(1,3)+(66,1)+(32,2)
$$

embed Φ^{-}in $133^{\text {c }}: \quad K_{+}=K_{1}+i K_{2}=e^{C}\left(0,0, \mathbf{u}^{\mathbf{i}} \Phi^{-}\right)$
highest weight $S U(2)$ embedding $\quad\left[K_{a}, K_{b}\right]=2 \kappa \epsilon_{a b c} K_{c}$ [Kobak,Swann]
Hyperkählercone: $\quad \mathcal{M}_{\mathrm{QK}} \rightarrow \mathcal{M}_{\mathrm{HKC}} \quad\left(=\frac{E_{7(7)}}{S O(12)^{*}} \times \mathbf{R}^{+}\right.$locally $)$
Kählerpotential: $\quad \chi \sim \sqrt{\operatorname{tr} K_{+} K_{-}} \sim e^{-\phi} \sqrt{i\left\langle\Phi^{-}, \bar{\Phi}^{-}\right\rangle}$

Potential: is derived from Killing prepotential (or superpotential) \vec{P}
\Rightarrow IIA

$$
\begin{aligned}
\mathbf{P}^{1}+\mathrm{iP}^{2} \sim \int_{Y_{6}}\left\langle\Phi^{+}, d \Phi^{-}\right\rangle, \quad \mathbf{P}^{3} & \sim \int_{Y_{6}}\left\langle\Phi^{+}, F\right\rangle \\
F & \equiv \sum_{\mathrm{RR} \text {-forms }} F^{\mathrm{RR}}
\end{aligned}
$$

\Rightarrow IIB: $\quad \Phi^{+} \leftrightarrow \Phi^{-}$

Note:

- as expected \vec{P} depends on torsion and flux
- large volume mirror symmetry intact
- \vec{P} can be given in terms of E_{7} quantities $\longrightarrow[$ Graña, Sim, Waldram, JL]
- gauged $N=2$ supergravity only with charged hypermultiplets

Non-perturbative dualities

$\underline{\text { Proposal: Het. on } \mathrm{K} 3 \times \mathrm{T}^{\mathbf{2}} \text { with flux } \leftrightarrow \text { IIA on } \mathrm{SU}(3) \times \mathrm{SU}(3)}$
Problem: het. T^{2}-fluxes induce non-Abelian vector multiplets (partial) resolution: [Aharony,Berkooz,Micu, JL] consider M-Theory on 7 d - $S U(3)$-manifold: $\mathrm{CY}_{6} \times_{f} S^{1}$
with $\quad \mathrm{d} \omega_{2}^{\mathrm{a}}=\mathrm{T}_{\mathrm{b}}^{\mathrm{a}} \omega_{2}^{\mathrm{b}} \wedge \mathrm{dz},\left.\quad \omega_{2}^{\mathrm{a}}\right|_{\mathrm{CY}} \in \mathbf{H}^{(1,1)}\left(\mathbf{C Y}_{6}\right)$
\Rightarrow charged vector multiplets with scalar derivatives: $\quad D \vec{x}-\vec{k}_{B} A^{B}$
Killing vectors obey: $\left[k_{a}, k_{b}\right]=\left[k_{0}, k_{0}\right]=0, \quad\left[k_{a}, k_{0}\right]=-T_{a}^{b} k_{b}$
reason: het. $W^{ \pm}$masses heavy generically but light in M-theory regime still not a perfect match
\Rightarrow consider het. compactifications on $\mathrm{SU}(2)$-manifolds

Manifolds with SU(2)-structure:

[Gauntlett,Martelli,Waldram; GMPT; Bovy,Lüst,Tsimpis; Triendl,JL, ...]

$$
\mathrm{SU}(3) \times \mathrm{SU}(3) \supset \mathrm{SU}(2) \subset \mathrm{SO}(6)
$$

2 cases:
$\eta^{1}=\mathbf{c} \eta^{2} \quad$ along subspaces of $Y_{6} \Rightarrow 2$ supercharges globally defined
$\eta^{1} \neq \mathbf{c} \eta^{2} \quad$ anywhere on $Y_{6} \quad \Rightarrow 4$ supercharges globally defined
(global SU(2)-structure)
global SU(2)-structure:
\Rightarrow characterized by the pair $\mathbf{J}^{\mathbf{1 , 2}}, \Omega^{\mathbf{1 , 2}}$
\Rightarrow or three 2-forms \mathbf{J}_{α} satisfying

$$
\mathbf{J}_{\alpha} \wedge \mathbf{J}_{\beta} \sim \delta_{\alpha \beta}
$$

and a complex 1-form v satisfying

$$
\mathbf{v} \cdot \mathbf{v}=\mathbf{0}, \quad \overline{\mathbf{v}} \cdot \mathbf{v}=\mathbf{2}, \quad \iota_{\mathbf{v}} \mathbf{J}_{\alpha}=\mathbf{0}
$$

properties of global SU(2)-structure:
\Rightarrow existence of $\mathbf{v} \Rightarrow$ existence of almost product structure P

$$
\text { satisfying } P^{2}=1
$$

\Rightarrow this splits the tangent space $T Y=T_{2} Y \oplus T_{4} Y$
\Rightarrow and is a generalization of $K 3 \times T^{2}$ where product structure is integrable.
\Rightarrow formulation in terms of (two) pure $O(6,6)$ spinors exists
\Rightarrow embedding into E_{7} exits [Triendl,JL]
$\Rightarrow S U(2) \times S U(2)$ does not exist [Triendl,JL]
(due to different chiralities in $d=4$)

Low energy effective action:

$$
\mathcal{S}=\int_{\mathbf{M}_{4}} \frac{1}{2} \mathbf{R}-\mathbf{g}_{\mathbf{a b}}(\mathbf{z}) \mathbf{D}_{\mu} \mathbf{z}^{\mathbf{a}} \mathbf{D}^{\mu} \mathbf{z}^{\mathbf{b}}-\mathbf{V}(\mathbf{z})+\ldots
$$

\Rightarrow Type II string theory: \mathcal{S} is $N=4$ gauged supergravity
\Rightarrow deformations of the NS-sector (metric, B, dilaton S) [Triendl, JL]

$$
\mathcal{M}_{\mathrm{NS}}=\frac{\mathrm{SO}(4,4+\mathrm{n})}{\mathrm{SO}(4) \times \mathrm{SO}(4+\mathrm{n})} \times \frac{\mathrm{SU}(1,1)_{\mathrm{S}}}{\mathrm{U}(1)} \times \frac{\mathrm{SU}(1,1)_{\mathrm{T}}}{\mathrm{U}(1)} \times \frac{\mathrm{SU}(1,1)_{\mathrm{U}}}{\mathrm{U}(1)}
$$

\Rightarrow include RR-scalars [Triendl, JL]

$$
\mathcal{M}_{\mathrm{IIA} / \mathrm{B}}=\frac{\mathrm{SO}(6,6+\mathrm{n})}{\mathrm{SO}(6) \times \mathrm{SO}(6+\mathrm{n})} \times \frac{\mathrm{SU}(1,1)_{\mathrm{T} / \mathrm{U}}}{\mathrm{U}(1)}
$$

\Rightarrow consistent with $N=4$ constraint
\Rightarrow compute $V \rightarrow$ [Reid-Edwards,Spanjaard \& in preparation]

Heterotic on $\mathbf{S U (2)}$-structure $/ N=2$ [Martinez,Micu,JL]
$\Rightarrow N=2$ constraint: $\mathcal{M}=\mathcal{M}_{\mathrm{SK}} \times \mathcal{M}_{\mathrm{QK}}$
find:

$$
\mathcal{M}_{\mathrm{SK}}=\frac{\mathbf{S O}(\mathbf{2}, \mathbf{2 + \mathbf { m })}}{\mathbf{S O}(\mathbf{2}) \times \mathbf{S O}(\mathbf{2}+\mathbf{m})} \times \frac{\mathbf{S U}(\mathbf{1}, \mathbf{1})_{\mathrm{S}}}{\mathbf{U}(\mathbf{1})}, \quad \mathcal{M}_{\mathrm{QK}} \supset \frac{\mathbf{S O}(\mathbf{4}, \mathbf{4}+\mathbf{n})}{\mathbf{S O}(4) \times \mathbf{S O}(4+\mathbf{n})}
$$

\Rightarrow compute V for K 3 fibered over $T^{2}: \mathbf{Y}_{\mathbf{6}}=\mathbf{K} \mathbf{3} \times{ }_{f} T^{2}$

$$
\mathrm{d} \omega_{2}^{\mathrm{a}}=\mathrm{T}_{\mathrm{ib}}^{\mathrm{a}} \omega_{2}^{\mathrm{b}} \wedge \mathrm{dz}^{\mathrm{i}},\left.\quad \omega_{2}^{\mathrm{a}}\right|_{\mathrm{K} 3} \in \mathbf{H}^{(2)}(\mathrm{K} 3)
$$

KK reduction reveals charged hypermultiplets

$$
\mathrm{P}_{\mathrm{i}}^{\alpha} \sim \epsilon_{\mathrm{ij}}\left[\int_{\mathrm{Y}_{6}} \mathrm{~dB} \wedge \mathrm{~J}^{\alpha} \wedge \mathrm{dz}^{\mathrm{j}}-\frac{1}{2} \epsilon^{\alpha \beta \gamma} \int_{\mathrm{Y}_{6}} \mathrm{~J}^{\beta} \wedge \mathrm{dJ}^{\gamma} \wedge \mathrm{dz}^{\mathrm{j}}\right]
$$

- dual to $6 \mathrm{~d} S U(3)$ compactifications
- general $S U(2)$-structure compactifications \rightarrow [in preparation]
\Rightarrow no complete picture yet

Type IIA orientifolds of $\mathbf{S U (2)}$-structure $/ N=2 \quad$ [Danckaert, JL]

Orientifold projection: $N=4 \rightarrow N=2 \quad(\rightarrow N=1)$
$\sigma(\mathrm{v})=-\overline{\mathrm{v}}, \quad \sigma\left(\mathrm{J}^{3}\right)=-\mathrm{J}^{3}, \quad \sigma\left(\mathrm{~J}^{1}+\mathrm{i} \mathrm{J}^{2}\right)=-\left(\mathrm{J}^{1}-\mathrm{i} \mathrm{J}^{2}\right), \quad \sigma\left(\omega_{2}\right)= \pm \omega_{2}$,
truncates spectrum and selects

$$
\mathcal{M}_{\mathrm{SK}} \times \mathcal{M}_{\mathrm{SK}} \subset \mathcal{M}_{\mathrm{SK}} \times \mathcal{M}_{\mathrm{QK}} \subset \frac{\mathbf{S O}(\mathbf{6}, \mathbf{6}+\mathbf{n})}{\mathbf{S O}(\mathbf{6}) \times \mathbf{S O}(\mathbf{6}+\mathbf{n})}
$$

with

$$
\mathcal{M}_{\mathrm{SK}}=\frac{\mathbf{S U}(\mathbf{1}, \mathbf{1})_{\mathbf{U}}}{\mathbf{U}(\mathbf{1})} \times \frac{\mathbf{S O}\left(2, \mathbf{n}_{+}\right)}{\mathbf{S O}(2) \times \mathbf{S O}\left(\mathbf{n}_{+}\right)}, \quad \mathcal{M}_{\mathrm{QK}}=\frac{\mathbf{S O}\left(4, \mathbf{n}_{-}\right)}{\mathbf{S O}(4) \times \mathbf{S O}\left(\mathbf{n}_{-}\right)}
$$

\Rightarrow non-Abelian gauging with vectors and hypers charged
Killing vectors:

$$
\left[k_{0}, k_{1}\right] \sim k_{1}, \quad\left[k_{0}, k_{a}\right] \sim T_{a}^{b} k_{b}, \quad\left[k_{1}, k_{a}\right]=\left[k_{a}, k_{b}\right]=0
$$

cannot be obtained as $S U(3)$-structure compactifications.

Summary

discussed backgrounds with $S U(3)(\times S U(3)) / S U(2)$ structure
\Rightarrow scalar manifold is independent of torsion
\Rightarrow NS-sector expressed in terms $O(6,6)$ quantities (generalized geometry)
$\Rightarrow \mathrm{NS}+\mathrm{RR}$-sector expressed in terms E_{7} (exceptionally generalized geometry)
\Rightarrow (pre)potential depends on torsion and background fluxes
\Rightarrow generalized mirror symmetry intact (in the supergravity limit) non-perturbative dualities not quite yet

