M2-branes in Background Fields

Neil Lambert
King's College London

Itzykson Meeting On String Theory, Paris, 17 June 2009 with P. Richmond to appear

Introduction

Once mysterious, Multiple M2-brane actions are now almost common.

There is a complete and convincing proposal for the effective Lagrangian of n M2-branes in $\mathbb{R}^{8} / \mathbb{Z}_{k}$ for arbitrary k and n

- Lagrangians are new types of highly supersymmetric Chern-Simons matter theories in $D=3$.
- Constructed from a triple product rather than a Lie-bracket
- Hopefully this will lead to a big increase in our understanding of M-theory beyond supergravity
- M2-brane CFT's 'define' M-theory in asymptotically AdS $_{4}$ backgrounds

Introduction

PLAN:

Here I will describe the highly supersymmetric Chern-Simons Gauge Theory in three-dimensions.

- Concentrate on the $\mathcal{N}=8$ theory.
- Construction via 3-algebras
- M-theory Interpretation
- Coupling to Background C-fields
- background fluxes lead to a massive deformation
- Puzzle: what is the spacetime origin of the $(f l u x)^{2}$ terms
- ABJM

$$
\mathcal{N}=8
$$

To construct a theory of multiple M2-branes what do we want?

- 3D field theory with 16 susys $(\mathcal{N}=8)$
- 8 dynamical scalars with an $S O$ (8) R-symmetry
- no dynamical gauge field
- Parity invariant
- Conformal invariance

$$
\mathcal{N}=8
$$

To construct a theory of multiple M2-branes what do we want?

- 3D field theory with 16 susys $(\mathcal{N}=8)$
- 8 dynamical scalars with an $S O$ (8) R-symmetry
- no dynamical gauge field
- Parity invariant
- Conformal invariance

So just start from scratch:
A stack of M2-branes has 8 scalars X^{\prime} and their fermionic superpartners $\Psi, \Gamma_{012} \Psi=-\Psi$.

- We assume that these take values in some vector space

$$
\mathcal{N}=8
$$

A natural guess for the susy algebra is, ignoring gauge symmetries, [Bagger, NL]

$$
\begin{aligned}
\delta X^{\prime} & =i \bar{\epsilon} \Gamma^{\prime} \Psi \\
\delta \Psi & =\partial_{\mu} X^{\prime} \Gamma^{\mu} \Gamma^{\prime} \epsilon+\left[X^{\prime}, X^{J}, X^{K}\right] \Gamma^{I J K} \epsilon
\end{aligned}
$$

where $[A, B, C]$ is totally anti-symmetric triple product.

- So our vector space needs a triple product: 3-algebra

$$
\mathcal{N}=8
$$

Closure of the algebra implies a gauge symmetry:

$$
\left[\delta_{1}, \delta_{2}\right] X^{\prime}=2 i \bar{\epsilon}_{1} \Gamma^{\mu} \epsilon_{2} \partial_{\mu} X^{\prime}+2 i \bar{\epsilon}_{1} \Gamma^{J K} \epsilon_{2}\left[X^{\prime}, X^{J}, X^{K}\right]
$$

$$
\mathcal{N}=8
$$

Closure of the algebra implies a gauge symmetry:

$$
\left[\delta_{1}, \delta_{2}\right] X^{\prime}=2 i \bar{\epsilon}_{1} \Gamma^{\mu} \epsilon_{2} \partial_{\mu} X^{\prime}+2 i \bar{\epsilon}_{1} \Gamma^{J K} \epsilon_{2}\left[X^{\prime}, X^{J}, X^{K}\right]
$$

This must be dealt with to realize the full superalgebra We will proceed by introducing a basis T^{a} for \mathcal{A}.

$$
\left[T^{a}, T^{b}, T^{c}\right]=f_{d}^{a b c} T^{d}, \quad f_{d}^{a b c}=f^{[a b c]}
$$

SO

$$
\delta X_{d}^{\prime}=\Lambda_{a b} f^{c a b}{ }_{d} X_{c}^{l}
$$

and introduce the covariant derivative:

$$
D_{\mu} X_{c}^{\prime}=\partial_{\mu} X_{c}^{\prime}-\tilde{A}_{\mu}{ }^{c}{ }_{d} X_{c}^{\prime}
$$

$$
\mathcal{N}=8
$$

Full superalgebra takes the form [Bagger, NL]

$$
\begin{aligned}
\delta X_{d}^{\prime} & =i \bar{\epsilon} \Gamma^{\prime} \Psi_{d} \\
\delta \Psi_{d} & =D_{\mu} X_{d}^{\prime} \Gamma^{\mu} \Gamma^{\prime} \epsilon-\frac{1}{6} X_{a}^{\prime} X_{b}^{J} X_{c}^{K} f^{a b c}{ }_{d} \Gamma^{I J K} \epsilon \\
\delta \tilde{A}_{\mu}^{c}{ }_{d} & =i \bar{\epsilon} \Gamma_{\mu} \Gamma_{I} X_{a}^{\prime} \Psi_{b} f^{a b c}{ }_{d},
\end{aligned}
$$

Indeed this closes (on-shell) if $f^{\text {abcd }}$ satisfies the fundamental identity:

$$
f^{e f g}{ }_{b} f^{c b a}{ }_{d}+f^{f e a}{ }_{b} f^{c b g}{ }_{d}+f^{g a f}{ }_{b} f^{c e b}{ }_{d}+f^{a g e}{ }_{b} f^{c f b}{ }_{d}=0 .
$$

This ensures that the gauge symmetries $\delta_{\Lambda} X_{d}^{\prime}=\Lambda_{a b} f^{c a b}{ }_{d} X_{c}^{\prime}$ generated by the triple product are those of a Lie-algebra with matrix representatives $\tilde{\Lambda}^{c}{ }_{d}=\Lambda_{a b} f^{c a b}{ }_{d}$ acting on X_{d}^{\prime}.

- N.B. Closure was obtained first by [Gustavsson] using, but equivalent algebraic approach that gives closure

$$
\mathcal{N}=8
$$

The invariant Lagrangian is a Chern-Simons theory [Bagger, NL]:

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2}\left(D_{\mu} X^{a l}\right)\left(D^{\mu} X_{a}^{\prime}\right)+\frac{i}{2} \bar{\Psi}^{a} \Gamma^{\mu} D_{\mu} \Psi_{a}+\frac{i}{4} \bar{\Psi}_{b} \Gamma_{I J} X_{c}^{\prime} X_{d}^{J} \Psi_{a} f^{a b c d} \\
& +\frac{1}{2} \varepsilon^{\mu \nu \lambda}\left(f^{a b c d} A_{\mu a b} \partial_{\nu} A_{\lambda c d}+\frac{2}{3} f^{c d a}{ }_{g} f^{e f g b} A_{\mu a b} A_{\nu c d} A_{\lambda e f}\right) \\
& -\frac{1}{12} \operatorname{Tr}\left(\left[X^{\prime}, X^{J}, X^{K}\right]\right)^{2}
\end{aligned}
$$

- Tr is an invariant trace (inner-product) on \mathcal{A}
- gauge invariance implies $f^{a b c d}=f^{[a b c d]}$
- $\tilde{A}_{\mu}{ }^{c}{ }_{d}=f^{a b c}{ }_{d} A_{\mu a b}$
- Chern-Simons term implies $f^{a b c}{ }_{d}$ is quantized

$$
\mathcal{N}=8
$$

The invariant Lagrangian is a Chern-Simons theory [Bagger, NL]:
$\mathcal{L}=-\frac{1}{2}\left(D_{\mu} X^{a l}\right)\left(D^{\mu} X_{a}^{\prime}\right)+\frac{i}{2} \bar{\psi}^{a} \Gamma^{\mu} D_{\mu} \Psi_{a}+\frac{i}{4} \bar{\psi}_{b} \Gamma{ }_{\jmath} X_{c}^{\prime} X_{d}^{J} \Psi_{a} f^{a b c d}$

$$
+\frac{1}{2} \varepsilon^{\mu \nu \lambda}\left(f^{a b c d} A_{\mu a b} \partial_{\nu} A_{\lambda c d}+\frac{2}{3} f^{c d a}{ }_{g} f^{e f g b} A_{\mu a b} A_{\nu c d} A_{\lambda e f}\right)
$$

$$
-\frac{1}{12} \operatorname{Tr}\left(\left[X^{\prime}, X^{J}, X^{K}\right]\right)^{2}
$$

- Tr is an invariant trace (inner-product) on \mathcal{A}
- gauge invariance implies $f^{a b c d}=f^{[a b c d]}$
- $\tilde{A}_{\mu}{ }^{c}{ }_{d}=f^{a b c}{ }_{d} A_{\mu a b}$
- Chern-Simons term implies $f^{a b c}{ }_{d}$ is quantized

Has all the expected symmetries of multiple M2-branes: 16 susys, $S O$ (8) R-symmetry, Parity ($f^{\text {abcd }}$ is parity odd).

No continuous free parameter but weakly coupled as $f^{a b c}{ }_{d} \rightarrow 0$

$$
\mathcal{N}=8
$$

If Tr is positive definite then there is only one finite-dimensional possibility [Nagy],[Gauntlett, Gutowski],[Papadopoulos]:

$$
f^{a b c d}=\frac{2 \pi}{k} \varepsilon^{a b c d}
$$

Although examples with an infinite dimensional 3-algebra arise from the Nambu bracket.

$$
\mathcal{N}=8
$$

If Tr is positive definite then there is only one finite-dimensional possibility [Nagy],[Gauntlett, Gutowski],[Papadopoulos]:

$$
f^{a b c d}=\frac{2 \pi}{k} \varepsilon^{a b c d}
$$

Although examples with an infinite dimensional 3-algebra arise from the Nambu bracket.

In this case the Lagrangian is that of an $S U(2) \times S U(2)$
Chern-Simons theory coupled to matter in the bi-fundamental.

$$
\begin{aligned}
\mathcal{L}_{C S}= & \frac{k}{4 \pi} \operatorname{tr}\left(\tilde{A}^{+} \wedge d \tilde{A}^{+}+\frac{2}{3} \tilde{A}^{+} \wedge \tilde{A}^{+} \wedge \tilde{A}^{+}\right) \\
& -\frac{k}{4 \pi} \operatorname{tr}\left(\tilde{A}^{-} \wedge d \tilde{A}^{-}+\frac{2}{3} \tilde{A}^{-} \wedge \tilde{A}^{-} \wedge \tilde{A}^{-}\right)
\end{aligned}
$$

- quantization condition implies $k \in \mathbf{Z}$
$-f^{a b c d} \leftrightarrow-f^{a b c d}$ corresponds to switching the two $S U(2)$'s

$$
\mathcal{N}=8
$$

What is the multiple M2-brane interpretation?
Look at the Vacuum moduli space [NL, Tong], [Distler, Mukhi, Papageorgakis, van Raamsdonk]

$$
\mathcal{M}_{k}=\mathbb{R}^{16} / D_{2 k}
$$

- $D_{2 k}$ - dihedral group
- $\mathcal{M}_{1}=\mathbb{R}^{8} / \mathbb{Z}_{2} \times \mathbb{R}^{8} / \mathbb{Z}_{2}$
- vacuum moduli space of an $S O$ (4) gauge theory
- $\mathcal{M}_{2}=\left(\mathbb{R}^{8} / \mathbb{Z}_{2} \times \mathbb{R}^{8} / \mathbb{Z}_{2}\right) / \mathbb{Z}_{2}$
- vacuum moduli space of an $S O(5)$ gauge theory

Two 2-branes on $\mathbb{R}^{8} / \mathbb{Z}_{2}$
No clear picture for $k>2$ (although for $k=3$ one finds the vacuum moduli space of a G_{2} gauge theory).

$$
\mathcal{N}=8
$$

What does one expect for two M2-branes on orbifold $\mathbb{R}^{8} / \mathbb{Z}_{2}$?

- $\mathcal{N}=8, S O(8)$ R-symmetry and parity
- two possible orbifolds depending on the value of discrete torsion [Sethi],[Berkooz,Kapustin]:
- $O(4)$ gauge group
- $S O(5)$ or $O(4)$ gauge group
- The $k=2$ agrees (although not clear if it is for $O(4)$ or $S O(5)$.

$$
\mathcal{N}=8
$$

What does one expect for two M2-branes on orbifold $\mathbb{R}^{8} / \mathbb{Z}_{2}$?

- $\mathcal{N}=8, S O(8)$ R-symmetry and parity
- two possible orbifolds depending on the value of discrete torsion [Sethi],[Berkooz,Kapustin]:
- $O(4)$ gauge group
- $S O(5)$ or $O(4)$ gauge group
- The $k=2$ agrees (although not clear if it is for $O(4)$ or $S O(5)$.

So the bottom line is that it's not clear what the interpretation is

- for $k=2$ there is full agreement with M-theory.

Coupling to Background Fields

Turning on a background 4 -form flux should lead to a 'Myers' effect and induce mass terms preserving all supersymmetry.

- Vacua correspond to M2's 'blown-up' into M5's on fuzzy S^{3} [Benna],[Bagger,NL]

There is a deformation of the $\mathcal{N}=8$ theory that breaks $S O(8) \rightarrow S O(4) \times S O(4)$ [Gomis, Salim, Passerini], [Hosomichi,Lee and Lee]

$$
\begin{aligned}
\mathcal{L}_{\text {mass }}= & \mathcal{L}-\frac{1}{2} \mu^{2} \operatorname{Tr}\left(X^{\prime}, X^{J}\right) \delta_{I J} \\
& -\mu \operatorname{Tr}\left(X^{A},\left[X^{B}, X^{C}, X^{D}\right]\right) \epsilon_{A B C D} \\
& -\mu \operatorname{Tr}\left(X^{A^{\prime}},\left[X^{B^{\prime}}, X^{C^{\prime}}, X^{D^{\prime}}\right]\right) \epsilon_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}} \\
& + \text { Fermion mass terms }
\end{aligned}
$$

We'd like to understand how all these terms arise in a more general background (see also papers by [Li,Wang], [Kim, Kwon, Nakajima, Tolla])

Coupling to Background Fields

First try to construct the most general 'Myers'-like terms for M2-branes

- Gauge invariant quantities are $\operatorname{Tr}\left(X^{\prime}, X^{J}\right)$, $\operatorname{Tr}\left(X^{\prime},\left[X^{J}, X^{K}, X^{L}\right]\right) \ldots$

$$
\begin{aligned}
S_{\text {flux }}= & \frac{T_{M 2}}{3!} \int d^{3} x \epsilon^{\mu \nu \lambda}\left(N C_{\mu \nu \lambda}+3 B T_{M 2}^{-1} C_{\mu I J} \operatorname{Tr}\left(D_{\nu} X^{\prime}, D_{\lambda} X^{J}\right)\right. \\
& +3 C T_{M 2}^{-1} C_{\mu \nu I J K L} \operatorname{Tr}\left(D_{\lambda} X^{\prime},\left[X^{J}, X^{K}, X^{L}\right]\right) \\
& \left.+E T_{M 2}^{-2} C_{I J K L M N} \operatorname{Tr}\left(\left[D_{\nu} X^{\prime}, D_{\nu} X^{J}, D_{\lambda} X^{K}\right],\left[X^{L}, X^{M}, X^{N}\right]\right)\right)
\end{aligned}
$$

- Consistent with \mathbf{Z}_{2} orbifold.
- The spacetime coordinates are $x^{\prime}=T_{M 2}^{-\frac{1}{2}} X^{\prime}$

Coupling to Background Fields

Taking the decoupling limit $T_{M 2} \rightarrow \infty$ and only consider Lorentz invariant terms:

$$
S_{f l u x}=\int d^{3} \times N T_{M 2} \epsilon^{\mu \nu \lambda} G_{\mu \nu \lambda}+C \tilde{G}_{I J K L} \operatorname{Tr}\left(X^{\prime},\left[X^{J}, X^{K}, X^{L}\right]\right)
$$

- first term is just a constant

We can supersymmetize this second term:

$$
\begin{array}{r}
\mathcal{L}=\mathcal{L}_{0}-\frac{m^{2}}{2} \operatorname{Tr}\left(X^{\prime}, X^{\prime}\right)-i \frac{C}{16} \operatorname{Tr}\left(\bar{\Psi}, \Gamma^{I J K L} \Psi\right) \tilde{G}_{I J K L} \\
+C \tilde{G}_{I J K L} \operatorname{Tr}\left(X^{\prime},\left[X^{J}, X^{K}, X^{L}\right]\right)
\end{array}
$$

Coupling to Background Fields

$\mathcal{N}=8$ is preserved if we shift the Fermion supervariation to

$$
\delta \psi_{a}=\delta_{0} \psi_{a}+\frac{C}{8} \Gamma^{I J K L} \Gamma^{M} \epsilon X_{a}^{M} \tilde{G}_{I J K L}
$$

Provided that $\tilde{G}_{I J K L}$ is self-dual (in the transverse space) and

$$
\left(\Gamma^{I J K L} \tilde{G}_{I J K L}\right)^{2}=\frac{32 m^{2}}{C^{2}}\left(1+\Gamma^{345678910}\right)
$$

For example $G=\mu\left(d x^{3} \wedge d x^{4} \wedge d x^{5} \wedge d x^{6}+d x^{7} \wedge d x^{8} \wedge d x^{9} \wedge d x^{10}\right)$ gives the mass deformation of [Gomis, Salim, Passerini], [Hosomichi,Lee and Lee]

Coupling to Background Fields

What is the origin of the Bosonic mass which is quadratic in the flux?

- Doesn't depend triple product - exists even for a single M2.

Supersymmetry is a consequence of κ-symmetry

- κ-symmetry requires that the background satisfies the equations of motion of eleven-dimensional supergravity [Bergshoeff, Sezgin, Townsend]
- Fluxes curve background geometry

So we should find the quardratic flux term by looking at a single M2-brane moving in a curved background

Coupling to Background Fields

Consider the effective action

$$
S=-T_{M 2} \int d^{3} x \sqrt{-\operatorname{det}\left(\partial_{\mu} x^{M} \partial_{\nu} x^{N} g_{M N}\right)}
$$

To lowest order in the fluxes $g_{M N}=\eta_{M N}$. To next order we try

$$
g_{M N}=\left(\begin{array}{cc}
e^{2 \omega} \eta_{\mu \nu} & 0 \\
0 & g_{I J}
\end{array}\right)
$$

where $\omega=1+T_{M 2}^{-1} \omega_{I J} X^{\prime} X^{J}+\ldots$ and $g_{I J}=\delta_{I J}+\ldots$
To lowest order in $T_{M 2}$ the action, in static gauge, is

$$
S=-\int d^{3} x\left(T_{M 2}+3 \omega_{I J} X^{\prime} X^{J}+\frac{1}{2} \partial_{\mu} X^{\prime} \partial^{\mu} X^{J} \delta_{I J}+\ldots\right)
$$

so we find a quadratic mass-term if $\omega \neq 1$.

Coupling to Background Fields

Solving the linearized Einstein equation in the presence of the flux gives

$$
\omega=1+\frac{1}{16 \cdot 4!T_{M 2}} G^{2} \delta_{I J} X^{\prime} X^{J}
$$

and so we find the mass term

$$
m_{I J}^{2}=\frac{3}{64 \cdot 4!} G^{2} \delta_{I J}
$$

- $S O(8)$-invariant mass-squared term for the Bosons.

Comparing with the supersymmetric Lagrangian we can determine that $C=2$ i.e.

$$
S_{f l u x}=\int d^{3} x \epsilon^{\mu \nu \lambda} C_{\mu \nu I J K L} \operatorname{Tr}\left(D_{\lambda} X^{\prime},\left[X^{J}, X^{K}, X^{L}\right]\right)
$$

$\mathcal{N}=6 \& A B J M$

To generalize to arbitrary number of M 2 's it turns out that we should consider an orbifold with 12 supersymmetries:

There is an $\mathbb{R}^{8} / \mathbb{Z}_{k}$ orbifold that preserves 12 susys $(\mathcal{N}=6)$

$$
\left(\begin{array}{l}
Z^{1} \\
Z^{2} \\
Z^{3} \\
Z^{4}
\end{array}\right) \sim\left(\begin{array}{llll}
\omega & & & \\
& \omega & & \\
& & \omega^{-1} & \\
& & & \omega^{-1}
\end{array}\right)\left(\begin{array}{c}
Z^{1} \\
Z^{2} \\
Z^{3} \\
Z^{4}
\end{array}\right) \quad \omega=e^{2 \pi i / k}
$$

- $S O(8) \rightarrow S U(4) \times U(1)$

$\mathcal{N}=6$ \& ABJM

This construction is by [Aharony, Bergman, Jafferis and Maldacena]

- Only impose $\mathcal{N}=6$ and an $S U(4) \times U(1)$ R-symmetry in the Lagrangian.
- Constructed $U(n) \times U(n)$ Chern-Simons Matter theories at level $(k,-k)$
- Vacuum moduli space is $\operatorname{Sym}^{n}\left(\mathbb{R}^{8} / \mathbb{Z}_{k}\right)$
- Describes n M2-branes in this $\mathbb{R}^{8} / \mathbb{Z}_{k}$ orbifold.

This construction can be further generalized to include discrete torsion $H_{4}\left(\mathbb{R}^{8} / \mathbb{Z}_{k}\right)=\mathbb{Z}^{k}$ [Aharony, Bergman, Jafferis]:

- $U(m) \times U(n)$ CS theory with level $(k,-k)$ coupled to bi-fundamental matter
- conjectured that $|m-n| \leq k$
-e.g. $n=m, n=m+1, \ldots, n=m+k-1$
$-n=m+k$ is equivalent to $n=m$
-always strongly coupled

$\mathcal{N}=6 \& A B J M$

Following the logic of the $\mathcal{N}=8$ construction let us construct the most general Lagrangian with $\mathcal{N}=6$ susy, conformal invariance and an $S U(4) \times U(1)$ R-symmetry.

- scalars $Z_{a}^{A} \in \mathbf{4}_{1}$ of $S U(4) \times U(1)$
-complex conjugates $\bar{Z}_{A \bar{a}} \in \overline{\mathbf{4}}_{-1}$
- fermions $\psi_{A_{a}} \in \overline{\mathbf{4}}_{1}$ of $S U(4) \times U(1)$
- susys $\epsilon_{A B} \in \mathbf{6}_{0}$ of $S U(4) \times U(1)$
- $\left(\epsilon_{A B}\right)^{*}=\epsilon^{A B}=\frac{1}{2} \varepsilon^{A B C D} \epsilon_{C D}$
- complex conjugation raises/lowers and A-index and flips the U(1) charge
- Trace form $h^{\bar{a} b}=\operatorname{Tr}\left(T^{\bar{a}}, T^{b}\right)$

$\mathcal{N}=6$ \& ABJM

Starting from the most general form for the susy's one finds [Bagger, NL]

$$
\begin{aligned}
\delta Z_{d}^{A} & =i \bar{\epsilon}^{A B} \psi_{B d} \\
\delta \psi_{B d} & =\gamma^{\mu} D_{\mu} Z_{d}^{A} \epsilon_{A B}+f^{a b \bar{c}}{ }_{d} Z_{a}^{C} Z_{b}^{A} \bar{Z}_{C \bar{c}} \epsilon_{A B}+f^{a b \bar{c}}{ }_{d} Z_{a}^{C} Z_{b}^{D} \bar{Z}_{B \bar{c}} \epsilon_{C D} \\
\delta \tilde{A}_{\mu}{ }^{c}{ }_{d} & =-i \bar{\epsilon}_{A B} \gamma_{\mu} Z_{a}^{A} \psi_{\bar{b}}^{B} f^{c a \bar{b}}{ }_{d}+i \bar{\epsilon}^{A B} \gamma_{\mu} \bar{Z}_{A \bar{b}} \psi_{B a} f^{c a \bar{b}}{ }_{d}
\end{aligned}
$$

Provided that

$$
f^{a b \bar{c}}{ }_{e} f^{e f \bar{g}}{ }_{d}=f^{a f \bar{g}}{ }_{e} f^{e b \bar{c}}{ }_{d}+f^{b f \bar{g}}{ }_{e} f^{a e \bar{c}}{ }_{d}-f_{\bar{e}} f \bar{g} \bar{c} \bar{c}^{a b \bar{e}}{ }_{d}
$$

and

$$
f^{a b \bar{c} \bar{d}}=-f^{b a \bar{c} \bar{d}}, \quad f^{* \bar{c} \bar{d} a b}=f^{a b \bar{c} \bar{d}} .
$$

N.B Recover the $\mathcal{N}=8$ theory when $f^{\text {abcd }}$ is real and totally anti-symmetric

$\mathcal{N}=6 \& A B J M$

The Lagrangian has a similar form to the $\mathcal{N}=8$ case [Bagger, NL]:

$$
\begin{aligned}
\mathcal{L}= & -D^{\mu} \bar{Z}_{A}^{a} D_{\mu} Z_{a}^{A}-i \bar{\psi}^{A a} \gamma^{\mu} D_{\mu} \psi_{A a}-\Upsilon_{B d}^{C D} \bar{\Upsilon}_{C D}^{B d}+\mathcal{L}_{C S} \\
& -i f^{a b \bar{c} \bar{d}} \bar{\psi}_{\bar{d}}^{A} \psi_{A a} Z_{b}^{B} \bar{Z}_{B \bar{c}}+2 i f^{a b \bar{c} \bar{d}} \bar{\psi}_{\bar{d}}^{A} \psi_{B a} Z_{b}^{B} \bar{Z}_{A \bar{c}} \\
& +\frac{i}{2} \varepsilon_{A B C D} f^{a b \bar{c} \bar{d}} \bar{\psi}_{\bar{d}}^{A} \psi_{\bar{c}}^{B} Z_{a}^{C} Z_{b}^{D}-\frac{i}{2} \varepsilon^{A B C D} f^{c d \bar{a} \bar{b}} \bar{\psi}_{A c} \psi_{B d} \bar{Z}_{C \bar{a}} \bar{Z}_{D \bar{b}}
\end{aligned}
$$

where

$$
\Upsilon_{B d}^{C D}=f^{a b \bar{c}}{ }_{d} Z_{a}^{C} Z_{b}^{D} \bar{Z}_{B \bar{c}}-\frac{1}{2} \delta_{B}^{C} f^{a b \bar{c}}{ }_{d} Z_{a}^{E} Z_{b}^{D} \bar{Z}_{E \bar{c}}+\frac{1}{2} \delta_{B}^{D} f^{a b \bar{c}}{ }_{d} Z_{a}^{E} Z_{b}^{C} \bar{Z}_{E \bar{c}}
$$

and

$$
\mathcal{L}_{C S}=\frac{1}{2} \varepsilon^{\mu \nu \lambda}\left(f^{a b \bar{c} \bar{d}} A_{\mu \bar{c} b} \partial_{\nu} A_{\lambda \bar{d} a}+\frac{2}{3} f^{a c \bar{d}}{ }_{g} f^{g e \bar{f} \bar{b}} A_{\mu \bar{b} a} A_{\nu \bar{d} c} A_{\lambda \bar{f} e}\right) .
$$

$\mathcal{N}=6$ \& ABJM

As before $f^{a b \bar{c}}{ }_{d}$ also defines a triple product:

$$
[X, Y ; \bar{Z}]_{d}=f^{a b \bar{c}}{ }_{d} X_{a} Y_{b} \bar{Z}_{\bar{c}}
$$

- gauge symmetry $\delta_{\Lambda} Z_{d}^{A}=\Lambda_{\bar{c} b} f^{a b \bar{c}}{ }_{d} Z_{a}^{A}$ acts as a derivation

One natural class of solutions: Let X, Y, Z be complex $n \times m$ matrices

$$
[X, Y ; \bar{Z}]=\frac{2 \pi}{k}\left(X Z^{\dagger} Y-Y Z^{\dagger} X\right)
$$

- Gauge symmetry is $\delta X=M X-X N$ with $M \in u(m)$ and $N \in u(n)$
- $S U(m) \times S U(n)$ Chern-Simons with matter in bi-fundamental
- gives the [ABJM] and [ABJ] models by gauging the $U(1)$ global symmetry

$\mathcal{N}=6 \& A B J M$

There is a known mass deformation of this theory too [Hosomichi,Lee,Lee,Lee,Park], [Gomis,Rodriguez-Gomez,van Raamsdonk, Verlinde].

So what about the 'Myers'-terms?

$$
\begin{aligned}
S_{\text {flux }}= & \frac{T_{M 2}}{3!} \int d^{3} x \epsilon^{\mu \nu \lambda}\left(N C_{\mu \nu \lambda}+3 B T_{M 2}^{-1} C_{\mu A}{ }^{B} \operatorname{Tr}\left(D_{\nu} Z^{A}, D_{\lambda} \bar{Z}_{B}\right)\right. \\
& +3 C T_{M 2}^{-1} C_{\mu \nu A}{ }^{B} c^{D} \operatorname{Tr}\left(D_{\lambda} Z^{A},\left[\bar{Z}_{B}, \bar{Z}_{D}, Z^{C}\right]\right) \\
& \left.+E T_{M 2}^{-2} C_{A}^{B} c^{D}{ }_{E} F^{\operatorname{Tr}}\left(\left[D_{\nu} Z^{A}, D_{\nu} Z^{B}, D_{\lambda} \bar{Z}_{C}\right],\left[Z^{D}, Z^{E}, \bar{Z}_{F}\right]\right)\right) \\
& + \text { c.c. }
\end{aligned}
$$

$\mathcal{N}=6 \& A B J M$

Same story:

- Supersymmetry gives Fermionic terms and a quadratic mass
- Bosonic mass is also $S O(8)$ invariant and Abelian
- Same background calculations gives the origin of the flux-squared terms.

Gauge invariance preserves $U(1)$ symmetry and hence is consistent with \mathbf{Z}_{k} orbifold

- Although for $k=1$ there is no orbifold and hence there should be additional Myers terms.

Conclusion

Conclusions: We have reviewed the Lagrangians to describe n M2's in $\mathbb{R}^{8} / \mathbb{Z}_{k}$ for any n, k.

- focused on Lagrangians with $\mathcal{N}=8$ and $S O$ (8) R-symmetry.

We have also discussed the coupling of these Lagangians to 'Myers' Terms

- Supersymmetrized the flux terms
- Quadratic flux terms arise from back reaction on the bulk metric

